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Bilinear pairings on elliptic curves

Andreas Enge∗

14 February 2014

Abstract

We give an elementary and self-contained introduction to pairings on elliptic curves

over finite fields. The three different definitions of the Weil pairing that can be found in

the literature are stated and proved to be equivalent using Weil reciprocity. Pairings with

shorter loops, such as the ate, atei, R-ate and optimal pairings, together with their twisted

variants, are presented with proofs of their bilinearity and non-degeneracy. Finally, we

review different types of pairings in a cryptographic context. This article can be seen as an

update chapter to A. Enge, Elliptic Curves and Their Applications to Cryptography – An

Introduction, Kluwer Academic Publishers 1999.

1 Introduction

Consider three abelian groups G1, G2 (written additively) and G3 (written multiplicatively),
which can equivalently be seen as Z-modules. A pairing on G1 and G2 with values in G3 is a
Z-bilinear map

e : G1 ×G2 → G3,

so that
e(aP, bQ) = e(P,Q)ab

for all elements P ∈ G1, Q ∈ G2 and integers a and b. In the following, G1 and G2 will be groups
related to an elliptic curve E defined over some field K: They will be subgroups of the elliptic
curve group (in the case of the Weil pairing of §3) or subgroups and quotient groups (in the case
of the Tate pairing of §4 and related pairings presented in §7). The group G3 will be a subgroup
or a quotient of the multiplicative group K∗.

Elliptic curve cryptosystems are currently among the most efficient public-key systems. Their
security relies on the difficulty of computing discrete logarithms in suitable instances of ellip-
tic curves over finite fields, that is, on the difficulty of computing x given two points P and
R = xP on the curve. Pairings then transport the discrete logarithm problem from the curve
into the multiplicative group of a finite field, where it is potentially easier to solve [Odl13]: As
e(R,Q) = e(P,Q)x, the discrete logarithm of e(R,Q) with respect to the basis e(P,Q) yields x.
Consequently, pairings have first been suggested as a means of attacking elliptic curve cryp-
tosystems [MOV93, FR94]. First constructive cryptographic applications have been described
in [Jou00, SOK00, BF01], and since then, the number of publications introducing pairing-based
cryptographic primitives has exploded. A new conference series, Pairing, is devoted to the topic
[TOOO07, GP08, SW09, JMO10, AL13, CZ14].
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This document provides a self-contained introduction to pairings and aims at summarising
the state of the art as far as the definitions of different pairings and their cryptographic use are
concerned. While being as accessible as possible, we do not sacrifice mathematical rigour, in the
style of [Eng99], of which the current article can be seen as an update chapter. While most of
the following holds over arbitrary perfect or even more general fields, we limit the presentation
to the only case of interest in the cryptographic context, namely K being a finite field Fq with q
elements. Pairings can be defined in Jacobians of arbitrary curves or, more generally, in abelian
varieties. However, due to recent progress in solving the discrete logarithm problem (see the
survey [Eng08]), only elliptic curves and hyperelliptic curves of genus 2 appear to be suited for
cryptography. For the latter, the problem of finding instances in which the pairing has values
in a sufficiently small finite field to be efficiently computed (see the definition of the embedding
degree at the beginning of §3) and in which the size of the subgroup is relatively close to that of
the full group to allow for bandwidth-efficient protocols has not yet been solved in a satisfactory
way. So in the following we consider only elliptic curves.

An excellent survey is given by Galbraith in [Gal05]. We complement his presentation by
concentrating on the Weil pairing instead of the Tate pairing and by reporting on progress made
after the publication of [Gal05] concerning pairings with shorter evaluation loops.

2 Elliptic curves and Weil reciprocity

2.1 Divisors and group law

We assume the reader to be familiar with basic algebra, in particular with finite fields. For proofs
of the following facts on elliptic curves, see [Sil86, Eng99]. Other sources for the use of elliptic
curves in cryptography are [CFA+06, BSS99]. From now on, we assume thatK = Fq = Fpm is the
finite field of characteristic p with q elements. (This is motivated by the cryptologic applications
and meant to ease the exposition. All statements concerning the Weil pairing hold in fact over
arbitrary fields. The definition given of the Tate pairing in §4, however, is not valid for all fields;
over finite fields, it yields a non-degenerate pairing.)

In several places, we will consider the algebraic closure K for convenience; this could be
replaced by a sufficiently large extension field to contain the coordinates of all points under
consideration. An elliptic curve over K is given by a non-singular, absolutely irreducible long
Weierstraß equation

E : Y 2 + (a1X + a3)Y = X3 + a2X
2 + a4X + a6

with ai ∈ K. If p > 5, the equation can be transformed into short Weierstraß form in which
all but a4 and a6 vanish. The points on E are given by the affine points (x, y) ∈ K2 satisfying
the equation, together with a projective point at infinity O. The coordinate ring of E is the
ring K[E] = K[X,Y ]/(E) of polynomial functions, its function field K(E) = K(X)[Y ]/(E) =
{a(X) + b(X)Y : a, b ∈ K(X)} is the set of rational functions from E to K ∪ {∞}; the value ∞
is reached when the function has a pole in a point. It turns out that the points on E are in a
one-to-one correspondence with the discrete valuation rings of K(E), given by the rings OP of
functions that do not have a pole in P .

The set E(K) of points on E with coordinates in K (including O) can be turned into a finite
abelian group via the tangent-and-chord law: O is the neutral element of the group law, and
three points on a line sum to O. The only delicate point in proving the group law is associativity;
the simplest proof, which also generalises to other curves, is sketched in the following. It uses
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divisors, which are needed anyway to define pairings. So let

Div(E) =

{
∑

P

nP [P ] : P ∈ E(K), nP ∈ Z, only finitely many nP are non-zero

}

be the free abelian group over the points on E, define the degree of a divisor as the sum
∑
nP

of its coefficients, and let Div0(E) be the subgroup of Div(E) consisting of divisors of degree 0.
To a rational function f ∈ K(E), associate its divisor div(f) =

∑

P ordP (f)[P ], where ordP (f)
is the valuation of f with respect to OP , that is, ordP (f) > 0 if P is a zero of f , ordP (f) < 0 if
P is a pole, and ordP (f) = 0 otherwise. Let Prin(E) = {div(f) : f ∈ K(E)} ⊆ Div0(E) be the
set of principal divisors. Then the quotient Pic0(E) = Div0(E)/Prin(E) is evidently a group,
and it can be identified with E(K) via P 7→ [P ]− [O], which maps O to the neutral element O.

Let∼ denote equivalence modulo Prin0(E). The geometric tangent-and-chord law is recovered
as follows. For a point R = (xR, yR), let

vR = X − xR (1)

be the vertical line through R. Then div(vR) = [R]+ [R]−2[O] ∼ 0 with R = (xR,−yR−a1xR−
a3), so that −R = R. For two points P = (xP , yP ) and Q = (xQ, yQ) with Q 6= −P let ℓP,Q be
the chord through P and Q if P 6= Q or the tangent at P if P = Q:

λP,Q =

{
yQ−yP
xQ−xP

if P 6= Q
3x2

P+2a2xP+a4
2yP+a1xP+a3

if P = Q

ℓP,Q = (Y − yP )− λP,Q(X − xP )
(2)

Then ℓP,Q intersectsE in a third pointR = (xR, yR) 6= O, and div
(
ℓP,Q

vR

)

= div(ℓP,Q)−div(vR) =
(
[P ] + [Q] + [R]− 3[O]

)
−
(
[R] + [R]− 2[O]

)
= [P ] + [Q]− [R]− [O] ∼ 0 implies that P +Q = R.

By induction, this proves the following characterisation of principal divisors.

Theorem 1 A divisor D =
∑

P nP [P ] is principal if and only if degD = 0 and
∑

P nPP = O

on E. The function associated to a principal divisor is unique up to multiplication by constants
in K∗.

It is often useful to assume the following normalisation.

Definition 2 The leading coefficient of a function f at O is

lc(f) =

((
X

Y

)− ordO(f)

f

)

(O).

A function f is monic at O if lc(f) = 1.

In particular, the lines vR and ℓP,Q given above for the tangent-and-chord law are monic at O,
and this implies that the functions computed in Algorithm 11 will also be monic at O.

2.2 Rational maps, isogenies and star equations

Let E, E′ be two elliptic curves over the same field K. A rational map α : E → E′ is an
element of E′(K(E)). Explicitly, α is given by rational functions in X and Y that satisfy the
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Weierstraß equation for E′. Unless α is constant, it is surjective. If α(O) = O
′, then α is in fact

a group homomorphism, and it is called an isogeny. If furthermore E = E′, then α is called an
endomorphism. The endomorphisms that are most important in the following are multiplications
by an integer n, denoted by [n].

A non-constant rational map α : E → E′ induces an injective homomorphism of function
fields α∗ : K(E′) → K(E), f ′ 7→ f ′ ◦ α; the degree of α is the degree of the function field
extension [K(E) : α∗(K(E′))]. For instance, deg([n]) = n2. If α is an isogeny, there is another
isogeny α̂ of the same degree, called its dual, such that α̂ ◦ α = [degα].

For a point P ∈ E and P ′ = α(P ), there is an integer eα(P ), called ramification index,
such that ordP (α

∗(f ′)) = eα(P ) ordP ′(f ′) for any f ′ ∈ K(E′). When α is an isogeny, eα(P ) is
independent of P . In this case, we have degα = eα ·#(kerα), and two extreme cases can occur: If
eα = 1, then α is called separable; in particular, [n] is separable if p ∤ n. If #(kerα) = 1, then α is
(up to isomorphisms) a power of the purely inseparable Frobenius endomorphism (x, y) 7→ (xq, yq)
of degree and ramification index q. An arbitrary isogeny can be decomposed into a separable
one and a power of Frobenius, which is often convenient for proving theorems.

The ramification index allows to define a homomorphism α∗ : Div(E′)→ Div(E) on divisors
by

α∗([P ′]) =
∑

P∈α−1(P ′)

eα(P )[P ]

in such a way that the maps α∗ on functions and divisors are compatible; the proof follows
immediately from the definition of eα.

Theorem 3 (Upper star equation) If α : E → E′ is a non-constant rational map and f ′ ∈
K(E′), then

α∗(div(f ′)) = div(α∗(f ′)).

On the other hand, the map α∗ : Div(E) → Div(E′) is defined by α∗([P ]) = [α(P )]. A
corresponding map on function fields K(E)→ K(E′) can be defined by

α∗(f) = (α∗)−1
(
NK(E)/α∗(K(E′))(f)

)
,

where N denotes the norm with respect to the function field extension. The map α∗ is well-
defined because the norm is an element of α∗(K(E′)), so that a preimage exists, and because α∗

is injective, so that the preimage is unique.
It is shown in [CC90, (18)] that

NK(E)/α∗(K(E′))(f) =

(
∏

R∈kerα

(f ◦ τR)
)eα

, (3)

where τR is the translation by R; the product accounts for the separable, the exponent for the
inseparable part of the isogeny. This can be used to show the following result:

Theorem 4 (Lower star equation) If α : E → E′ is a non-constant rational map and f ∈
K(E), then

α∗(div(f)) = div(α∗(f)).
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2.3 Weil reciprocity

The key to the definition of pairings is the evaluation of rational functions in divisors. For
D =

∑

P nP [P ] let its support be supp(D) = {P : nP 6= 0}. The evaluation of a rational
function f in points is extended to a group homomorphism from divisors (with support disjoint
from supp(div f)) to K∗ via

f

(
∑

P

nP [P ]

)

=
∏

P

f(P )nP .

In order to handle common points in the supports, let the tame symbol of two functions f
and g ∈ K(E) be defined as

〈f, g〉P = (−1)ordP (f) ordP (g)

(
fordP (g)

gordP (f)

)

(P ).

Theorem 5 (Generalised Weil reciprocity) If f , g ∈ K(E), then

∏

P∈E(K)

〈f, g〉P = 1.

In particular, if supp(f) ∩ supp(g) = ∅, then

f(div g) = g(div f). (4)

For a proof, see [CC90, §7].

3 Weil pairing

Let E[n] = {P ∈ E(K) : nP = O} = ker([n]) be the set of n-torsion points of E, which are in
general not defined over K itself. For future reference, we denote by E(K)[n] = E[n]∩E(K) the
set of points of E[n] defined over K, which contains at least O. From now on, we will assume
that gcd(n, p) = 1; then the group E[n] is finite and isomorphic to Z/nZ × Z/nZ. The field L
obtained by adjoining to K = Fq all coordinates of n-torsion points is thus a finite field extension
Fqk , and k is called the embedding degree of the n-torsion and Fqk its embedding field. We have
L ⊇ K(ζn), where ζn is a primitive n-th root of unity, and equality holds in the case of main
cryptographic interest, namely that n is a prime and n ∤ q − 1 by [BK98, Th. 1]. Then k is the
smallest integer such that n | qk − 1.

Theorem 6 The Weil pairing is a map

en : E[n]× E[n]→ µ ⊂ L∗,

where µ is the set of n-th roots of unity in L, satisfying the following properties:

(a) Bilinearity:

en(P1 + P2, Q) = en(P1, Q)en(P2, Q),

en(P,Q1 +Q2) = en(P,Q1)en(P,Q2) ∀P, P1, P2, Q,Q1, Q2 ∈ E[n];
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(b) Identity:
en(P, P ) = 1 ∀P ∈ E[n];

(c) Alternation:
en(P,Q) = en(Q,P )

−1 ∀P,Q ∈ E[n];

(d) Non-degeneracy: For any P ∈ E[n]\{O}, there is a Q ∈ E[n], and for any Q ∈ E[n]\{O},
there is a P ∈ E[n] such that en(P,Q) 6= 1;

(e) Compatibility with isogenies:

en(α(P ), α(Q)) = en(P,Q)degα,

en(P
′, α(Q)) = en(α̂(P

′), Q)

for P , Q ∈ E[n], P ′ ∈ E′[n] and α : E → E′ a non-zero isogeny defined over L. In
particular, α may be the Frobenius endomorphism on E of degree q.

In the literature, there are in fact three equivalent definitions of the Weil pairing, and de-
pending on which one is chosen, the different properties are more or less easy to prove, the
most intricate one being non-degeneracy. In the following, we show equivalence of these defini-
tions, which is also non-trivial and makes intensive use of Weil reciprocity, and we prove the five
properties of the Weil pairing using for each the definition that yields the easiest proof.

First definition of the Weil pairing ([Sil86, §III.8],[Eng99, §3.7]). For P ∈ E[n], con-
sider D = [n]∗([P ]− [O]) =

∑

R∈E[n]([P0 +R]− [R]), where P0 is any point such that nP0 = P .
By Theorem 1, D is principal; let gP be such that div gP = D. Let again τQ : R 7→ R+Q denote
the translation by Q ∈ E[n]. Then

en(P,Q) =
gP ◦ τQ
gP

. (5)

While gP is defined only up to multiplication by non-zero constants, the quotient is a well-defined
rational function. Since div(gP ◦ τQ) = div(τ∗Q(gP )) = τ∗Q(div gP ) by Theorem 3 and the latter
divisor equals

∑

R∈E[n]

([P0 +R−Q]− [R−Q]) = div gP

for Q ∈ E[n], the Weil pairing yields indeed a constant in K. That it yields an n-th root of unity
follows from bilinearity
Proof of Theorem 6(a): Using (c), proved below, it is sufficient to show linearity in the second
argument, which follows from the definition:

en(P,Q1 +Q2) =
gP ◦ τQ1+Q2

gP
=

(
gP ◦ τQ1

gP
◦ τQ2

)
gP ◦ τQ2

gP

= en(P,Q1)en(P,Q2) since the constant en(P,Q1)

is invariant under τQ2 .

�

Proof of Theorem 6(d): We sketch the approach of [Eng99, Prop. 3.60]. Using (c), it is
sufficient to show non-degeneracy with respect to the first argument. For P ∈ E[n], suppose that
en(P,Q) = 1 for all Q ∈ E[n]. This means that gP is invariant under translations by all Q ∈
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E[n] = ker([n]), so that all conjugates of gP with respect to the field extension K(E)/[n]∗(K(E))
are gP itself, see (3). Hence, there is a function fP such that gP = [n]∗(fP ). By Theorem 3, this
implies that div fP = [P ]− [O], which by Theorem 1 implies P = O. �

Proof of Theorem 6(e): As a homomorphism, α commutes with [n], and being surjective, it
acts as a permutation on E[n]. So

div(gα(P )) =
∑

R∈E[n]

([α(P0) +R]− [R])

=
∑

S∈E[n]

([α(P0) + α(S)] − [α(S)]) where R = α(S)

= α∗(div(gP ))

= div(α∗(gP )) by Theorem 4.

This implies gα(P ) = cα∗(gP ) for some c ∈ K∗, and

gα(P ) ◦ α = α∗(gα(P )) = c

(
∏

R∈kerα

(gP ◦ τR)
)eα

(6)

by (3). Hence,

en(α(P ), α(Q)) = en(α(P ), α(Q)) ◦ α =
gα(P ) ◦ τα(Q)

gα(P )
◦ α =

gα(P ) ◦ α ◦ τQ
gα(P ) ◦ α

=

(
∏

R∈kerα

(
gP ◦ τQ
gP

)

◦ τR
)eα

= en(P,Q)eα·#(kerα)

= en(P,Q)degα.

Concerning the second equation, let P be such that α(P ) = P ′; then α̂(P ′) = (α̂ ◦ α)(P ) =
(degα)P , and

en(α̂(P
′), Q) = en(P,Q)degα = en(α(P ), α(Q)) = en(P

′, α(Q)).

�

Second definition of the Weil pairing. For P,Q ∈ E[n]\{O}, P 6= Q, let fP and fQ be
such that div fP = n[P ]− n[O] and div fQ = n[Q]− n[O], which is possible by Theorem 1. Then

en(P,Q) = (−1)n · fP (Q)

fQ(P )
· fQ
fP

(O); (7)

if fP and fQ are chosen monic at O as in Definition 2, then

en(P,Q) = (−1)n · fP (Q)

fQ(P )
.

For P = Q or one or both of P and Q being O, the definition needs to be completed by
en(P,Q) = 1.

Remark 7 This definition is the most suited one for computations, see Algorithm 11. The factor
(−1)n is often missing in the literature.
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Proof of equivalence of the two definitions: We essentially follow [CC90, §10]. Assume
that en is defined as in (5).

Let P0 and Q0 be such that nP0 = P and nQ0 = Q. Let gP be the function, monic at O,
such that

div(gP ) =
∑

R∈E[n]

([P0 +R]− [R]) ,

and similarly for gQ.
If P = O, we may take P0 = O, which shows that gO = 1 and en(O, Q) = 1. If Q = O, then

τQ = id, and en(P,O) = 1. So from now on, P , Q 6= O.
Let hQ be the function, monic at O, such that

div hQ = (n− 1)[Q0] + [Q0 −Q]− n[O],
which exists by Theorem 1, and let HQ =

∏

R∈E[n](hQ ◦ τR). By comparing divisors and leading

coefficients, HQ = lc(HQ) · gnQ.
By generalised Weil reciprocity of Theorem 5, we have

∏

S∈supp(div gP )∪supp(div hQ)

〈gP , hQ〉S = 1.

If P 6= Q, then supp(div gP ) ∩ supp(div hQ) = {O}, and we easily compute the different
contributions of tame symbols:

〈gP , hQ〉Q0 = gn−1
P (Q0)

〈gP , hQ〉Q0−Q = gP (Q0 −Q)

〈gP , hQ〉P0+R = h−1
Q (P0 +R) for R ∈ E[n]

〈gP , hQ〉R = hQ(R) for R ∈ E[n]\{O}

〈gP , hQ〉O = (−1)nhQ
gnP

(O) = (−1)n since gP and hQ are monic at O.

Multiplying them together, we find that

1 = gnP (Q0)
gP (Q0 −Q)

gP (Q0)
︸ ︷︷ ︸

gP
gP ◦τQ

(Q0−Q)=en(P,Q)−1

1

HQ(P0)
︸ ︷︷ ︸

lc(HQ)−1gQ(P0)−n

HQ

hQ
(O)

︸ ︷︷ ︸

lc(HQ)

(−1)n

= (−1)n g
n
P (Q0)

gnQ(P0)
· 1

en(P,Q)
.

Since div(gnP ) = n[n]∗([P ]− [O]) = [n]∗ div(fP ), Theorem 3 implies that

gnP = c−1 · [n]∗(fP )
with c = lc([n]∗(fP )) =

(
(fP ◦ [n])X

n

Y n

)
(O). An analogous equation holds for gnQ, so that

gnP (Q0)

gnQ(P0)
=
fP (Q)

fQ(P )
· fQ
fP

(O).

If P = Q, then supp(div(hQ)) ⊆ supp(div(gQ)), and a similar computation shows that
en(P, P ) = 1. �

Proof of Theorem 6(b): This is part of the second definition. (The only statement needing
proof is that this also holds for the first definition, as shown above.) �

Proof of Theorem 6(c): This is immediate from (7). �
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Third definition of the Weil pairing. For any degree zero divisor D such that nD ∼ 0 in
Pic0(E), we denote by fD the function. monic at O, such that div(fD) = nD; thus f[P ]−[O] = fP .
Choose DP ∼ [P ]− [O] and DQ ∼ [Q]− [O] with disjoint supports. Then

en(P,Q) =
fDP (DQ)

fDQ(DP )
. (8)

Note the similarity with (7), but also the missing factor (−1)n, due to the common pole O of fP
and fQ.

Remark 8 The third definition corresponds to Weil’s original one in [Wei40]. The first defi-
nition is given in [Sil86, Eng99] with the roles of P and Q exchanged, which by the alternation
property yields the inverse of the Weil pairing. The definition with P and Q in the order of
this paper is used in the Notes on Exercises, p. 462 of the second edition of [Sil86], as well as
in [Sil13].

One needs to check that (8) is well-defined. Let D′

Q ∼ [Q] − [O] be another possible choice
instead of DQ. Then D

′

Q = DQ+div(h) for some function h with support disjoint from DP , and
fD′

Q
= fDQh

n, which implies

fDP (D
′

Q)

fD′

Q
(DP )

=
fDP (DQ)fDP (div h)

fDQ(DP )h(DP )n
=
fDP (DQ)fDP (div h)

fDQ(DP )h(div fDP )
=
fDP (DQ)

fDQ(DP )

by Weil reciprocity (4). By symmetry, the same argument holds when DP is chosen differently.
Proof of equivalence between the second and third definitions: A proof is given in
[Mil04, Prop. 8]. The basic idea is to choose DP = [P −R]− [−R] and DQ = [Q +R]− [R] for
some point R. Then (8) becomes

fDP (Q+R)

fDQ(P −R)
· fDQ(−R)
fDP (R)

.

Informally, letting R → O, the first factor tends to en(P,Q) as defined in (7), the second factor
tends to (−1)n. This can be made rigorous using formal groups or the Deuring lift of E to the
field of complex numbers.

Alternatively, one may again use generalised Weil reciprocity. Let DP = [P ] − [O], so that
fDP = fP . Let R be such that DQ = [Q + R] − [R] has disjoint support with DP ; then
DQ = [Q] − [O] + div(h) with h monic at O such that div h = [Q + R] − [Q] − [R] + [O], and
fDQ = fQh

n.
Assume first that P 6= Q. Then by Theorem 5,

1 =
∏

S∈E(K)

〈fP , h〉S =
fP (Q +R)

fP (R)fP (Q)hn(P )
· (−1)n (fPhn)(O)

︸ ︷︷ ︸

=lc(fP )

.

So

fDP (DQ)

fDQ(DP )
=

(fQh
n)(O)

(fQhn)(P )
· fP (Q+R)

fP (R)
=

lc(fQ)fP (Q)

fQ(P )
· fP (Q +R)

fP (Q)hn(P )fP (R)

= (−1)n fP (Q)

fQ(P )
· lc(fQ)
lc(fP )

by the previous equation.
If P = Q, a similar computation shows that (8) evaluates to 1. �
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4 Tate pairing

The Tate pairing has been introduced to cryptology in [FR94] as a means of transporting the
discrete logarithm problem from curves into the multiplicative groups of finite fields. It goes
back to Tate, who in [Tat58] considers abelian varieties defined over local fields and defines a
non-degenerate pairing involving Galois cohomology groups of the variety and the dual abelian
variety. Lichtenbaum defines in [Lic69] a pairing in terms of Picard groups of curves defined over
local fields and their Galois cohomology. This pairing turns out to be a special case of the Tate
pairing and as such is non-degenerate. Its advantage is that it can easily be computed in terms
of divisors and functions on the curve as stated in (9). See also [Sil10, §§5–8] for an accessible
presentation of these Galois cohomology related pairings. By considering torsion elements in the
groups and reducing modulo the discrete valuation of the local field, Frey and Rück obtain a non-
degenerate pairing for curves defined over finite fields. It is often called the Tate–Lichtenbaum
pairing [Fre01, §3.3],[CFA+06, §6.4.1], although the name Frey–Rück–Tate–Lichtenbaum pairing
might be more appropriate. In the cryptologic literature, the shorter term Tate pairing has
imposed itself, and we will stick to this tradition.

Computationally, the Tate pairing can be seen as “half a Weil pairing”; the idea is to define it
directly as fP (Q) instead of the quotient (7). Its precise definition depends on a field extension L
of K such that E[n] is contained in E(L); usually, but not necessarily, L is chosen minimal with
this property.

First definition of the Tate pairing. Let P ∈ E[n], let DP be a degree zero divisor, defined
over L, with DP ∼ [P ]− [O], and let fDP , defined over L, be such that div fDP = nDP . Let Q
be another point on E(L) (not necessarily of n-torsion) and let DQ ∼ [Q]− [O] be defined over L
of support disjoint with DP . Then the Tate pairing of P and Q is given by

eTn (P,Q) = fDP (DQ). (9)

Algorithm 11 shows that fDP may indeed be defined over L, so that the pairing takes values
in L. Notice that fDP is defined only up to a multiplicative constant, but that this does not
change the pairing value since DQ is of degree 0. Weil reciprocity (4) shows that if DQ is replaced
by D′

Q = DQ+div h ∼ DQ, then (9) is multiplied by h(DP )
n. ReplacingDP by D′

P = DP+div h
changes fDP to fD′

P
= fDP h

n and thus multiplies the pairing value by an n-th power. So the
pairing value is well defined up to n-th powers in L.

Finally, if Q is replaced by Q+nR with R ∈ E(L), the value changes again by an n-th power.
This leads to adapting the range and domain of eTn as follows.

Theorem 9 For E[n] ⊆ E(L), the Tate pairing is a map

eTn : E[n]× E(L)/nE(L)→ L∗/ (L∗)n

satisfying the following properties as defined in Theorem 6:

(a) Bilinearity,

(b) Non-degeneracy,

(c) Compatibility with isogenies.

Proof: Bilinearity is immediate from the definition using [Q1 + Q2] − [O] ∼ [Q1] + [Q2] − 2[O]
by Theorem 1, so that DQ1+Q2 = DQ1 +DQ2 and fP1+P2 = fP1fP2 .

10



Non-degeneracy does not hold over arbitrary fields. In particular, the pairing becomes com-
pletely trivial if every element of L is an n-th power, for instance if L = K. So the proofs of
non-degeneracy use the structure of the groups over a finite field, see [FR94, Heß04, Sch05, Bru11].

Let α be an isogeny. We may assume that DP and DQ are chosen so that all function values
encountered during the proof are defined and non-zero. From the observation that Dα(P ) =
α∗(DP ), one shows as in (6) that

eTn (α(P ), α(Q)) = fDα(P )
(Dα(Q)) =

(
∏

R∈kerα

fDP

(
(τR)∗(DQ)

)

)eα

;

the constant c of (6) disappears since fDP is evaluated in divisors of degree 0. Now Theorem 1
shows that (τR)∗(DQ) ∼ DQ, so that each factor equals eTn (P,Q), which finishes the proof. �

Again, an alternative definition yields a computationally advantageous form of the pairing.

Second definition of the Tate pairing. For P ∈ E[n] and Q ∈ E(L) (representing a class
modulo nE(L)), P , Q 6= O and P 6= Q, let fP be monic at O such that div(fP ) = n[P ] − n[O].
Then

eTn (P,Q) =
fP (Q)

lc(fP )
; (10)

if fP is chosen monic as in Definition 2,

eTn (P,Q) = fP (Q).

For one or both of P and Q equal to O, one has eTn (P,Q) = 1. If P = Q, one may choose some
point R ∈ E(L) such that nR 6∈ {O,−Q}, if it exists, and replace Q by Q+ nR.
Proof of equivalence of the two definitions:: Letting DQ = [Q] − [O], so that fDQ = fQ,
and DP = [P + R] − [R] so that DP and DQ have disjoint supports and fDP = fPh

n for the
function h, monic at O, with div(h) = [P +R]− [P ]− [R] + [O], we immediately obtain

fDP (DQ) =
(fPh

n)(Q)

(fPhn)(O)
=
fP (Q)hn(Q)

lc(fP )
=
fP (Q)

lc(fP )

up to n-th powers. �

Unlike the Weil pairing, the Tate pairing is neither alternating nor identically 1 on the diagonal
(which is hardly surprising given that its two arguments live in different sets). On single n-torsion
points P , it may or may not hold that eTn (P, P ) = 1.

The definition of the domain of the Tate pairing as a quotient group is unwieldy in cryp-
tographic applications, where unique representatives of pairing results are desired. It can be
remedied by observing that L∗ is a cyclic group of order #L − 1 = qk − 1, which is divisible by
n; so the map

L∗/ (L∗)
n → µ, x 7→ x

qk−1
n

is an isomorphism with the n-th roots of unity µ, and the reduced Tate pairing

eT
′

n : E[n]× E(L)/nE(L)→ µ, (P,Q) 7→ eTn (P,Q)
qk−1

n = fP (Q)
qk−1

n (11)

(for P , Q 6= O, P 6= Q) is an equivalent pairing with the same properties as the Tate pairing
itself.
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It is not generically possible to similarly replace the set E(L)/nE(L) from which the second
argument is taken by E[n]. As an abelian group, E(L) is isomorphic to Z/r1Z × Z/r2Z with
n | r1 | r2, and E(L)/nE(L) ≃ Z/nZ× Z/nZ. Consider the homomorphism

ψ : E(L)/nE(L)→ E[n], Q 7→ r2
n
Q.

This homomorphism is injective (and thus an isomorphism by cardinality considerations) if and

only if gcd
(
r2
r1
, n
)

= 1. A sufficient (but not necessary) condition is that gcd
(
r2
n , n

)
= 1, or

equivalently gcd
(

#E(L)
n2 , n

)

= 1; this is often satisfied in cryptography, where n is a large prime.

Then the function

e : E[n]× E[n]→ µ, (P,Q) = fP (Q)
qk−1

n

satisfies e(P,Q) = eT
′

n (P, ψ−1(Q))
r2
n , and since powering by r2

n induces a permutation on µ, it
inherits the properties of the reduced Tate pairing.

5 Computation

The main ingredients of the Weil and the Tate pairings are functions with given divisors; an
algorithm computing them is published in [Mil04] and has become known as Miller’s algorithm.
The basic idea is to have the tangent-and-cord law of §2.1 not only reduce a sum of two points to
only one point, but at the same time output the lines that have served for the reduction. Applied
iteratively, it thus reduces a principal divisor to 0 and returns the function having this divisor as
a quotient of products of lines. The algorithm is applicable to any principal divisor, but we only
present it for the case of nD = n[P ]− n[O] where P is an n-torsion point, which can be used for
computing the Weil pairing via (7) and the (reduced) Tate pairing via (9) or (10) and (11).

Definition 10 For i ∈ Z, let fi,P be the function (monic at O) with divisor i[P ]−[iP ]−(i−1)[O].

The function fi,P exists by Theorem 1. Notice that f1,P = 1 and fn,P = fP . The tangent-
and-chord law, applied to iP and jP , shows that

fi+j,P = fi,P fj,P
ℓiP,jP
v(i+j)P

(12)

with ℓ, v defined as in (2), (1) for i 6≡ −j (mod n), ℓiP,(n−i)P = viP and vO = 1. Moreover,

f−i,P =
1

fi,P viP
.

These observations yield the following algorithm:

Algorithm 11
Input: An integer n and an n-torsion point P

Output: ℓ and v, products of lines, such that fP = ℓ
v

(a) Compute an addition-negation chain r1, . . . , rs for n, that is, a sequence such that r1 = 1,
rs = n and each element ri is either

• the negative of a previsously encountered one: There is 1 6 j(i) < i such that
ri = −rj(i); or
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• the sum of two previously encountered ones: There are 1 6 j(i) 6 k(i) < i such that
ri = rj(i) + rk(i).

(b) P1 ← P , L1 ← 1, V1 ← 1

(c) for i = 2, . . . , s
j ← j(i), k ← k(i)
if ri = −rj

Pi ← −Pj
Li ← Vj
Vi ← LjvPi

else

Pi ← Pj + Pk
Li ← LjLkℓPj(i),Pk(i)

Vi ← VjVkvPi

(d) return ℓ = Ls, v = Vs

Throughout the loop, we have Pi = r(i)P and Li

Vi
= fr(i),P , which proves the correctness of

the algorithm. The numerator ℓ and the denominator v are computed separately to avoid costly
divisions in a direct computation of fP . Memory handling of the algorithm is simplified if the
standard double-and-add addition chain is used, in which ri = 2ri−1 or ri = ri−1 + 1, so that
the result can be accumulated in two variables ℓ and v, see [Gal05, Alg. IX.1].

For a reasonable addition-negation-chain of length s ∈ O(log n), the algorithm carries out
O(log n) steps. Unfortunately, the degrees of Li and Vi grow exponentially to reach O(n). This
problem can be solved in two ways: Instead of storing Li and Vi as dense polynomials, store
them in factored form as a product of lines. This may make sense if several pairings with the
same P are computed.

Otherwise, if fP (E) is sought for a divisor E, one may compute directly Li(E) and Vi(E)
during the loop, thus manipulating only elements of the finite field L; one should then separate
again according to the points with positive or negative multiplicity in E to avoid divisions. This
approach fails when E contains any of the points Pi = r(i)P encountered during the algorithm,
which will then be zeroes of some of the lines. The solution given in [Mil04] is to work with the
leading coefficients of the lines with respect to their Laurent series in local parameters associated
to the points in the support of E (analogously to Definition 2). Alternatively, one might regroup
quotients of consecutive lines having Pi as zeroes and replace them (by working modulo the curve
equation) by a rational function that is defined and non-zero in Pi. Both approaches are not
very practical, since they replace simple arithmetic in a finite field by more complicated symbolic
algebra. A simpler technique is to replace the divisor E by an equivalent divisor not containing
any of the Pi in its support, and using (8) and (9); the price to pay is that E then contains
at least two points instead of only one in (7) and (10). Concerning the Tate pairing, since the
second argument Q is defined only up to n-th multiples, one may replace it by Q+ nR for some
point R. Finally, one may simply use an addition-negation chain avoiding the support of E.
Since any addition chain necessarily passes through 2, it may be necessary to use negation if E
contains 2P in its support.

The reduced Tate pairing (11) is usually faster to compute than the Weil pairing (7): It
requires only one instead of two applications of Algorithm 11. On the other hand, the advantage
is partially lost through the final exponentiation in the reduced Tate pairing.
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6 Pairings on cyclic subgroups

All supposedly hard problems on which pairing-based cryptographic primitives rely can be broken
by computing discrete logarithms arbitrarily in E[n] or the group µ of n-th roots of unity in the
embedding field L. So algorithms using Chinese remaindering for discrete logarithms imply that
n = r being prime is the best choice. Then E[r] is a group of order r2 isomorphic to Z/rZ×Z/rZ.
For the sake of security proofs, it may be desirable to restrict the Weil and reduced Tate pairings
to subgroups, yielding pairings

e : G1 ×G2 → µ ⊆ L
on cyclic groups Gi ⊂ E[r] of prime order r. In practice, there is no definite need for such
a restriction: The choice of points when executing the protocol (for instance, by hashing into
E[r]) implicitly defines cyclic subgroups Gi generated by these points; but the subgroups change
with each execution of the algorithm. Notice, however, that some optimised pairings (see §7)
can only be defined on specific subgroups, which are reviewed in the following. An exhaustive
description of the cryptographic properties of different subgroups is given by Galbraith, Paterson
and Smart in [GPS08]. We retain their classification into type 1, 2 and 3 subgroups and pairings
and concentrate on the main characteristics of the different choices.

For the sake of computational efficiency in Algorithm 11, it is desirable that G1 and G2 be
defined over fields that are as small as possible. So the curve E(K) is chosen such that r | #E(K),
and G1 is generated by a point of order r defined over K. As usual in cryptography, we assume
that k > 2. Then G1 is defined uniquely as E(K)[r], and the pairing types differ in their selection
of G2. An important cryptographic property that may or may not be given is hashing into the
different groups, or the (essentially equivalent) possibility of random sampling from the groups.
It is a trivial observation that if H : {0, 1}∗ → {0, . . . , r− 1} is a collision-resistant hash-function
and Gi = 〈Pi〉, then Hi : {0, 1}∗ → Gi, m 7→ H(m)Pi, is also collision-resistant. But Hi reveals
discrete logarithms, which breaks most pairing-based cryptographic primitives. A comparatively
expensive way of hashing into G1 is to first hash into a point on E(K) (by hashing to its X- or
Y -coordinate and solving the resulting equation for the other coordinate; if no solution exists, one
needs to hash the message concatenated with a counter that is increased upon each unsuccessful

trial). One may then multiply by the cofactor h = #E(K)
r , which yields a point in G1. A

similar procedure hashes to arbitrary r-torsion points in E(L), but these need not lie in a fixed
subgroup G2.

6.1 Type 1: G1 = G2

Most of the early papers on pairing-based cryptography are formulated only for the case of a
symmetric pairing, in which G2 = G1. However, it is in fact not possible to simply choose the
arguments of the pairings of §§3 and 4 from G2 = G1, since then the pairing becomes trivial.
This is clear for the Weil pairing from Theorem 6(b), but also holds for the reduced Tate pairing:
Algorithm 11 implies that the result lies in the field K over which both arguments are defined,
but K ∩µ = {1}. A symmetric pairing may be obtained for supersingular curves with a so-called
distortion map, an explicit monomorphism ψ : E(K)[r] → E[r]\G1. The non-degeneracy of the
Weil pairing then implies that

e : G1 ×G1 → µ, (P,Q) 7→ er(P, ψ(Q))

is also a non-degenerate pairing; the same usually holds for the reduced Tate pairing.
Algebraic distortion maps cannot exist for ordinary curves, whose endomorphism rings are

abelian. Then ψ would be an endomorphism and it would commute with the Frobenius, so the
image of G1 ⊆ E(K)[r] would again lie in E(K) and thus be equal to G1.
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Conversely, supersingular curves have a non-abelian endomorphism ring, and it has been
shown by Galbraith and Rotger in [GR04, Th. 5.2] that they always admit an algebraic distortion
map coming from the theory of complex multiplication (cf. [Deu41]) as long as r > 5; the same
article describes an algorithm for explicitly determining such a map. It is well-known that
supersingular curves with k = 2 admit particularly simple distortion maps, namely,

ψ(x, y) = (−x, iy) (13)

for E : Y 2 = X3 +X over Fp with p ≡ 3 (mod 4) and

ψ(x, y) = (ζ3x, y) (14)

for E : Y 2 = X3 + 1 over Fp with p > 5 and p ≡ 2 (mod 3), where ζ3 and i are primitive third
and fourth roots of unity, respectively, in Fp2 .

If the X-coordinate of ψ is defined overK (for instance, in (13), but not in (14)), it is observed
in [BKLS02] that the computation of the reduced Tate pairing

e(P,Q) = eT
′

n (P, ψ(Q)) = fP (ψ(Q))
qk−1

r by (11)

can be simplified by omitting denominators. Indeed, notice that if a pure addition chain (without
subtractions) is used, the denominator v returned by Algorithm 11 is a polynomial in K[X ] not
involving Y ; since X(ψ(Q)) ∈ K, the value v(Q) disappears through the final exponentiation.

The main drawback of type 1 pairings is the lack of flexibility of the embedding degree k:
Since it is limited to supersingular curves, we have k 6 2 for curves over fields of characteristic
at least 5, k 6 4 over fields of characteristic 2 and k 6 6 over fields of characteristic 3 by [Wat69,
Theorem 4.1].

6.2 Type 2: G2 →֒ G1

The pairing is of type 2 when there is an efficiently computable monomorphism ϕ from G2 to G1.
In some sense, this is the converse of type 1, where there is a non-trivial monomorphism from G1

into another r-torsion group. This case, however, is essentially the generic one and available in
supersingular and ordinary curves alike. Let π : (x, y) 7→ (xq, yq) be the Frobenius endomorphism
related to the field extension L/K = Fqk/Fq. Then K(E) is fixed by π or, otherwise said, G1

are the r-torsion points that are eigenvectors under π with eigenvalue 1. Hasse’s theorem then
implies that the r-torsion of E is generated by one point P with eigenvalue 1 and another point
Q with eigenvalue q. We now consider the trace defined as a map on points by

Tr : E(L)→ E(K), R 7→
k−1∑

i=0

Rπ
i

.

Since the trace of a point is invariant under π, it is indeed a point defined over K. We have
Tr(P ) = kP 6= O in a cryptographic context, where r is much bigger than k, and Tr(Q) =

Q + qQ + · · · + qk−1Q = qk−1
q−1 Q = O since the order r of Q divides qk − 1, but not q − 1. If R

is any r-torsion point, then R = aP + bQ, Tr(R) = akP and Q′ = kR − Tr(R) = kbQ ∈ 〈Q〉.
Unless R ∈ 〈P 〉, in which case Q′ = O, the element Q′ is thus a generator of 〈Q〉, which can be
found efficiently by a randomised algorithm.

Let R be an arbitrary r-torsion point that is a pure multiple of neither P nor Q (which can
be checked using the Weil pairing; in practice, a random r-torsion point satisfies this restriction
with overwhelming probability). Let G2 = 〈R〉, and ϕ = Tr.
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The existence of ϕ reduces problems (for instance, the discrete logarithm problem or the
decisional Diffie–Hellman problem) defined in terms of G2 into problems defined in terms of G1,
which may be helpful for reductionist security proofs. But as usual, the existence of additional
algebraic structures (here, the map ϕ) raises doubts as to the introduction of a security flaw.
Furthermore, hashing or random sampling in G2 appears to be impossible, except for the trivial
approach revealing discrete logarithms. Recent work by Chatterjee and Menezes [CM11] in-
troduces a heuristic construction to transform a cryptographic primitive in the type 2 setting,
together with its security argument, into an equivalent type 3 primitive. Thus, type 2 pairings
should probably be avoided in practice.

6.3 Type 3

The remaining case where there is no apparent efficiently computable monomorphism G2 → G1

is called type 3. In view of the discussion of §6.2, this implies that

G2 = {R ∈ E[r] : Rπ = qR}
= {R ∈ E[r] : Tr(R) = O}.

The previous discussion has also shown how to find a generator of G2. Hashing into G2 may be
accomplished in a similar manner: Hash to an arbitrary point R ∈ E[r], and define kR − Tr(R)
as the final hash value.

7 Loop-shortened pairings

Subsequent work has concentrated on devising pairings with a shorter loop in Algorithm 11,
generally starting from the Tate pairing (10). It turns out that in certain special cases,

e(P,Q) = fλ,P (Q) or e(P,Q) = fλ,Q(P )

define non-degenerate, bilinear pairings for λ ≪ n with fλ,P as in Definition 10. The proof
proceeds by showing that the pairing is the M -th power of the original Tate pairing for some
M prime to n. Cryptographic applications may then directly use the new pairing, or, for the
sake of interoperability, the Tate pairing may be retrived by an additional exponentiation with
M−1 mod n. The first such pairing, called η pairing, was described by Barreto, Galbraith,
Ó’hÉigeartaigh and Scott in [BGOS07]. It was limited to supersingular curves and thus yielded
a type 1 pairing (see §6.1). The examples in [BGOS07] show that λ ≈ √n is achievable in
supersingular curves over fields of characteristic 2 and 3.

In the remainder of this section, we fix the same setting as in §6. In particular, n = r is prime.
All pairings will be defined on G1×G2, where G1 = E(K)[r] and G2 is the set of r-torsion points
defined over L = Fqk with eigenvalue q under the Frobenius π : (x, y) 7→ (xq, yq). This is crucial
for the proofs, and incidentally leads to type 3 pairings.

Lemma 12 Let P ∈ E[n]. If N is such that n | N | qk − 1, then

fN,P = f
N/n
n,P .

If N is such that n | N , then
fN+1,P = fN,P .

Both properties hold by definition; the first one was used in [GHS02, §6] to speed up the
computation by replacing r with a small multiple of low Hamming weight.
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7.1 Ate pairing

The ate pairing is defined in [HSV06, Theorem 1] as

eAr : G1 ×G2 → L∗/(L∗)r, (P,Q) 7→ fT,Q(P ) (15)

with T = t− 1, where t is the trace of Frobenius satisfying #E(K) = q + 1− t.

Theorem 13 eAr is bilinear, and if r2 ∤ T k − 1, it is non-degenerate. More precisely,

(
eAr (P,Q)

)kqk−1

= eTr (Q,P )
Tk

−1
r .

For the ate pairing and all other pairings presented in the following, a reduced variant with

unique values in µ ⊆ L∗ is obtained as in (11) by raising to the power qk−1
r .

Proof of Theorem 13: The crucial step is the observation that for any λ,

fλ,T iQ ◦ πi = fλ,qiQ ◦ πi since T ≡ q (mod r)

= fλ,πi(Q) ◦ πi since Q ∈ G2

= f q
i

λ,Q, (16)

since the coefficients of the rational function fλ,Q can be expressed in the coefficients of Q and
of the curve, and the latter lie in Fq.

In particular for P ∈ G1 and λ = T , fT,T iQ(P ) = f q
i

T,Q(P ).
Then

eTr (Q,P )
Tk

−1
r = f

Tk
−1
r

r,Q (P ) = fTk−1,Q(P ) by Lemma 12

= fTk,Q(P ) by Lemma 12 since T k − 1 ≡ qk − 1 ≡ 0 (mod r)

=
k−1∏

i=0

fT
k−1−i

T,T iQ (P ) by comparing divisors and collapsing

the telescopic sum

= f
∑k−1

i=0 T
k−1−iqi

T,Q (P ) by (16)

= eAr (P,Q)kq
k−1

in L∗/(L∗)r, since T ≡ q (mod r).

�

By Hasse’s theorem, T ∈ O(√q), so that the number of operations in Algorithm 11 drops
generically by a factor of about 2; the effect can, however, be much more noticeable for certain
curves. For instance, [FST10] describes a family of curves for k = 24 with r ∈ Θ(q4/5) and
T ∈ O(q1/10) = O(r1/8). Notice that 8 = ϕ(24), cf. §7.3. A price to pay is that the arguments P
and Q are swapped: The elliptic curve operations need to be carried out over Fqk instead of Fq.
(Algorithm 11 in this context is sometimes called“Miller full”, while the more favourable situation
is called “Miller light”.)

7.2 Twisted ate pairing

The twisted variant of the ate pairing keeps the usual order of the arguments, but sacrifices on
the loop length.
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Assume charFq > 5, and let d = gcd(k,#Aut(E)) and e = k
d . Then there is a twist E′

of degree d of E, that is, a curve E′ defined over Fq with an isomorphism ψ : E′ → E, which
is defined over Fqd . It can be given explicitly as follows for E : Y 2 = X3 + aX + b in short
Weierstraß form, see [Sil86, §X.5.4]:

d = 2 : E′ : Y 2 = X3 +D2aX +D3, ψ(x, y) =
(

Dx,
√
D3y

)

;

d = 4 : E′ : Y 2 = X3 +DaX, ψ(x, y) =
(√

Dx,
4
√
D3y

)

;

d ∈ {3, 6} : E′ : Y 2 = X3 +Db, ψ(x, y) =
(

3
√
Dx,
√
Dy
)

;

where D is a non-square in Fq for d ∈ {2, 4}, a non-cube and square for d = 3, and a non-cube
and non-square for d = 6. The formulæ make sense since for d = 4, we have b = 0 and q ≡ 1
(mod 4), while for d ∈ {3, 6}, we have a = 0 and q ≡ 1 (mod 3). Up to isomorphism over Fq, the
twist is unique for d = 2, and there are two different ones for d ∈ {3, 6} (such that gD or g2D,
respectively, is a cube for g a generator of F∗

q) and d = 4 (such that gD or g3D, respectively,
is a fourth power). One can then show, see [HSV06, §§4-5], that besides E itself there is a
unique twist E′ of E, defined over Fqe , such that r | #E′(Fqe). (This uses that r2 ∤ #E(Fq).)
If G′

2 = E′(Fqe)[r], then G2 = ψ(G′

2). In particular, the X-coordinates of the points in G2 lie
in Fqk/2 for d even, and the Y -coordinates lie in Fqk/3 for 3 | d.

The twisted ate pairing of [HSV06, §VI] is defined by

eÃr : G1 ×G2 → L∗/(L∗)r, (P,Q) 7→ fT e,P (Q). (17)

Let π′ : (x, y) 7→ (xq , yq) be the Frobenius of E′, and let the endomorphism α of E be defined
as α = ψ ◦ (π′)e ◦ ψ−1. Then α|G2 = α|ψ(G′

2)
= id, αd|G1 = id, and thus α(G1) ⊆ G1. Since

ψ is an isomorphism and deg((π′)e) = qe, this implies that α|G1 is multiplication by qe. So α
behaves similarly to the Frobenius endomorphism, but with the roles of G1 and G2 reversed
and of degree qe instead of q: G2 is the eigenspace of eiganvalue 1, and G1 is the eigenspace of
eigenvalue qe. The same proof as for Theorem 13 thus carries through after replacing π by α, q
by qe, T by T e and k by d.

Theorem 14 eÃr is bilinear, and if r2 ∤ T k − 1, it is non-degenerate. More precisely,

(eÃr )
dqe(d−1)

= (eTr )
Tk

−1
r .

Generically. one has T e = T k/d ∈ O
(
qk/(2d)

)
; as soon as k > 2d, so certainly for k > 12, the

loop becomes larger than for the standard Tate pairing, which has the same order of arguments.

7.3 Optimal pairings

The discovery of the ate pairing based on a function fλ,Q, where λ = T is not a multiple of
the order of Q , raised the question of further possible values for λ, and on the possibility of
minimising the loop length log2 λ. (Strictly speaking, the loop length in Algorithm 11 depends
on the addition-negation chain; ⌊log2 λ⌋ measures the number of doublings in a standard double-
and-add chain.)

For i = 1, . . . , k − 1, Zhao, Zhang and Huang define in [ZZH08] the atei pairing by

eAi
r : G1 ×G2 → L∗/(L∗)r, (P,Q) 7→ fT i mod r,Q(P ). (18)
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For a curve with an automorphism of order d | k and e = k
d , a twisted version may be defined

for i = 1, . . . , d− 1 as

eÃi
r : G1 ×G2 → L∗/(L∗)r, (P,Q) 7→ fT ei mod r,P (Q).

Their bilinearity and non-degeneracy (if r2 ∤ T ik
′

, where k′ = k
gcd(k,i) is the order of T

i modulo r)

is proved as in Theorems 13 and 14, after replacing π by πi or π′ by (π′)i, respectively.
In [LLP09], for the first time two such pairings were combined: If t1 = t0λ1 + λ0 and ft0,Q

and ft1,Q define powers of the Tate pairing eTr (Q,P ), then so does

fλ1,t0Qfλ0,Q
ℓt0λ1Q,λ0Q

vt1Q
, (19)

called the R-ate pairing. The proof relies on the equation

ft0λ1,Q = fλ1

t0,Q
fλ1,t0Q, (20)

which is readily verified by comparing divisors, so that (19) equals the pairing-defining function
ft1,Qf

λ1

t0,Q
by (12). Non-degeneracy holds as soon as the exponent with respect to the Tate

pairing, readily computed from the previous equation, is not divisible by r. The added loop
length in the computation of (19) is log2(λ1) + log2(λ0). Since the computation of fλ1,t0Q and
fλ0,Q by Algorithm 11 finishes with t0λ1Q and λ0Q, the correction factor is obtained as the
quotient of lines from adding these last two points. Additionally, t0Q needs to be computed
(which can be done in parallel with Algorithm 11 for fλ0,Q if an addition-negation sequence
passing through both λ0 and t0 is used), and an exponentiation with λ1 is needed, which will
usually be negligeable compared to the final exponentiation for obtaining reduced pairings.

Several examples of curve families are given in [LLP09] with t0, t1 a power of T and λ0,
λ1 ∈ O

(
r1/ϕ(k)

)
. That this is no coincidence has been shown by Heß in [Hes08] and Vercauteren

in [Ver10], who defined more general pairing functions, leading to a notion of optimiality that
reaches this quantity O

(
r1/ϕ(k)

)
.

7.3.1 Heß pairings

Theorem 15 ([Hes08], Theorem 1) Let t =
∑deg t

i=0 tiY
i ∈ Z[Y ] and y a primitive k-th root

of unity modulo r2 such that r | t(y). Let ft,y,Q be the function, monic at O, such that

div(ft,y,Q) =

deg t
∑

i=0

ti
(
[yiQ]− [O]

)
. (21)

Then the Heß pairing

eHr : G1 ×G2 → L∗/(L∗)r, (P,Q) 7→ ft,y,Q(P ), (22)

is bilinear and, if r2 ∤ t(y), non-degenerate.

Proof: Let t(y) = rL, and rewrite (21) as

div(ft,y,Q) =

deg t
∑

i=0

tiy
i[Q]−

deg t
∑

i=0

ti
(
yi[Q]− [yiQ]

)
−
(

deg t
∑

i=0

ti + 1

)

[O],
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which implies that

ft,y,Q = fLr,Q

deg t
∏

i=0

(
fyi,Q

)−ti
.

Since q is a primitive k-th root of unity modulo r, we have y ≡ qj (mod r) for some j, and
yi ≡ qij (mod r). The same proof as for the ate (or atei) pairing, with yi in the place of T
and πij in the place of π, shows that

fkq
k−1

yi,Q (P ) = eTr (Q,P )
yik−1

r = 1 since r2 | yk − 1.

Since r ∤ kqk−1, we have fyi,Q(P ) = 1. So eHr = (eTr )
L is bilinear, and non-degenerate for r ∤ L.

�

Remark 16 The condition that y be a primitive k-th root of unity modulo r2 is clearly not
necessary. If y is a root of unity modulo r, then the previous proof carries through, showing that

eHr is bilinear. More precisely, (eHr )
kqk−1

= (eTr )
N with

N = kqk−1 t(y)

r
−

deg t
∑

i=0

ti
yik − 1

r
=

1

r

(
kqk−1t(y)− (t(yk)− t(1))

)
,

so that eHr is non-degenerate if and only if r ∤ kqk−1t(y) −
(
t(yk)− t(1)

)
. This should hold with

overwhelming probability. For instance, one can usually choose y = T = q mod r.

Since y is a k-th root of unity modulo the order r of Q, any function as in (21) is realised
by a polynomial t of degree at most ϕ(k) − 1. Those with a root in y modulo r can be seen as
elements of the Z-lattice with basis r, Y − y, Y 2 − (y2 mod r), . . . , Y ϕ(k)−1 − (yϕ(k)−1 mod r) of
dimension ϕ(k) and determinant r. For fixed dimension, the LLL algorithm finds an element t
of degree at most ϕ(k) − 1 and with |ti| ∈ O

(
r1/ϕ(k)

)
.

There is a twisted variant of the Heß pairing: If E has a twist of order d | k and e = k
d , y is

a d-th root of unity modulo r and r | t(y), then

eH̃r : G1 ×G2 → L∗/(L∗)r, (P,Q) 7→ ft,y,P (Q)

defines a bilinear pairing that is non-degenerate if y is a primitive d-th root of unity modulo r2

or, more generally, if r2 ∤ dqe(d−1)t(y) −
(
t(yd)− t(1)

)
. Using LLL, one obtains a polynomial of

degree less than ϕ(d) and with |ti| ∈ O
(
r1/ϕ(d)

)
. The only cases of interest are d ∈ {3, 4, 6},

for which ϕ(d) = 2. Even then, there is only a constant gain in the loop length that does not
increase with k, so that asymptotically, the Heß pairing will be preferred to its twisted version.
Finally, [Hes08] also contains an optimal version of the Weil pairing.

To see whether (22) can be computed efficiently, let Ri = yiQ, si =
∑i
j=0 tjy

j and Si =

siQ =
∑i

j=0 tjR
j for i > 0 and s−1 = 0 and S−1 = O. Then (22) can be rewritten as

deg t
∑

i=0

ti ([Ri]− [O])

=

deg t
∑

i=0

div(fti,Ri) +

deg t
∑

i=0

([tiRi]− [O])

=

deg t
∑

i=0

div(fti,Ri) +

deg t
∑

i=0

(

[Si]− [Si−1] + div

(
ℓSi−1,tiRi

vSi

))
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and

ft,y,Q =

deg t
∏

i=0

fti,Ri

deg t
∏

i=0

ℓSi−1,tiRi

vSi

.

The precomputation of the Ri by deg t−1 scalar multiplications can already be rather costly. As
tiRi is a sideproduct of the computation of fti,Ri , each quotient of two lines comes out of a point
addition on E(L). But by computing each fti,Ri separately via Algorithm 11, the factor ϕ(k)
gained in the loop length is lost again through the number of evaluations. So while it is shown in
[Hes08, Lemma 1] that the Heß pairing uses a function of relatively low degree in O

(
r1/ϕ(k)

)
, it

is unclear whether this function can always be evaluated in log2(r)
ϕ(k) steps or a very small multiple

thereof.

7.3.2 Vercauteren pairings

If one removes the condition that y be a primitive k-th root of unity modulo r2 in the Heß pairing,
one may let y = q under the conditions of Remark 16, a special case considered independently
by Vercauteren in [Ver10]. Then the Ri may be computed by successive applications of the
Frobenius map, and moreover,

fti,Ri(P ) = fti,qiQ(P ) = f q
i

ti,Q
(P ) by (16).

These functions have the advantage of being computed by Algorithm 11 with respect to the same
base point Q. By choosing an addition-negation sequence that passes through all the ti, they
may thus be obtained at the same time. Currently known algorithms compute such sequences

with log2N + ϕ(k)O
(

logN
log logN

)

steps, where N = max |ti|, for instance by [Yao76]. This shows

that, up to the minor factor log logN , again the gain of ϕ(k) in the loop lengths is offset by the
number of functions. One should notice, however, that better addition sequences can often be
found in practice. Moreover, coefficients occurring in a pairing context are far from random, but
exhibit arithmetic peculiarities, as illustrated in the next paragraph.

7.3.3 Optimal pairings on curve families

Elliptic curves suitable for pairing-based cryptography, that is, with a small embedding degree k,
are extremely rare among all elliptic curves, see [Box12]. An excellent survey article on the
problem of finding good parameter combinations is [FST10], so there is no need to give any
details here. Starting with the article by Brezing and Weng [BW05], work has concentrated on
finding families of curves parameterised by polynomials. For fixed k, these are given by p(X),
r(X) and u(X) ∈ Z[X ] satisfying arithmetic properties so that if x0 ∈ Z such that p(x0) is
prime, then there is an elliptic curve over Fp(x0) with trace of Frobenius u(x0) and a subgroup
of order r(x0) of embedding degree k. Concrete instances are thus given whenever p(X) and
r(X) simultaneously represent primes. In practice, one has deg(p(X)) = ϕ(k) or 2ϕ(k), and the
polynomials tend to have small and arithmetically meaningful coefficients (for instance, they are
often divisible by prime factors of k).

As an example, Freeman gives a family in [Fre06, Theorem 3.1] for k = 10 with

p(X) = 25X4 + 25X3 + 25X2 + 10X + 3,

u(X) = 10X2 + 5X + 3,

r(X) = 25X4 + 25X3 + 15X2 + 5X + 1.
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To construct optimal pairings, one may now work directly with polynoials instead of integers,
looking for short vectors in the Z[X ]-lattice with basis

r(X), Y − y(X), Y 2 −
(
y(X)2 mod r(X)

)
, . . . , Y ϕ(k) −

(

y(X)ϕ(k) mod r(X)
)

.

In Heß’s construction of §7.3.1, y(X) is hereby a primitive k-th root of unity modulo r(X)2;
notice that r(X) is necessarily irreducible since it represents primes.

For Vercauteren’s specialisation of §7.3.2, one has y(X) = p(X), and the above family leads
to a short vector (see [Ver10, §IV.B])

t(Y ) = XY 3 +XY 2 −XY − (X + 1).

This means that whenever p(x0) and r(x0) are prime for some x0 ∈ Z, then we obtain a curve
and an optimal pairing in which the computation of the fti(x0),Q boils down to fx0,Q. Notice

that x0 ≈ r(x0)
1/ deg r(X) = r(x0)

1/ϕ(10), and in this family, the gain of a factor of ϕ(k) in each
invocation of Algorithm 11 leads indeed to a corresponding speed-up in the complete function
evaluation.
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Scott. Efficient pairing computation on supersingular abelian varieties. Designs,
Codes and Cryptography, 42:239–271, 2007.

[BK98] R. Balasubramanian and N. Koblitz. The improbability that an elliptic curve has
subexponential discrete log problem under the Menezes–Okamoto–Vanstone algo-
rithm. Journal of Cryptology, 11:141–145, 1998.

[BKLS02] Paulo S. L. M. Barreto, Hae Y. Kim, Ben Lynn, and Michael Scott. Efficient algo-
rithms for pairing-based cryptosystems. In Moti Yung, editor, Advances in Cryptol-
ogy — CRYPTO 2002, volume 2442 of Lecture Notes in Computer Science, pages
354–369, Berlin, 2002. Springer-Verlag.

[Box12] John Boxall. Heuristics on pairing-friendly elliptic curves. Journal of Mathematical
Cryptology, 6(2):81–104, 2012.

[Bru11] Peter Bruin. The Tate pairing for abelian varieties over finite fields. Journal de
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