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Abstract. Encapsulating parallelism and synchronization code within object-
oriented software components is a promising avenue towards mastering the
complexity of the distributed memory supercomputer programming. How-
ever, in trying to give application programmers benefit of supercomputer
power, the library designer generally resorts to low level parallel constructs,
a time consuming and error prone process. To solve this problem we intro-
duce a new abstraction called Parallel Operators. A Parallel Operator exists
simultaneously on all processors involved in a distributed computation: it
acts as a single ubiquitous entity capable of processing shared or distributed
data in parallel. In this paper we reify this concept in our FEiffel Parallel
Execution Environment (EPEE) context, and we show that it is both nat-
ural and efficient to express computations over large shared or distributed
data structures using Parallel Operators. We illustrate our approach with a
Parallel Operator based solution for the well-known N-body problem.

Keywords: Distribution, Data Parallelism, Operators, Components and Frameworks

1 Introduction

Many programmers are eager to take advantage of the computational power offered
by Distributed Computing Systems (DCSs) but are generally reluctant to undertake
the porting of their application programs onto such machines. Indeed, it is widely
believed that the DCSs commercially available today are difficult to use, which is
not surprising since they are traditionally programmed with software tools dating
back to the days of punch cards and paper tape.

It is now well established that an object-oriented approach can greatly alleviate
the pain of programming such supercomputers [7, 9]. One of the most successful ap-
proaches relies on the Single Program Multiple Data (SPMD) programming model
and is based on the idea that tricky parallel codes can be encapsulated in object-
oriented software components presenting their clients with a familiar, more or less
sequential-like interface [17, 12, 2, 5]. In EPEE for instance, the modularity and
encapsulation properties available through the class concept are used to abstract
the data representation that can then be either replicated, distributed, or virtually
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shared (provided a Distributed Shared Memory (DSM) is available) among the pro-
cessors of a DCS [4]. In this context, sequential code can safely be reused through
inheritance in a distributed environment.

In order to give application programmers the benefit of DCS computational
power, the library programmer still has to redefine and reprogram some features
using explicit parallelism, which is both time consuming and error prone. Even if
some very basic parallel patterns can be reused in new applications, they usually
require syntactic contortions [6] or language extensions [10]. To solve this problem
we introduce a new abstraction called Parallel Operators. A Parallel Operator exists
simultaneously on all processors involved in a distributed computation: it acts as a
single ubiquitous entity capable of processing distributed (or shared) data in parallel.
In this paper we reify this concept in the EPEE framework, and we show that it is
both natural and efficient to express computations over large shared or distributed
data structures using Parallel Operators. Section 2 defines more precisely the notion
of operator, and discuss how computations over large data structures can naturally
be structured with operators. Section 3 shows how the concept of a Parallel Operator
is used to go from a sequential application to an efficient parallel one. Throughout
this paper, we illustrate our approach with a Parallel Operator based solution for
the well-known N-body problem.

2 Using Operators in Computation Structuring

2.1 What is an Operator?

The concept of operator developed in this paper is inspired from both the G. Booch’s
classification of object relationships, and a reflection on the various design patterns
involved in the processing of large collections of data.

We first planned to use the name agent for this design pattern, following the
G. Booch [1] and the Harrap’s Dictionary definitions. But the term agent is widely
and increasingly used in the computer science community although not everyone
agrees on the meaning.

Booch’s definition of agents refers to a classification of object relationships that
divides objects into Actors, Servers and Agents. Booch defines an agent as : “An
object that can both operate upon other objects and be operated upon by other objects;
an agent is usually created to do some work on behalf of an actor or another agent”.
The main concept of Booch’s definition is based on the notion of a service provider.
An agent is an object that does something on a second object and on behalf of a
third one, even if the target and the client of the service can be the same object.

In the Artificial Intelligence (AI) community, the notion of agent has another,
roughly similar, definition to the one given above. An Al agent is an autonomous
entity that progresses in an environment where other agents exist. A system is then
modeled by the interactions between several agents, each of them performing a
limited set of actions. The common point between the object-oriented definition
of agent and the Al definition lies in the notion of autonomy of agents, which is
interpreted here as a loosely coupled design pattern. Furthermore, in both cases, an
agent is only designed to perform a very specific operation.



To avoid confusion, we will use the term of operator in place of agent. The idea
of operator is better known to object—oriented computer scientists and does not
interfere with the Al world for which the definition of agent is the most famous at
this time.

2.2 Beyond the Encapsulation Principle

One of the purposes of the operator design pattern is to better separate the respon-
sibilities of each object in the modeling of a problem. A widely used approach to
design classes is to follow the line of the encapsulation principle, which states that
all methods manipulating data must be encapsulated along with these data. Taking
for example a container class holding several items to be updated, the encapsulation
principle would lead us to encapsulate the update method within the container class.

On second thoughts, this approach might not always be the best one. A container
class is not necessarily an abstraction that provides operations intended to modify
the state of the items holden in its structure. The only operations a class container
should provide are related to the management of the data structure used to hold
these items (accessing, adding and removing items, etc.). The update process is
better modeled with an operator that performs the update operation on the elements
stored in the container.

The main interest of such an approach in problem modeling is its ability to
express the separation between classes related to the problem domain from those re-
lated to a specific implementation of the solution. Following this precept, it becomes
easier to build an application in an incremental way, first providing a non optimal
release to check whether the model described in the semantic classes is correctly de-
signed. Having achieved a correct problem modeling, the programmer can think of
optimizing time and space trade—offs just by modifying the implementation classes
that are independent of the problem domain classes.

2.3 Modeling Computations over Large Data Structures

This section provides a definition of the patterns of collaboration between the few key
abstractions used in designing operator—oriented applications. This design pattern is
based on the relationships of four key abstractions, divided into (i) problem domain
abstractions: Operator, Element and (ii) implementation abstractions: Container,
Element Provider.

— Problem Domain Abstractions:

Operator: An operator as considered here is the key abstraction suitable to
model a regular operation to be performed over a collection of elements.
Element: The element abstraction embodies the data manipulated by the ap-

plication. Elements are the targets of operator computations.

— Implementation Abstractions:

Container: A container stores elements using a specific data structure. The
function of a container is also to retrieve, to access, to delete, etc, stored
elements



Element Provider: The element provider is in charge of traversing a set of
elements to be processed by an operator and generally stored in a container.
Some element providers of the EPEE toolbox are also capable of generating
themselves the elements they provide. Furthermore, this abstraction imple-
ments a traversal policy and do not access elements directly when associated
with a container.

Thus an operator uses an element provider to reach the elements it has to process,
these elements being stored in a container known to the element prouvider. It is
possible for an operator, using the polymorphism of its element provider attribute
both to traverse a container in various ways and to access elements independently
of the container internal representation. These last two properties will be widely
exploited in the design of parallel operators working in a distributed environment.

We can also note that we have only addressed the context of operators dealing
with a collection of elements, regardless of the internal representation of the data
structure used to stored these elements. But another kind of operator is also useful:
those dealing with the mere organization of a data structure (e.g., a sorting oper-
ation). This family of operators will not be addressed in this paper because their
parallelization needs a different approach. Yet the general method we describe here
is still applicable, even if its explanation would need too much space to be presented
here.

2.4 Implementing the Model in Eiffel

We describe the implementation of this operator—based model in Eiffel [13], because
this language features all the concepts we need (i.e. strong encapsulation, static
typing allowing efficient code generation, multiple inheritance, dynamic binding and
genericity), and has clearly defined syntax and semantics. However any other stati-
cally typed OO language could have been used instead (e.g., Modula-3, Ada 95, or
C++).

The implementation presented here is based on a four—part hierarchy reflecting
the four key abstractions previously defined.

An Operator is implemented as a deferred class®, where only the specific opera-
tion to be performed on each element is left deferred (see Example 2.1). In the same
way, the class ELEM_PROVIDER is also a deferred class because we do not know how
to access the items of a container, but we must be able to start a traversing, to
detect the end of the traversing, and to go through the next item in the traversal
(see Example 2.2). We must point out that the specification of the ELEM_PROVIDER
class does not specify any order on the traversed elements.

The elements are referenced in this implementation through the generic formal
parameter E because no assumption on instances of this class is necessary. Finally,
the top of the class hierarchy of this implementation is shown in Figure 1 where
possible effective classes are also mentioned for the Element Provider and Container
hierarchies. The deferred features of the deferred classes are in italic.

3 Also called an abstract class, that is a class where at least one method has no implemen-
tation: it is a deferred feature in FEiffel or a pure virtual function in C++.



deferred class OPERATORI[E]
feature
run is do do_all end —— run
attach ( prov ELEM_PROVIDER[E] ) is

require valid_prov: prov /= void

do_all is

—— do itemaction on all
—— provided elements
do

from provider.start

do provider := clone(prov) end until provider.exhausted 20
item_action (element E) is loop
—— action to perform on provided elements item_action(provider.item)
require provider.next
element_exist: element /= void 10 end —— loop
deferred end —— doall
end —— itemaction invariant
feature {NONE} provider_exist: provider /= void
provider ELEM_PROVIDER[E] end —— OPERATOR
Example 2.1
deferred class ELEM_PROVIDER[E] deferred
feature end —— item
start is exhausted BOOLEAN is
—— go to the traversal starting postition —— have all elements been seenx
deferred deferred
end —— start end —— exhausted
next is feature {NONE}
—— advance to the next element container CONTAINERIE] 20
deferred —— Optionnal
end —— next 10 invariant
item : E is container_exist: container /= Void
—— element under the provider end —— ELEMPROVIDER

Example 2.2



Container Hierarchy

Element Provider Hierarchy

Operator Hierarchy

OPERATORIE] Deferred
ELEM_PROVIDER[E] - - - - - _ _ provider Classes
CONTAINER[E] <=|- - - - = cont ai ner item.action
start, next, exhausted
% \ item
A AN
/ \ User Defined Effective
ARRAYIE] TREE[E] ARRAY_PROVIDER[E TREE?PROVIDEH[E% Classes
contai ner : ARRAY[ E] contai ner : TREE[ E]
<—— Inheritancerelation < ---- Client relation

Fig. 1. Top class hierarchy

2.5 Example: N-Body Simulation

We present an actual use of the ideas developed in this paper through the modeling
and implementation of the well known N-Body problem. A large amount of literature
has already been devoted to this subject. It is mainly related to the optimization
of the naive algorithm, the accuracy trade—off in the optimized version [15], or the
parallel implementation of N-Body algorithms [14].

We consider a set of masses located in a three dimensional space, in which each
mass interacts with all the others. A body is a mass with an additional speed and
acceleration. The purpose of the application is to compute the time-related evolution
of the system. It relies on a two-step algorithm based on time slicing. First, we
compute the contribution of each mass in the (Newtonian) flow exerted on each
body, and then we update the speed and the position of the bodies, taking into
account all the contributions. The container used to store the bodies is called a
UNIVERSE, which is basically an array of bodies.

Updating the Bodies. The operator in charge of updating the bodies of a uni-
verse is called UPDATOR and is very simple to build (see Example 2.3). Since the
regular operation to be performed on each body is to call its update method, the
UPDATOR operator only needs to designate it as item_action, provided its provider
attribute is initialized to be a relevant element provider, i.e. an instance of an AR-
RAY_PROVIDER[BoDY] able to reach the whole set of bodies of the Universe if this
class inherits from ARRAY[BoDY].

Computation of the Contributions. To compute the contributions, we first use
a naive algorithm whose complexity is in o(n?). While not the best one, it allows us to
introduce our methodology to design an evolutive application that can easily migrate
to a distributed environment. It will be shown below that the optimal o(nlog(n))
algorithm is a direct consequence of choosing a tree based data structure mapped
over the universe container for the computation of the contributions.



class UPDATOR
inherit
OPERATOR[BODY]

creation make

feature
make ( prov : ELEM_PROVIDER[BODY] ) is
do
attach(prov)
end

item_operation (b : BODY) is

do
b.update
end
end —— UPDATOR
Example 2.3

The computation of the contributions is performed in a two-stage approach. First
we consider the contribution of a set of masses over a single body. This is the first
stage of the computation that leads to the first operator in our application, called
BopY_CONTRIBUTOR. The purpose of this operator is to add the contribution of all
the masses it receives from its element provider to a given body. This is done via
the add_contribution_of(b:MASS) method provided in the Bony class.

The second stage of the computation of the contributions is to consider the con-
tributions of one set of masses to a second set. This computation is performed by
another operator, UNIV_CONTRIBUTOR, that computes the contributions of each
masses it receives from its element provider to each body included in the uni-
verse it is in charge of. To achieve this, the operator UNIV_CONTRIBUTOR uses
a BoDY_CONTRIBUTOR in its item_action method, as represented in Figure 2.

N-Body Simulation with Operators. All the components needed to build an N—
body simulation have been described: we now have to assemble and initialize them.
This is the purpose of the class N_BODY_SIMULATION presented in Example 2.4.

For instance, in order to use the universe contributor operator the program-
mer must specify the element providers for both the UNIv_CONTRIBUTOR and the
BoDY_CONTRIBUTOR operators at instantiation time. This is done when initializing
the operator:

Heontributor.make (univ_prov, body_prov)

Where both univ_pro and body_prov are instance of ELEM_PROVIDER[BODY]
subclass and initialized to provide bodies holden in the universe container. Their
name are recall that univ_pro will works with the Univ_Contributor operator and
the body_prov will works with the Body_Contributor operator.

Optimization. The basic optimization principle used in the N-body problem is
based on two ideas:
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OPERATOR[E]

| item_action (v : E ) is defered end |

| run is do do_all end |

attach (prov : ELEM_PROVIDERIE] ) is
do provider := clone (prov ) end

[provider : ELEM_PROVIDER(E] |

BODY_CONTRIBUTOR

make ( prov : ELEM_PROVIDER[MASS] ; b : BODY ) is
do

attach (prov ) ; body :=b
end

item_action (m : MASS ) is
do

body.add_contribution_of( m )
end

body : BODY

UNIV_CONTRIBUTOR

operator.run

Fig. 2. Operators for contribution computations

— Spatially dividing the universe into nested regions, so as to get a tree structure.

— Using the dipole approximation that basically consists in identifying the set of
bodies inside a region with their center of gravity, provided the region is far away
enough from the considered target body.

Implementing this kind of optimization in our Operator Model is achieved through
the design of a new container based on a tree of masses (representing the centers of
gravity of each region) and whose leaves are filled with the references to the bodies
contained in the universe. A new element provider is also designed to traverse the
tree and provides either all its sub—trees or (if the dipole approximation applies)
their center of gravity, thus transparently allowing a o(nlog(n)) complexity for the

make ( prov, univ_prov : ELEM_PROVIDER[BODY] ) is
do

attach ( prov ) ; univ_provider := univ_prov
end

item_action (b : BODY ) is
local
operator : BODY_CONTRIBUTOR

o
lloperator.make( univ_provider , b )
gperator.run

en

univ_provider : ELEM_PROVIDER[BODY]

BopY_CONTRIBUTOR operator computation.




class N_BODY_SIMULATION
creation make
feature

universe : UNIVERSE

—— an array of bodies
contributor : UNIV_CONTRIBUTOR

—— an operator computing the

—— contributions from one

—— wuniverse to another
updator : UPDATOR

—— an operator updating body states
univ_prov : ARRAY_PROVIDER[BODY]
—— provider for the contributor
—— and updator operator

body_prov : ARRAY_PROVIDER[BODY]

—— for the BODYCONTRIBUTOR operator

feature —— entry point of the simulation
make is

—— Create a universe with bodies

—— stored in a data filec and 20
—— simulate its evolution over time
do
!'universe.read_from (" input_data .dat")
from
—— Initialize the element providers
"univ_prov.make(universe)
"body_prov.make(universe)
——  Initialize the operators
!!contributor.make(univ_prov,body_prov)
"updator.make(univ_prov) 30
until universe.end_of times
loop
contributor.run
updator.run

universe.advance_time

end —— loop
end —— make
end —— NBODYSIMULATION

Example 2.4

3 From Sequential to Parallel with Parallel Operators

3.1 The EPEE Parallel Programming Model

The kind of parallelism we consider takes inspiration from Valiant’s Block Syn-
chronous Parallel (BSP) model [16]. A computation that fits the BSP model can be
seen as a succession of parallel phases separated by synchronizations and sequential
phases.

In EPEE [5], Valiant’s model is implemented based on the Single Program Mul-
tiple Data (SPMD) programming model. Data can either be distributed across the
processors, or virtually shared if a Distributed Shared Memory is available on the
target architecture. EPEE provides a design framework where data representations
are totally encapsulated in regular Eiffel classes [4], without any extension to the
language nor modification of its semantics. In both cases, the user still views his
program as a sequential one and the parallelism is derived from the data repre-
sentation: each processor runs a subset of the original execution flow (based on the
Owner Write Rule, that is, a processor may only write its data partition). The SPMD
model preserves the conceptual simplicity of the sequential instruction flow, while
exploiting the fact that most of the problems running on high-performance parallel
computers are data-oriented and involve large amounts of data in order to generate
scalable parallelism.

From the application programmer’s point of view, the distributed execution of



some part of his code is hidden through the use of software components that are
responsible for the correct management of the parallel phases of the application. All
it is needed to benefit from a parallelized execution would be to pick up the suited
reusable components in the EPEE toolbox that match the global behavior expected
during the parallel phases. Thus, the programmer manipulates concepts and ab-
stractions whereas the matching components of the EPEE toolbox are designed to
implement the details and to cooperate smoothly with each other.

The EPEE toolbox also includes cross-compilation tools that mainly consist of
script files that deal with compiler flags and options correctly. Any application de-
signed with EPEE thus can be compiled for any target mono—processor or multi-
processor (provided an Eiffel run-time system exists for this processor). EPEE also
includes two highly portable communication libraries intended to deal with the two
communication paradigms used in EPEE: the message passing and the shared mem-
ory. The Parallel Observable Machine (POM), which provides sophisticated facilities
for tracing a distributed execution [3] is used to implement message passing com-
munications. The Shared Virtual Memory Library (SVM Lib) is used to allow to
allocation of objects in shared memory. These libraries are available for several plat-
forms (e.g., Intel iPSC/2, Paragon XP/S, Silicon Graphics Power Challenge and
networks of UNIX workstations) using various communication kernels or operating
systems (e.g., PVM, BSD sockets, NX/2, SunMos, IRIX, etc.).

3.2 The Parallel Operator Model

The Parallel Operator Model is designed as an extension of the Operator Model to be
used within the EPEE framework. Here are the new meanings of its key abstractions.

Shared Element. A shared element is an object allocated in a shared memory
space using the facilities offered by the EPEE toolbox. The EPEE support for shared
objects is based on a shared memory mechanism, called a Distributed Shared Mem-
ory (DSM) when it is provided at the operating system level on the target archi-
tecture. A DSM provides a virtual address space that is shared by the processes of
different processors on distributed systems. More details on the mechanisms devel-
oped to make shared objects available in the EPEE framework can be found in [8].
The only thing the reader must keep in mind is that the shared objects are fully
compatible with normal ones. This property is exploited to reuse the sequential con-
tainers that may now hold references to shared objects in the distributed version of
an application.

Distributed Element Container. A distributed element container is an abstrac-
tion that is able to manage both local and non local items transparently. Basically,
a distributed element container is implemented as a container for which the data
structure is spread over all the processors. When a client object requests a reference
to an item, the distributed element container is able to detect whether the requested
item is local, and can thus reply with the local reference of the item. Or if the con-
tainer detects that the requested item is allocated on another processor and then it
asks the owner of the real item for a copy.



Container Hierarchy Element Provider Hierarchy Operator Hierarchy
OPERATOR[E]
ELEM_PROVIDER[E] - — — — - - _ _provider
CONTAINER[E] < = |- — - — — cont ai ner itemaction
start, next, exhausted
item \ /y\
DIST_OPERATOR
DIST_ELEM_PROVIDER[E] << - |- -provider
it ti
| P itemaction
ARRAY[E] ARRAY_PROVIDERIE]
contai ner : ARRAY[ E]
DIST_ARRAYIE] SHD_ARRAYIE] \ User Defined
DIST_ARRAY_PROVIDER[E]
contai ner : ARRAY[ E]
<—— Inheritance relation < ----- Client relation

Fig. 3. Top class hierarchy in the parallel operator model

Element Distributed Provider. The distribution of control over the processes
of a data parallel program is achieved by a domain decomposition of the iterations
used over the (large) data structure. Following this idea, when a sequential itera-
tion accesses N variables, the data parallel iteration on each processor accesses %
variables only (if p processors are available).

The choice of the & variables to be accessed on a given processor is made using
the owner write rule. This rule states that only the items owned by the processor
can be accessed for modification [5].

When the data are actually distributed across the memory of each process, the
ownership exactly matches the distribution. When the data are allocated in shared
memory, the ownership is translated to a virtual ownership. The virtual ownership
states that even if all the processes might potentially modify all the data, only one
process per shared datum can actually modify it. In our model design the control
distribution is implemented with an Element Distributed Provider (EDP). Thus the
same EDP can be used for shared and distributed data to reach the elements to be
processed in a distributed iteration.

Parallel Operator. A Parallel Operator is the entry point of a parallel phase from
the application programmer’s point of view. Its role is basically to run the compu-
tation on each processor for the data made available through its EDP. The blocking
semantics to be preserved in a distributed environment states that the execution flow
goes out of the method call only when the execution is terminated. In a distributed
environment a routine call execution is considered to be terminated when each exe-
cution flow in each processor has reach the end of the routine. As a consequence, the

Deferred

Classes

Effective

Classes



faster processors need to wait for the other ones to preserve the routine call seman-
tics. It is the Parallel Operator that implements such a mechanism through the use
of appropriate synchronizations. This is done using the Sync—Exec-Sync scheme as
formally described in [11]. We can briefly recall the purposes of the synchronizations
before and after the distributed execution of a computation:

— The first synchronization ensures that the values of the data read during the Ezec
stage are updated, i.e. are the same as they would have been under a sequential
execution.

— The second synchronization ensures that the data read during the parallel phase
will not be overwritten until global completion of the operator execution.

The actual implementation of the synchronizations depends on the memory
model used in the container class holding the elements processed by a parallel oper-
ator. Thus, an parallel operator triggers the synchronization through an EDP which
itself asks the container for the actual implementation of the synchronizations.

Summary of the Responsibilities. The patterns of collaboration among these
four abstractions may be summarized as follows. A Parallel Operator manages the
synchronizations ensuring a correct execution according to a SPMD programming
model along with the Sync—Exec—Sync scheme. The EDP associated with the Parallel
Operator implements a specific access policy on the subset of the whole data set
using a data domain decomposition scheme. For a Parallel Operator the access to
each element is made transparently from the container data structure through its
EDP. Finally, the actual retrieval of an element, given a position in the structure,
is performed by the container associated with the EDP. This last abstraction is in
charge of dealing with the problem of data allocation that can either be shared or
distributed.

3.3 Using Parallel Operators

To use parallel operators in an actual distributed application, the programmer first
has to choose a memory model for his application. A distributed memory model or
a shared memory model is available through EPEE library classes for basic data
structures (DIST_ARRAY, SHD_ARRAY, etc.) used for containers. For each container
class there is an EDP implementing a domain decomposition policy. These EDPs
are independent of the memory model encapsulated in the container class but not
of the data structure implemented by these containers.

The parallelization of the operator—based sequential application can then be eas-
ily done using the multiple inheritance mechanism. The main idea is to build spe-
cialized parallel operators by inheriting from both:

— the sequential operators to reuse the code for the local processing
— and the parallel operator class to achieve the distributed processing.

It should be noted that the programmer who uses operators must be aware of
certain problems that can arise when one operator is used within another. Since



there is no ordering specified on the elements provided by an ELEMENT_PROVIDER
instance, a programmer can use nested operators only if no data dependencies exist
between the data processed by the various operators. Processing the data in parallel
therefore does not bring new problems, provided only one parallel operator runs
at a given time. This constraint is motivated by both the semantics of a parallel
phase in the BSP model (one parallel phase cannot launch a second one) and by the
implementation of the parallel operators (the synchronizations of parallel operators
would not work correctly). This constraint could be described as a class invariant in
the parallel operator class, and forced upon the programmer through typing, because
a user-defined parallel operator inherits from the general parallel operator class, and
thus from its invariant.

3.4 Parallel N-Body Simulation

Using the method presented in the previous sections, we now describe the paral-
lelization of the N-body application. We start with the modifications of the data
allowing distributed computation and then we discuss the parallelization of the two
main operators. We conclude with the main code of the distributed version of the
N-body simulation program.

The parallel implementation of the N-body application is based on the use of
shared bodies, that is BoDY objects allocated in shared memory. To do so, we build
a SHD_BoDY class by inheriting from both the Boby and the SHD_OBJECT* classes.

The container used to store the bodies and to implement the UNIVERSE class can
still be the same. This is possible because the class SHD_BoODY conforms to the class
Bobpy. Thus, no change is needed in the UNIVERSE class excepting for the method
creating the bodies stored in the container.

Figure 4 shows how two processes can access the same shared bodies through the
use of a local container. In this figure, each circle represents an instance of the class
SHD_BoDY. Shared bodies can be accessed for read purposes by the p processes of
the parallel application using sequential element providers. However, when using an
EDP with a local container, only a sub—set of the bodies are accessed, as represented
by the dashed arrows starting from the DisT_UNIV_PROVIDER objects.

Parallelization of the Update Computations. To obtain a parallel operator
which updates the bodies in parallel, we inherit from both the UPDATOR opera-
tor to get the definition of the ITEM_OPERATION and from the DIST_OPERATOR
of the EPEE toolbox (see Figure 5). At initialization time, the parallel operator
DisT_UPDATOR has to be provided with an EDP matching the container chosen
during the UNIVERSE implementation. This is done using the class constructor: upda-
tor.make(dist_provider), where dist_provideris an instance of DIST_ARRAY_PROVIDER
and 1s 1nitialized to work with the UNIVERSE container.

Parallelization of the Computation of the Contributions. In the computa-
tion of the contributions, only the UNIV_CONTRIBUTOR operator is parallelized. The

4 Provided in the EPEE toolbox
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deferred class OPERATOR[E]
feature

runis
do
do_all

end - run
item_action (elem : E ) is
deferred
end -- item_action

feature {NONE}

provider : ELEM_PROVIDER[E]
do_allis
do

.
end -- do_all

end -- AGENT

EPEE TOOLBOg

class UPDATOR
inherit OPERATOR[BODY]
feature
item_action (b : BODY ) is
do

b.update
end -- item_action

end -- UPDATOR

deferred class DIST_OPERATORIE]
inherit OPERATOR[E]
redefine run, provider end

feature
runis
do

Synchronize
do_all
Synchronize

end -- run
provider : DIST_ELEM_PROVIDERIE]

end -- DIST_OPERATOR

EPEE TOOLBO)_II

Fig. 5. The parallel updator operator

Local Memory

Local Memory

class DIST_UPDATOR
inherit
UPDATOR

redefine
run, provider
end

DIST_OPERATOR[BODY]
end -- DIST_UPDATOR
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parallel version of this operator still uses the sequential operator BoDY_CONTRIBUTOR
(itself working either with a container structured as an array or a tree).

For each processor, the parallel UNIV_CONTRIBUTOR operator works on one sub-
set of the universe only. For each body of its sub—universe it computes the contri-
bution of the whole universe using the sequential operator BonDY_CONTRIBUTOR
as defined previously. In this design, the parallelism comes from the fact that each
sub—universe computation is run concurrently on each processor using the paral-
lel operator. Figure 6 shows the behavior on the process 0 of the parallel operator
DisT_UN1v_CONTRIBUTOR: for each body of the subset assigned to this process, the
operator computes the contribution of all the bodies in the universe (itself either an

array or a tree).

To implement this design we must point out that the notion of subset of the
universe is purely virtual because no object in the system represents this abstraction.
A subset of the whole universe can only be viewed through a specific element provider
that reaches the bodies attached to this virtual subset of the universe only. The choice
of the bodies assigned to one or another subset is effected using an EDP. The actual
code of the DisT_UNIV_CONTRIBUTOR is described in Figure 7.

Parallel Version of the N-Body Simulation. Once both the universe container
has been redefined to hold shared bodies and parallel operators have been defined,
only limited modifications need to be applied to the sequential version of the code of
the N-body simulation program. Indeed, in Example 3.1, we just redefine the type
of the universe and that of the parallel operators, while reusing all the sequential
code through inheritance.



OPERATORIE]

| item_action is deffered end |

| provider : ELEM_PROVIDERIE] |

| run is do do_all end |

UNIV_CONTRIBUTOR

DIST_OPERATOR item_action (b : BODY ) is

item_action is deffered end | local
operator : BODY_CONTRIBUTOR

uses

provider : DIST_ELEM_PROVIDERIE] | do
run is do lloperator.make( univ_provider , b )
Synchonize operator.run
do_all end
Synchonize
end - run univ_provider : ELEM_PROVIDER[BODY]
redefine the
BODY_CONTRIBUTOR run method
and the cursor attribute
item_action ( m : MASS ) is
do uses DIST_UNIV_CONTRIBUTOR
VT body.add_contribution_from (m ) e ..
N end -- Features are inherited fom both
uses ¢ | body - BODY | """ --the DIST_AGENT and the
. -- UNIV_CONTRIBUTOR classes

(UNIV?PROVIDER )
(DIST,UN\V?PROV\DER )

Fig. 7. The parallel contributor operator

3.5 About the Efficiency of Parallel Operators

Since we use rather advanced features of Eiffel (e.g., multiple and repeated inher-
itance) to implement Parallel Operators, the question of their runtime efficiency
arises. This in fact is a crucial point, since the main rationale for using distributed
parallel computers lies in their potential computing power. If we were to end up
with a parallelized code running slower than the (best) sequential one, we would
have completely missed the point. Fortunately, this is not the case.

The design model we have presented in this paper allows the programmer to
build applications which can easily migrate to distributed environments. Further-
more, thanks to the dynamic biding of the attributes in the operator and element
provider classes, operators can dynamically change their behaviors at runtime. The
drawback of this approach is that a sub-optimal code may be generated, because
this generality and dynamism have a price. However, generality can be easily traded



class DIST_ N_BODY_SIMULATION
inherit
N_BODY_SIMULATION
redefine
universe, universe_provider, contributor, updator
end
creation make
feature
universe : SHD_UNIVERSE
—— Now an array of shared bodies
contributor : UBIK_UNIV_CONTRIBUTOR
—— redefined to a parallel operator
updator : UBIK_UPDATOR
—— redefined to a parallel operator
universe_provider : DIST_ARRAY PROVIDER
—— Distributed provider for the parallel operators

end —— DISTNBODYSIMULATION

Example 3.1

Parallel N-Body Simulation on Power Challenge Array
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for performances if this is a critical key point in the application, as is the case for our
N-body simulation. Indeed the programmer can specialize his operators and element
providers using the redefinition of their attributes to match their known effective type
(e.g., provider can be redefined to be a DIST_ARRAY_PROVIDER[SHD_BODY]
in the DIST_.UPDATOR), thus allowing a compile-time binding of features (since
most of the feature name resolutions can now be done at compile time).

For example, the call for the run method from the Parallel Operator DisT_UPDATOR
can be statically bound, as well as for the inner call for the feature update on a
SHD_BoDY object (though the latter needs a simple data flow analysis). In these
cases, the general dynamic binding mechanism can be discarded and replaced with
a mere procedure call. Furthermore, since the feature size of the various operator
classes is very small (typically a single line), it is possible to avoid the overhead of
procedure calls through in-line expansions which most Eiffel compilers do automat-
ically whenever the methods are small enough.

The generated code can then look exactly the same as if it had seen coded by
hand by a proficient parallel programmer. A trivial example is the call for updator.run
method, which is optimal because it involves absolutely no (machine level) message
exchange: the best FORTRAN handwritten version would have exactly the same
behavior and performance.

We have made some experiments of the N-Body simulation with the EPEE envi-
ronment on the Power Challenge parallel computer. The results are shown in Figure 8
and are obtained using one to the eight processors available on this computer.

4 Conclusion and Future Work

In this paper, we have introduced a new abstraction called Parallel Operator. A
Parallel Operator exists simultaneously on all processors involved in a distributed
computation: it acts as a single ubiquitous entity able to process data in parallel.
Parallel Operators help application programmers to make the most of the distributed
memory supercomputers computational power, because they no more need to get
involved in the tricky details of loop parallelization.

We have described an approach allowing an easy parallelization of object-oriented
computations structured around operators acting as a design pattern for the pro-
gramming of distributed systems. We have shown that it is both natural and efficient
to express computations over large shared or distributed data structures using Par-
allel Operators. We have illustrated our approach with a Parallel Operator based
solution for the well-known N-body problem.

While structuring object-oriented computations with operators slightly departs
from established principles, it should be noted that it is often the most natural
way to express solutions within a statically typed object-oriented language. For
example, if block closures (as in Smalltalk) are not first class objects, the use of
operators is one of the most elegant solutions to model a problem where data must
be sorted according to various criteria. Thus it should not come as a surprise that
some popular data structure libraries (such as Booch’s components for Eiffel or C++)
use the concept of operator extensively. This opens a very promising perspective:
the parallelization of Booch’s components using Parallel Operators within EPEE.



Another domain where we plan to apply the concept of Parallel Operator con-
cerns distributed linear algebra over large sparse matrix computations. Indeed these
computations can be modeled with Parallel Operators operating over large sparse
distributed data structures. Since a Parallel Operator is decoupled from actual sparse
matrix representations, it is much easier for the application programmer to bene-
fit from internal representations using sophisticated data structures on shared or
distributed memory.
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