
HAL Id: hal-00778039
https://inria.hal.science/hal-00778039

Submitted on 18 Jan 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Contracts and Behavioral Patterns for Systems of
systems: The EU IP DANSE approach

Alexandre Arnold, Benoît Boyer, Axel Legay

To cite this version:
Alexandre Arnold, Benoît Boyer, Axel Legay. Contracts and Behavioral Patterns for Systems of
systems: The EU IP DANSE approach. [Research Report] 2013, pp.21. �hal-00778039�

https://inria.hal.science/hal-00778039
https://hal.archives-ouvertes.fr

IS
S

N
0

2
4

9
-6

3
9

9
IS

R
N

IN
R

IA
/R

R
--

7
0

0
3

--
F

R
+

E
N

G

RESEARCH

REPORT

N° 7003
January 2012

Project-Teams Triskell

Contracts and Behavioral

Patterns for Systems of

systems:

The EU IP DANSE

approach

Alexandre Arnold

Benoît Boyer

Axel Legay

RESEARCH CENTRE

RENNES – BRETAGNE ATLANTIQUE

Campus universitaire de Beaulieu

35042 Rennes Cedex

Contracts and Behavioral Patterns for Systems

of systems:

The EU IP DANSE approach

Alexandre Arnold∗

Benoît Boyer†

Axel Legay†

Project-Teams Triskell

Research Report n° 7003 — January 2012 — 21 pages

Abstract: This report presents some of the results of the first year of Danse, one of the first
EU IP projects dedicated to System of Systems. Concretely, we offer a tool chain that allows to
specify SoS and SoS requirements at high level, and analyse them using powerful toolsets coming
from the formal verification area. At the high level, we use UPDM, the system model provided by
the british army as well as a new type of contract based on behavioral patterns. At low level, we
rely on a powerful simulation toolset combined with recent advances from the area of statistical
model checking. The approach has been applied to a case study developed at EADS Innovation
Works.

Key-words: SoS, System of Systems, Contract, specification, OCL, SysML, UPDML, Model
Checking, Modeling, Statistical Model Checking, Verification

∗ Innovation Works EADS, Alexandre.Arnold@eads.net
† INRIA - Rennes, First.Last@inria.fr

Contracts and Behavioral Patterns for Systems of systems:

The EU IP DANSE approach

Résumé : Ce document présente les résultats de la première année du projet Danse, un
des premiers projets IP de recherche portant sur les systèmes de Systèmes (SoS en anglais).
Concrètement, une chaîne d’outils a été développée de façon à spécifier à "haut niveau" puis à
analyser formellement un SoS avec un ensemble prérequis, c’est à dire un ensemble de propriétés
que le SoS doit valider. L’analyse du SoS repose sur l’utilisation d’outils efficaces de vérification
formelle. À "haut niveau", le SoS est décrit en UPDML, le langage dédié à la modélisation des
SoS que l’armée britannique à développé, alors que les prérequis du SoS sont spécifiés au moyen
d’un langage de contrats décrivant les comportements attendus du systèmes. Cette spécification
"haut niveau" est compilée en une représentation "bas-niveau" qui est simulée et analysée grâce à
des outils émanant des récentes techniques de vérification statistique. L’approche a en particulier
été appliquée sur un cas d’étude développé par EADS Innovation Works.

Mots-clés : SoS, System de Systems, Contrat, Spécification formelle, OCL, SysML, UPDML,
Vérification, Modélisation, Statistique

Contracts and Behavioral Patterns for SoS 3

1 Introduction

While SysML [17], the Systems Modeling Language derived from UML [16], has been widely
adopted for Systems Engineering applications, the specificities of Systems of Systems (SoS)
fostered the creation of further customizations. The Unified Profile for DoDAF and MoDAF
(UPDM) [18], based on the US and UK military architectural framework, is one of them and is
used on a regular basis in SoS Engineering.

Specific extensions of SysML/UPDM are considered in Danse [8], one of the first European
project aiming at developing a methodological and technical framework for SoS Engineering with
associated tool support. This framework shall support the SoS architect from the modeling activ-
ities to the analysis phase (abstraction, simulation, formal verification), especially by providing
concrete solutions to address common SoS issues: constant evolution of a large-scale SoS and its
stakeholders’ needs, unexpected emergent behaviors, limited awareness of the global situation...

In the frame of Danse, we extend the language of SysML/UPDM to add formalized re-
quirements for an SoS. Formalizing the SoS goals makes it possible to verify them automatically
(with an adjustable probability) using a statistical model checker such as Plasma-Lab [11, 12] in
combination with a simulation platform such as DESYRE. The challenge is to propose a high-
level formal language that is directly usable by an SoS architect, while being still automatically
translatable to the expressive low-level specification of the model checker, in a similar way to
editors like IBM Rhapsody that could make an executable specification (FMI) out of a high-level
formalism (SysML/UPDM behavioral diagram).

For our purpose, the low-level specification is the Bounded Linear Temporal Logic (B-LTL), an
extension of the Linear Temporal Logic in which each temporal operator is bound by a temporal
constant. This logic is expressive enough to cover a large set of properties and to write static
as well as behavioral SoS goals. But this logic is defined using the standard temporal operators,
which are quite low-level: defining complex properties often requires to interlock several layers
of nested operators. Writing or understanding such formulas is difficult, thus error-prone, and
does not fit at all with our target of a clear and simple specification language.

So we propose in this paper the very first contract language for SysML/UPDM, defined using
a strong B-LTL based semantics, but close to hand written English requirements for SoS on
the surface. This language of goal formalisation, which is developed in the scope of the Danse

project, is called the Goal and Contract Specification Language (GCSL).

GCSL makes use of the Object Constraint Language (OCL), a formal language by the Object
Management Group (OMG) [14] used to describe static properties on UML models, thus also on
SysML/UPDM ones. OCL can be used for a number of different purposes, but especially as a
model-based query language and for writing expressions, which perfectly suits our needs here.
GCSL also reuses the Contract Specification Language (CSL) [23], developed in the previous
SPEEDS European project [24], which comes with convenient temporal patterns. The three
key elements required for the formalization of behavioral goals and the way we address them in
our approach are (1) being able to refer to model elements: use of the same names as in the
SysML/UPDM model, (2) being able to write static properties about them: use of OCL and (3)
being able to integrate these expressions inside behavioral patterns: use of CSL patterns.

After a short description of the SoS modeling in Section 2, this paper presents in Section 3 the
GCSL based on the semantics of UPML modeling, thus we show how to translate the properties
into B-LTL formulas (Section 4) into order to check them using the statistical model checking
framework for SoS (Section 5). Finally, Section 6 illustrates the approach applied to the case
study of Danse.

RR n° 7003

4 Arnold & Boyer & Legay

2 System of Systems Modeling

Overview of SysML/UPDM

SysML [17] is a general-purpose modeling language defined as an extension of a subset of the
Unified Modeling Language (UML) [16] using UML’s profile mechanism. SysML is used for Sys-
tems Engineering applications, whereas UML is more targeted towards object-oriented Software
Engineering. A large set of diagrams is provided with SysML to model a system’s requirements,
structure (e.g. block definition diagram, internal block diagram), behavior (e.g. state machine,
activity diagram), etc.

Using the same UML’s profile mechanism, another language built on top of UML/SysML has
de facto become a standard for SoS architects: UPDM. This profile is the result of the unification
effort of the US Department of Defense and the UK Ministry of Defense architecture frameworks
and associated meta-models. It adds a layer of new meta-objects that are typically (but not
exclusively) used in the context of military SoS, as well as a significant amount of predefined
views (e.g. system views, operational views, capability views) which help splitting the whole
modeling activity in smaller tasks.

The executable part of a UPDM modeling can be compiled into a program based on the
Functional MockUp Interface (FMI) [21] that defines a standardized interface used in simulations
of complex systems. In Danse, the SoS is compiled into FMI program and executed by the
simulation engine DESYRE [7]. This whole FMI program can be considered as a state transition
system, e.g. the formal semantics on which we will use to propose our language. The states
denote the global states of the SoS, e.g. the result of collecting the internal states of each
constituent in the SoS. The transitions denote the actions and events that occur in the SoS and
eventually modify the internal state of some system constituents and thus, the global state of
the system.

Definition 1 (State Transition Systems). Let X be a set of variables that are mapped to the
values of D, the set of all possible values. We define S a set of states. Each state s is characterized
by a mapping µs : X → D such that the valuation of any variable y ∈ X in the state s is µs(y).
We thus define a transition system as a 4-tuple < S, s0, R, {µs | s ∈ S} > such that

• s0 ∈ S contains the initial states of the system

• R ⊆ S×S is the transition relation. We use the more convenient notation s → s′ to denote
(s, s′) ∈ R.

All valid execution (or run) of a transition system is a sequence of states led by the R from any
initial state. A run of length n will denoted as π = s0; s1; s2; . . . ; sn where s0 ∈ I and si → si+1

holds for 0 ≤ i < n. Each transition system has a global clock, which is denoted by the variable
t. We note ti = µsi(t), the observed time value of t when the executed system reaches the state
si. For any execution path the system is in state si when ti ≤ t < ti+1 and the evolution of the
time is monotonically increasing, e.g. ti < ti+1.

In the first year of the Danse project we limit ourselves to systems of systems who environ-
ment’s behaviors are fully known in advance (hence representable via state transition systems),
like it is the case for most of adaptive systems studied in the litterature [26, 10, 3, 9]. The reason
is that this corresponds to the current possibilities of the UPDM. In future work, we will study
more complex aspects such as unknown environment, hence more complex dynamicity features.
For this, we will first have to consider extension of the UPDM model.

Inria

Contracts and Behavioral Patterns for SoS 5

Stochastic aspects of the model

Stochastic modeling is a way to describe behaviors that are not deterministic by nature, or to
abstract a behavior that is simply too complex to be modeled explicitly (as white box). So it
is typically very useful in a SoS context. Behavioural modeling in SoS examples such as an
Emergency Response to a city fire typically shows numerous attributes/parameters that would
not be deterministic, such as the time between two fires or the duration of an action performed
by a human.

A first proposal of how to put stochastic data in the SysML/UPDM model has been integrated
into the Danse project. It is based on a set of attribute stereotypes that can be applied to
any block attribute. This idea is close to the suggestion of the non-normative distribution
extensions made in appendix of the SysML 1.3 specification, but adds the possibility to regenerate
a distribution-based random value whenever needed (and not only at initialization). This addition
is important because even the same person does never perform the same task in the exact same
amount of time, so that the duration of the task shall be recalculated every time.

Adding stochastic data to the SoS model implies of course that each simulation is likely to
generate a different trace than the previous ones, and as a consequence that one run will not
be enough to verify whether the SoS meets its requirements or not. This is why being able
to automate this verification process in a mathematical way (provided the requirements are
formalised) is a great support for the SoS architect when assessing a candidate architecture.

Since the SoS we consider exhibit some stochastic behaviors, each run has an associated
probability of being executed. This probability is given by an unkonwn distribution due to the
high complexity of the model: a system is designed by the paralell composition of components
that may have a stochastic behavior.

3 A Contract Language for UPDM/SysML Requirements

Before defining the new contract language, we introduce the notion of contract for the SoS
formalized as a stochastic state transition systems.

Definition 2 (Contracts for State Transition Systems). A contract is defined as a pair (A,P)
where A and P are respectively called the Assumption and the Promise. Considering a state
transition system, A and P are properties about the execution of the system. Thus, a contract
for the system specifies what the system shall ensure the promise when the system shall satisfy
the assumption. The notation Sys |= (A,P) means that the contract (A,P) is satisfied by the
system Sys. Relying on the state transition system semantics, the satisfaction of a contract is

Sys |= (A,P) iff ∀π, π |= A ⇒ π |= P

where π is a valid run of Sys and π |= A (or P) means the run π satisfies the assumption A

(the promise P resp.).

For stochastic systems, it is generally more meaningful to quantify how a system satisfies
a contract: this valuation is given by the probability that the system satisfies the contract.
Intuitively, if the distribution to execute each run of a given stochastic system is known, the
probability that this system satisfies the contract is the sum of the probabilities of all the runs
that satisfy the contract (see Section 5).

Definition 3 (Contracts for Stochactic State Transition Systems). Let be a stochastic system
Sys, a contract (A,G) and a threshold value k ∈ [0..1]. For the system Sys, we now consider the
contract P∼k(A,G), where ∼∈ {<,≤,=,≥, >} and 0 ≤ k ≤ 1. The contract is satisfied if and
only if the relation holds, e.g. if the probability p of Sys |= (A,G) satisfies the relation p ∼ k.

RR n° 7003

6 Arnold & Boyer & Legay

In this work, for efficiency reasons, we decided to estimate the probability p using statistical
model checking rather than computing it with a numerical approach such as Prism [20]. Another
reason to use SMC is that it relies on monitoring traces, hence it allows to verify properties that
cannot be expressed in classical logics. In this paper, this aspect will not be explored, but it is
a main topic of Danse. SMC consists in verifying the property (here contract) against several
simulations of the system. Then, an algorithm from the statistic area is used to estimate the
probability to satisfy the property. The contract to monitor is translated into a B-LTL formula
(see Section 4) that characterizes a set of simulation traces. Thus, the simulation monitoring
consists of observing each simulation to decide if the B-LTL formulas holds or not.

We now introduce the language to express the assumptions and promises dedicated to the
System of Systems. The GCSL syntax for patterns is a combination of the Object Constraint
Language (OCL) and the contract patterns of the CSL Ã la "SPEEDS" [24]. The SPEEDS
contract specification patterns are introduced in the SPEEDS Deliverable D.2.5.4 "Contract
Specification Language (CSL)" [23] and used to give a high-level specification of real-time com-
ponents. They have been introduced to enable the user to reason about event triggering that
are equivalently replaced in Danse by property satisfaction. The properties handled by these
patterns are about the state of a SoS. We use OCL to specify these state properties. This lan-
guage allows to build some behavioral properties to express some temporal relations about facts
or events of the system denoted by the state properties. It is sufficiently powerful to describe
precisely a state of a SoS. Here, we will only consider a subset of the OCL language, but it is
not unrealistic to consider a larger subset of OCL to describe the requirements. We restrict the
language here to express some properties that can be verified using the SMC techniques applied
to SoS’s.

We briefly recall the notion of Collection that we will use in the rest of the paper.

Collections in OCL: in OCL, it is the usual way to define some properties about set of
elements in a system. Considering a SoS as a state transition system, the root identifier SoS

denotes σ the state currently reached by the SoS. The collections allow to handle some set of
instances of components in the current state σ. A collection built over the state σ can be viewed
as a projection of σ: it is defined by selecting some component instances or attribute values in
the state σ.

For example, the expression SoS.itsFireStations denotes collection of all the instances of
type FireStation at state σ. OCL defines some operators that can be applied to any collection:
SoS. itsFireStations → size() counts the number of instances of type FireStation. The
most important feature of the collection is the predicates we can define using quantification:

• SoS.coll → forAll(x|φ(x)) denotes that for all element x, which belongs to the collection
SoS.coll, the property φ(x) holds.

• SoS.coll → exists(x|φ(x)) denotes for that there exists one element x, which belongs to
the collection SoS.coll, the property φ(x) holds.

State properties in OCL

Originaly introduced to supplement UML, the Object Constraint Language (OCL) [15] is partic-
ularly adapted to describe the internal state of a component. The Object Constraint Language
is a rather simple-to-write, yet formal text language that provides constraint and object query
expressions based on any meta-model, so for instance the SysML/UPDM ones. It has a concise
notation for accessing, collecting, filtering and evaluating model elements. More generally, it
allows to write invariants on a model, that we use in our approach to write the static properties

Inria

Contracts and Behavioral Patterns for SoS 7

that we insert in the behavioral contracts. As we will see in the following paragraphs, we also
pushed the concept further by sometimes embedding a CSL pattern inside an OCL-like expres-
sion, when we want to state that the pattern shall hold for some or all elements in a set. We recall
some OCL notations used in the rest of the paper, but the reader can find the whole specifica-
tion in [15]. Components store internal values into attributes that are denoted by the standard
dot-syntax. For example, the number of people in the district 1 at σ, the state reached by the
SoS, is district1.population. More particular to OCL, it is also possible to define a collec-
tion of attributes using the same syntax: the expression SoS.itsDistricts.population → sum()
denotes the number of total people. For the sake of clarity in the rest of the paper, we only fo-
cus on the Collection type without considering all its refinements (Set, Ordered Sets, . . .),
and the subset of Boolean and arithmetic expressions over the attributes of the SoS’ component
instances.

The behavioral patterns

The semantics of the patterns is based on the satisfiability of any predicate on the whole set of
execution paths that defines the pattern, which the definition of the following patterns are based
upon. Consider the state property Ψ and a time value sequence t0, t1, . . . , tn that defines the
state sequence σ0, σ1, . . . , σn such that ti is the time value where the system reaches σi. In other
words, the system is in state σi when ti ≤ time < ti+1.

Figure 1: Satisfaction of Ψ during an execution path.

Figure 1 illustrates the satisfaction of a state property Ψ, e.g. the green state σ0, σ1 and σi

are the only states of the sequence that satisfy Ψ. It means that Ψ holds when time ∈ [t0, t2) ∪
[ti, ti+1). We observe that Ψ holds continuously for σ0, σ1, hence the number of occurrences
where Ψ holds is 2 during the time interval [t0, tn). If we finally consider any the time ticks a, b
and c, Ψ holds during [a, b] but does not during [a, b] nor [b, c] and the occurrence number of Ψ
is 1 in [a, b], [a, c] or [b, c].

We define some selected patterns, but the more exhaustive list can be found in Appendix B.
These patterns proved very useful for SoS applications. We assume that Ψ and Ψi are state
properties and a, b, c are time constants such that the time intervals defined in the patterns are
valid.

whenever Ψ1 occurs Ψ2 does not occur during following [a, b]

This pattern specifies that Ψ2 is never satisfied during the relative interval [a, b] after Ψ1,
i.e. ¬Ψ2 holds during [a, b]. By relative we means that when Ψ occurs at t, the relative
interval corresponds to [a+ t, b+ t].

Whenever Ψ1 occurs Ψ2 occurs within [a, b]

RR n° 7003

8 Arnold & Boyer & Legay

The constraint Ψ2 must be satisfied at least once during [a, b] after Ψ1.

Ψ during [a, b] implies Ψ1 during [a, c] then Ψ2 during [c, b]

Whenever Ψ holds during [a, b] there exists a split at c of [a, b] such that Ψ1 holds during
[a, c] then Ψ2 holds during [c, b].

The CSL patterns are originally designed to specify the behavior of any component instance
by totally abstracting its environment without quantification. It is not possible to specify a
contract about the interaction between two anonymous components. By anonymous, we mean
that no particular instance is explicitly referenced by the component identifier. Let us consider a
SoS with a set of components District and two District properties Psi1 and Ψ2 in OCL. The
patterns allow to express the behavioral property for some explicit component, e.g. Whenever
[Ψ1(district1)] occurs [Ψ2(district1)] occurs within [a, b], it is not possible to generalize
the behavioral property to any District of the system, e.g. a property like "For all district,
Whenever [Ψ1(district)] occurs [Ψ2(district)] occurs within [a, b]".

To overcome this important limitation, we extend the proposed grammar (see Appendix B)
by overlapping the patterns with the OCL collection predicates, e.g. forAll(x|...) and
exists(y|...). Then, the generalized behavioral property presented below is now:

SoS.itsDistricts → forAll(district |
Whenever [Ψ1(district)] occurs [Ψ2(district)] occurs within [a, b])

The root collection SoS.itsDistricts is defined on the initial state σ0 of the SoS. In SoS,
the initial state is describe by the Internal Block Diagram that is defining the initial state
of each component. Using these OCL predicates for quantify the patterns keep the language
not so different in comparison with the original OCL, except we restrict the nesting capabil-
ity. The OCL syntax allows to nest the quantification without any limit. If there is no the-
oretical reasons to have limit, we impose a limit of 2 nested quantifications in our language.
From the verification point of view, a behavioral formula with more nested quantifications
is not practically check-able. Moreover, we never need more to express the requirements of
CEA incubator in Danse. So we assume in the next, that the patterns have are of the form
SoS.coll1 → forAll(x|SoS.coll2 → forAll(y| . . .Pattern(x, y) . . .), where Pattern is any be-
havioral pattern.

Another important limitation of this combination OCL + patterns is the inability of ex-
press property about cumulative values during an execution path: to solve this problem we
introduce the path operators mean(), sum(), prod() to denote the value of a numerical expres-
sion: for example, mean(district1. population) denotes the average value of the attribute
district1.population) computed with the values obtained of the different state of the path.

Inria

Contracts and Behavioral Patterns for SoS 9

Examples of Requirements

Table 1 illustrates the kind of properties that we will express with our language. We use syntactic
coloring to distinguish the different parts of the language used in the property: the words in red
are identifiers from the model, the blue part is from OCL and bold black keywords are temporal
operators. These requirements show the capabilities of our language using different requirements
of this use case. Whereas the requirement 1 is purely structural, the requirements 2 and 3 are
relative to the execution of the SoS: the first one is written using strictly OCL, the second one
shows the cumulative operators we introduced and the third one is defined with a behavioral
pattern. The presented requirements are contracts without assumption or, more precisely, they
are contracts with an assumption that is implicitly "true".

"Any district cannot have more than 1 fire station, except if all districts have at least 1"
SoS.itsDistricts→exists(district | district.containedFireStations→size() > 1) implies

SoS.itsDistricts→forAll(district | district.containedFireStations→size() ≥ 1)
"The mean city area under fire shall be less than 0.01%"
mean(SoS.itsDistricts.fireArea→sum()) ≤ 0.0001
"The fire fighting cars hosted by a fire station shall be used all simultaneously at least once

in 6 months"
SoS.itsFireStations→forAll(fireStation |

Whenever [fireStation.hostedFireFightingCars→exists(ffCar | ffCar.isAtFireStation)] occurs,
[fireStation.hostedFireFightingCars→forall(ffCar | ffCar.isAtFireStation = false)]

occurs within [6 months])

Table 1: Examples of Requirements formulated in the CAE incubator

The proposed language ,composed by 11 SPEEDS patterns, is sufficient expressive to for-
malize the behavior from 15 requirements identified in CAE incubator. This list of patterns can
be easily extended for the future needs, but the experiments conducted in SPEEDS and Danse

show it covered all the requirements to be expressed.

4 Translating Contracts into Bounded-LTL Formulas

Bounded Linear Temporal Logic

As said previously, the Bounded Linear Temporal Logic (B-LTL) is an extension of the Linear
Temporal Logic (LTL) [5] in which each temporal operator is bound by a temporal constant. This
Logic is such expressive that it covers precisely a large set of properties. It is particularly adapted
to Statistical Model Checking (SMC) [25, 22]. The SMC principle is to monitor some simulations
in order to check a B-LTL property and use the results from the statistics area (sequential
hypothesis testing or Monte Carlo simulation) in order to decide whether the system satisfies
the B-LTL property or not with some degree of confidence. Since the conducted simulations are
finite, the infinite path semantics of LTL has no sense, whereas checking B-LTL formulas does.

The formulas are built using the standard logic connectors ∧, ∨, =⇒ , ¬ and the common
temporal modalities G, F , X, U over some atomic propositions. Each temporal modality is
indiced by a bound defining the length of the run on which the formula must hold. The validation
of a B-LTL formula against an execution path has a meaning only if the length of this path is
enough to reach all bounds constituting the formula.

The atomic propositions used in the B-LTL formulas are build using some state predicates or
run predicates. These predicates only require to be decidable for a given input, e.g. a state or a

RR n° 7003

10 Arnold & Boyer & Legay

run section, and we assume this decision to be performed by an external procedure. Considering
π = s0s1 . . . sn a finite run of a transition system and Φ a B-LTL property, π |= Φ means that
the run π satisfies the property Φ. The suffix sisi+1 . . . sn of π is noted πi. Assuming k > 0, a
run π = s0s1 . . . sn, a state predicate P and a run predicate Q, the satisfiability of the B-LTL
formulas Φ, Φ1 and Φ2 is defined in Table 2.

π |= F≤kΦ ≡ ∃i, t0 ≤ ti ≤ t0 + k and πi |= Φ
π |= G≤kΦ ≡ ∀i, t0 ≤ ti ≤ t0 + k and πi |= Φ
π |= X≤kΦ ≡ ∀i, i = max{j | t0 ≤ tj ≤ t0 + k} and πi |= Φ
π |= Φ1 U≤kΦ2 ≡ ∃i, t0 ≤ ti ≤ t0 + k and πi |= Φ2 and ∀j, 0 ≤ j ≤ j, πj |= Φ1

π |= Φ1 W≤kΦ2 ≡ π |= (Φ1 U≤kΦ2) ∨G≤kΦ2

π |= Φ1 =⇒ Φ2 ≡ π |= ¬Φ1 ∨ Φ2

π |= Φ1 ∨ Φ2 ≡ π |= Φ1 or π |= Φ2

π |= Φ1 ∧ Φ2 ≡ π |= Φ1 and π |= Φ2

π |= ¬Φ ≡ π 6|= Φ
π |= P ≡ P (s) holds checked by an external procedure
π |= Q ≡ Q(π) holds
π |= true

π 6|= false

Table 2: Semantics of B-LTL

Example 1 (Example of B-LTL formula). Let us consider the formula G≤5(A =⇒ X≤1F≤2B)
where A and B are state propositions and an execution path π such that A and B hold as
illustrated below:

Overview of the translation procedure

As illustrated in the third example of requirements of Table 1 the language is layered as some
behavioral properties defined using the patterns combined with some state properties written in
OCL These behavioral properties can themselves be wrapped into an OCL collection expression to
quantify the behavioral properties over some constituents of the SoS. The translation of a contract
will be made by translating from its assumption and its promise only the OCL quantification and
the pattern layers. The translated property will be checked against some simulations. The state
properties expressed in OCL have to be checked against some states and for them, no treatment
is done during the translation. The state properties are kept in the translated formula and there
will be dynamically checked. We assume that the satisfiability of the state properties is solved
by an external procedure based on an existing OCL-checker [19].

Proposition 1. Let us consider a contract (A,P) of a given SoS and assume any simulation is
bounded by k a maximum time of execution. If there exist two B-LTL formulas A′ and P ′ such
that A′ (or P) and A (P ′ resp.) are equivalent for any k-bounded simulations, then the B-LTL
formula A′ =⇒ P ′ is equivalent to the contract (A,P) for any k-bounded simulations.

The proof is a trivial consequence of Definition 2 written using B-LTL. Moreover, extending
the translation to a stochastic contract is natural. The pair (A,P) of any stochastic contract is
similarly treated.

Inria

Contracts and Behavioral Patterns for SoS 11

OCL quantification translation

OCL expressions occur at two levels within a pattern: as atomic propositions to define a state
condition and as quantifications. The first case will be directly treated by an external OCL-
checker against a state of the SoS or translated into a more generic semantics provided by
the SMC-checker. But some atomic propositions can also contain some quantification about
component collections and in this case they can also be processed as explained below. The
second case is the most interesting case. The B-LTL logic has no quantification support; it could
be extended but this needs to rewrite the B-LTL checker. Moreover, adding quantifications to
the logic increases significantly the complexity of the satisfiablity decision.

Moreover, the instances of each component type are statically specified in the Internal Block
Diagram (IBD) by the SoS architect. In the CAE incubator, the IDB is named idbFireEmergency

and gives the list of all system constituents instantiated in the SoS: 10 districts, 1 fire headquar-
ter, 3 fire stations and 7 fire fighting cars shared by the fire stations, etc. Since the number
of constituents is known and finite in the SoS, any universal quantification (or an existential
quantification) over a collection can be interpreted as a conjunction (a disjunction resp.). Us-
ing the CAE incubator and assuming a valid property φ for the fire stations, the property
SoS.itsFireStations → forAll(x| φ(x)) is equivalent to φ(fireStation1)∧φ(fireStation2)∧
φ(fireStation3).

In cases where φ contains also a quantification, φ must also be unfold. The generalization of
the process is recursively defined as:

unfold
(

coll → forAll(x|φ(x)
)

=

∧

x∈coll

unfold
(

φ(x)
)

unfold
(

coll → exists(x|φ(x)
)

=

∨

x∈coll

unfold
(

φ(x)
)

unfold
(

expr) = expr, otherwise

where coll is an OCL collection and expr any other valid expression of the contract language.

Pattern translation

For the purpose of translation to B-LTL, we assume that the constant k, is an additional param-
eter given by the user: it corresponds to the execution time for which we expect the property
hold. Whenever an unbound pattern to write a property like "Always . . . " is meaning full for
the specification, statistical model checking still checks the B-LTL property against a simulation
that is finite: k is used to replace the implicit unbound value of the property. Moreover, to
be successfully translated, the pattern must be consistent: in particular the intervals must have
correct bounds and intervals must be all visited before the end of the simulation (and so the
constant k) is reached.

Proposition 2. Assuming Ψ, Ψ1 and Ψ2 denote some state propositions nested in a pattern P ,
e.g. OCL propositions, and a constant k > 0 then, for any run of length k, there exists a B-LTL
formula equivalent to P . Table 3 summarizes the valid B-LTL translations.

Unbound time patterns The patterns 1 and 2 require that the expressed properties must
hold while the system is running, e.g. they have a meaning for infinite execution paths too.
But, the verification will be done against simulation path that are necessarily finite, for practical
reasons (termination). Thus, the infinite bound is replaced by the user constant k provided for
the verification.

RR n° 7003

12 Arnold & Boyer & Legay

Consistency
Pattern B-LTL translation Condition

Basic B-LTL patterns with absolute intervals

1 always Ψ G≤kΨ -
2 whenever Ψ1 occurs Ψ2 holds G≤k(Ψ1 =⇒ Ψ2) -
3 Ψ1 implies Ψ2 during following

[a, b]
X≤aG≤a−b(Ψ1 =⇒ Ψ2) a ≤ b

4 Ψ1 during [a, b] raises Ψ2 (X≤aG≤a−bΨ1) =⇒ X≤bΨ2 a ≤ b ≤ k

5 Ψ during [a, b] implies Ψ1 during
[a, c] then Ψ2 during [c, b]

X≤aG≤b−a

(

X≤aG≤c−a(Ψ1) ∧X≤cG≤b−c(Ψ2)
)

a ≤ c ≤ b

Extended B-LTL patterns with absolute intervals

6 Ψ1 occurs n times during [a, b]
raises Ψ2

occ(Ψ1, a, b) ≥ n =⇒ X≤bF≤k−bΨ2 a ≤ b ≤ k

7 Ψ occurs at most n times dur-
ing [a, b]

occ(Ψ, a, b) ≤ n a ≤ b

Basic B-LTL patterns with sliding intervals

8 whenever Ψ1 occurs Ψ2 holds
during following [a, b]

G≤k−b(Ψ1 =⇒ X≤aG≤b−aΨ2) a ≤ b ≤ k

9 whenever Ψ occurs Ψ1 implies
Ψ2 during following [a, b]

G≤k−b(Ψ =⇒ X≤aG≤b−a(Ψ1 =⇒ Ψ2)) a ≤ b ≤ k

10 whenever Ψ1 occurs Ψ2 does not
occur during following [a, b]

G≤k−b(Ψ1 =⇒ X≤aG≤b−a¬Ψ2) a ≤ b ≤ k

11 whenever Ψ1 occurs Ψ2 occurs
within [a, b]

G≤k−b(Ψ1 =⇒ X≤aF≤b−aΨ2) a ≤ b ≤ k

Table 3: Pattern mapping

Extended B-LTL patterns The patterns 6 and 7 require to count the number of occurrences
in [a, b]. Counting is not possible by strictly using B-LTL. We assume that there exist a dedicated
procedure occ(Ψ, a, b) that counts the number of times where Ψ is satisfied and compare it to
the value n. We use similarly some external treatment to evaluate the operators sum(), mean(),
. . . that compute a accumulated value of an expression during a time interval.

Sliding intervals the interval [a, b] to consider is located after time t at which the first part
of the pattern "Whenever Ψ occurs" is satisfied: this sliding interval in pattern 8 is encoded
as the property Ψ2 holds during the duration b − a after a units of time after we observe Ψ1 is
true.

Illustration of the full translation

We illustrate the translation for the third requirement in Table 1.

SoS.itsFireStations→forAll(fireStation |
Whenever [fireStation.hostedFireFightingCars→exists(isAtFireStation)] occurs,

[fireStation.hostedFireFightingCars→forall(isAtFireStation = false)]
occurs within [6 months])

Assuming that we have the time bound k ≥ 6months the pattern is translated to the B-LTL
formula following the rule 12 in Table 3:

Inria

Contracts and Behavioral Patterns for SoS 13

φ =

G≤k−6months(Ψ1(fireStation1) =⇒ X≤0F≤6monthsΨ2(fireStation1))
∧

G≤k−6months(Ψ1(fireStation2) =⇒ X≤0F≤6monthsΨ2(fireStation2))
∧

G≤k−6months(Ψ1(fireStation3) =⇒ X≤0F≤6monthsΨ2(fireStation3))

where Ψ1(fireStationi) and Ψ2(fireStationi) correspond to the OCL expressions in brackets,
e.g. fireStation.hostedFireFightingCars → exists(isAtFireStation) and fireStation

.hostedFireFightingCars → forall(isAtFireStation = false). We notice that the modality
X≤0 could be cleaned in φ, but we leave it for the sake of clarity.

As for the OCL quantification at the root of the requirement, we unfold the OCL quan-
tifications that occur in Ψ1 and Ψ2. The next table gives the result of this unfolding in
Ψ1(fireStationi) and Ψ2(fireStationi) for each fireStation. Finally, replacing all oc-
curences of Ψ1(fireStationi) and Ψ2(fireStationi) in φ gives the complete translation in
B-LTL.

Component Ψ1 Ψ2

fireStation1 fireFightingCar1.isAtFireStation ∨ ¬ fireFightingCar1.isAtFireStation ∧

fireFightingCar2.isAtFireStation ∨ ¬ fireFightingCar2.isAtFireStation ∧

fireFightingCar3.isAtFireStation ¬ fireFightingCar3.isAtFireStation

fireStation2 fireFightingCar4.isAtFireStation ∨ ¬ fireFightingCar4.isAtFireStation ∧

fireFightingCar5.isAtFireStation ¬ fireFightingCar5.isAtFireStation

fireStation3 fireFightingCar6.isAtFireStation ∨ ¬ fireFightingCar6.isAtFireStation ∧

fireFightingCar7.isAtFireStation ¬ fireFightingCar7.isAtFireStation

5 Statistical Model Checking of SoS Contracts

The interest of SMC [25, 22] is to propose an alternative to the approach of the classical model
checking [1, 5]. By using results from the statistic area (including sequential hypothesis testing
or Monte Carlo simulation) in order to decide whether the system satisfies the property or
not with some degree of confidence, SMC avoids an exhaustive exploration of the state-space
of the model that generally does not scale up. It has already successfully experimented in
biology area [6, 13, 20], software engineering [4] as well as industrial area[2] More recently, in
Danse [8], we adapt the SMC techniques to treat large heterogeneous systems like Systems
of Systems. Among them, one finds systems integrating multiple heterogeneous distributed
applications communicating over a shared network. We proposed to extend UPDM specification
- the SoS specification - with some requirements that the SoS must satisfy. These requirements,
are specified with the contract language we specially designed for the SoS’s. These goals are
viewed as behavioral objectives that support the SoS architect in assessing different strategies
and finding the best ones. As shown in Figure 2, these contracts are compiled into B-LTL
formulas that are verified against the SoS (whose constituent systems are compiled into FMI
executables) using the Statistical Model Checker Plasma-Lab [11] combined with the efficient
simulation engine DESYRE developed by Ales [7]. The SMC tool-chain gives an estimation of
the satisfiability of the contract by the SoS. The different results help the SoS architect to make
good decisions about how to optimize the SoS strategies.

The main algorithm we used in Danse is the Monte Carlo algorithm. This algorithm esti-
mates the probability that a system Sys satisfies a B-LTL property P by checking P against a

RR n° 7003

14 Arnold & Boyer & Legay

Figure 2: The SMC process in Danse

set of N random executions of SyS. The estimation p̂ is given by

p̂ =

∑N

1
f(exi)

N
where f(exi) = 1 if exi |= P, 0 otherwise

Using the formal semantics of B-LTL, each execution trace is monitored in order to check if P
is satisfied or not. The accuracy of the estimation increases with a bigger number of monitored
simulations.

Plasma-Lab[11] implements a set of tools from the statistical area to perform the SMC. It pro-
vides some engines for simulating biologic models, models written in the Prism language [20], but
it has also the capabilities to drive an external engine to perform the simulations like MathLab,
SciLab, or DESYRE.

6 Illustration using the CAE incubator

In the frame of the Danse project, the Concept Alignment Example (CAE) is a fictive SoS
example inspired by real-world Emergency Response data to a city fire. It has been built as a
playground to demonstrate new methods and models for the analysis and visualization of SoS
designs. All structural modeling has been performed using UPDM views, and behaviors have
been added on a subset of the constituents that we called "CAE incubator", using simple SysML
constructs (modeled in state machines) extended by a few stereotypes (e.g. for storing stochastic
information).

Behavioral modeling in the CAE incubator is focused on following constituent systems: Fire
HQ, Fire Station, Fire Fighting Car and District. The city districts have been added as con-
stituent systems because they play an important role in the SoS: their behavior describes how
the fires arise, expand and spread to neighbor districts. In the frame of the CAE, all behaviors
are abstracted in state machines using IBM Rhapsody, but it would be possible to use any other
language and tool as long as it is compliant with the FMI export format.

The following figure shows the overall architecture of the CAE incubator as well as the
behavior of one of the constituent types: a fire fighting car.

We attached to the CAE incubator the following requirement, written accordingly to our
proposed formalism:

Inria

Contracts and Behavioral Patterns for SoS 15

Figure 3: CAE incubator - architecture example and behavior of a fireman

"The mean city area under fire shall be less than 0.01%"
mean(SoS.itsDistricts.fireArea→sum()) ≤ 0.01 %

As described in the paper, we were able to translate this requirement to the low-level B-LTL
specification for the statistical model checker Plasma-Lab and use it in conjunction with the
simulation platform DESYRE to assess the probability that this goal is met in the specified time
range (the simulation time for each run was 4 months). By choosing the Monte Carlo option,
Plasma-Lab was able to give us the following estimation as a result on a given number of runs:

Prob(mean city area under fire ≤ 0.01%) ≈ 92.3%

In addition to the computation of the estimated probability that this goal is met on a given
number of runs, Plasma-Lab can also compute how many runs are necessary to prove that a
given probability threshold is passed by choosing the Chernov option.

Conclusion

This papers presents the results of the very first contract-based language for UPDM/SysML
model of SoS we developed in the Danse project. The SoS model used in the project remains
rather simple, but powerful enough to capture behaviors and requirements of a CAE case study
developed in collaboration with EADS. Also, we are the first to study the relation between a
modeling language used in industry (UPDM) and a verification approach developed by academic.

As a future work, we plan to offer more dynamicity, which we will do by exploiting and
extending the work done on adaptative systems [26, 10, 3, 9]. This will also requires to adapt
the UPDM framework.

Another interesting future work will be to add more quantitative information directly in the
patterns assumption and guarantee. This will permit us to reason on complex problematic such
as energy consumption.

RR n° 7003

16 Arnold & Boyer & Legay

All these future extensions will be discussed and designed jointly with the business units as
the Danse partners.

A Grammar

〈contract〉 ::= 〈viewpoint-id〉+ ‘contract’ 〈identifier〉 {‘Assumption:’ 〈property〉} ? ‘Goal:’
〈property〉 ‘Confidence:’ 〈threshold〉

〈viewpoint-id〉 ::= ‘dynamicity’ | ‘behavior’ | ‘structure’ | ‘safety’ | ‘liveness’ | . . .

〈threshold〉 ::= F loat‘%’ | 〈probability〉

〈probability〉 ::= x, x ∈ (0; 1]

〈property〉 ::= 〈OCL-coll〉 ‘->forAll(’〈variable〉 ‘|’ 〈pattern〉‘)’
| 〈OCL-coll〉 ‘->exists(’〈variable〉 ‘|’ 〈pattern〉‘)’
| 〈OCL-prop〉
| 〈pattern〉

〈pattern〉 ::= ‘whenever’ ‘[’〈prop〉‘]’ ‘occurs’ ‘[’〈prop〉‘]’ ‘holds’ ‘during’ ‘following’ ‘[’〈int〉‘]’
| ‘whenever’ ‘[’〈prop〉‘]’ ‘occurs’ ‘[’〈prop〉‘]’ ‘implies’ ‘[’〈prop〉‘]’ ‘during’ ‘following’

‘[’〈int〉‘]’
| ‘whenever’ ‘[’〈prop〉‘]’ ‘occurs’ ‘[’〈prop〉‘]’ ‘does’ ‘not’ ‘occur’ ‘during’ ‘following’

‘[’〈int〉‘]’
| ‘whenever’ ‘[’〈prop〉‘]’ ‘occurs’ ‘[’〈prop〉‘]’ ‘occurs’ ‘within’ ‘[’〈int〉‘]’
| ‘[’〈prop〉‘]’ ‘during’ ‘[’〈int〉‘]’ raises ‘[’〈prop〉‘]’
| ‘[’〈prop〉‘]’ ‘occurs’ ‘[’N‘]’ times during ‘[’〈int〉‘]’ ‘raises’ ‘[’〈prop〉‘]’
| ‘[’〈prop〉‘]’ ‘occurs’ ‘at’ ‘most’ ‘[’N‘]’ ‘times’ ‘during’ ‘[’〈int〉‘]’
| ‘[’〈prop〉‘]’ ‘during’ ‘[’〈int〉‘]’ ‘implies’ ‘[’〈prop〉‘]’ ‘during’ ‘[’〈int〉‘]’ ‘then’

‘[’〈prop〉‘]’ ‘during’ ‘[’〈int〉‘]’

〈prop〉 ::= 〈OCL-prop〉 | 〈arith-rel〉

〈arith-rel〉 ::= 〈expr〉 (‘<’ | ‘<=’ | ‘=’ | ‘>=’ | ‘>’) 〈expr〉

〈arith-expr〉 ::= 〈expr〉 〈operator〉 〈expr〉 | ‘(’〈expr〉‘)’
| 〈OCL-expr〉
| ‘mean(’ 〈OCL-expr〉 ‘)’ | ‘sum(’ 〈OCL-expr〉 ‘)’
| ‘prod(’ 〈OCL-expr〉 ‘)’ | ‘at(’ 〈OCL-expr〉‘,’ 〈time〉 ‘)’

Inria

Contracts and Behavioral Patterns for SoS 17

〈operator〉 ::= ‘+’ | ‘-’ | ‘*’ | ‘/’

〈int〉 ::= {‘[’ | ‘(’} 〈time〉 {‘-’ 〈time〉}? {‘]’ | ‘)’}

〈time〉 ::= N 〈time-unit〉 | +∞

〈time-unit〉 ::= ‘ms’ | ‘s’ | ‘min’ | ‘hour’ | ‘day’ | . . .

The non-terminal 〈time-unit〉 can be any multiple of the application basic time unit (i.e.
day, hour, min, sec, ms, ...). The latest revision of the OCL specification can be found at [15]
and more particularly the grammar of the language. We just give an overview of the relevant
subset used in this language: 〈OCL-proposition〉 stands for the simple Boolean expressions over
collections or primitive types (int, real, boolean, . . .) of OCL. We also identified 〈OCL-expr〉,
the OCL subset of non-Boolean expression, e.g. Component Collections (without treatments,
e.g. the functions map(...), iter(...)), numerical values, model-related values, . . . Some
relevant details about OCL collections are in the chapters 7.7 (Collection operations) and 11.6
(Collection-related types) of the OCL specification [15].

B Patterns

We give the list of all the SPPEDS patterns we reuse and we give give their semantics based on
the statifiability given in Section 3.

a. whenever Ψ1 occurs Ψ2 holds during following [a, b]

The interval [a, b] is located relatively after the satisfaction of Ψ1 . The interval, in which
Ψ2 must be satisfied, starts a units of time after the observed occurrence of Ψ1.

b. Ψ1 implies Ψ2 holds forever

From the very moment when Ψ1 is satisfied Ψ2 must hold during all the rest of the execution
path.

c. always Ψ

RR n° 7003

18 Arnold & Boyer & Legay

Ψ must hold during all the execution path.

d. whenever Ψ1 occurs Ψ2 holds

e. whenever Ψ occurs Ψ1 implies Ψ2 during following [a, b]

As for the previous pattern, the interval [a, b] is relative. At each time value between a and
b. where Ψ1 holds, Ψ2 must also hold. Replacing Ψ is replaced by true allows to create a
new simpler pattern:
Ψ1 implies Ψ2 during following [a, b]

f. whenever Ψ1 occurs Ψ2 does not occur during following [a, b]

This pattern specifies that Ψ2 is never satisfied during the relative interval [a, b], i.e. ¬Ψ2

holds during [a, b].

g. whenever Ψ1 occurs Ψ2 occurs within [a, b]

The constraint Ψ2 must be satisfied at less one time during [a, b] after Ψ1.

h. Ψ1 occurs n times during [a, b] raises Ψ2

Inria

Contracts and Behavioral Patterns for SoS 19

When Ψ2 is satisfied at less n times during [a, b], Ψ2 starts to hold at b.

i. Ψ occurs at most n times during [a, b]

As previously mentioned, an occurrence of Ψ is counted when Ψ becomes satisfied. If Ψ
holds for a state in [a, b], to observe Ψ holds for the following one (also in [a, b]) does not
increase the occurrence number of Ψ.

j. Ψ1 during [a, b] raises Ψ2

If Ψ1 holds during [a, b] then Ψ2 must hold at b.

k. Ψ during [a, b] implies Ψ1 during [a, c] then Ψ2 during [c, b]

Whenever Ψ holds during [a, b] there exists a split at c of [a, b] such that Ψ1 holds during
[a, c] then Ψ2 holds during [c, b].

RR n° 7003

20 Arnold & Boyer & Legay

References

[1] Christel Baier and Joost-Pieter Katoen. Principles of Model Checking (Representation and
Mind Series). The MIT Press, 2008.

[2] Ananda Basu, Saddek Bensalem, Marius Bozga, Benoît Delahaye, and Axel Legay.
Statistical abstraction and model-checking of large heterogeneous systems. Int. J. Softw.
Tools Technol. Transf., 14(1):53–72, February 2012.

[3] Cheng and all. Software engineering for self-adaptive systems: A research roadmap. In
Software Engineering for Self-Adaptive Systems, volume 5525 of LNCS, 2009.

[4] Edmund Clarke, Alexandre Donzé, and Axel Legay. On simulation-based probabilistic model
checking of mixed-analog circuits. Form. Methods Syst. Des., 36(2):97–113, June 2010.

[5] Edmund M. Clarke, Jr., Orna Grumberg, and Doron A. Peled. Model checking. MIT Press,
Cambridge, MA, USA, 1999.

[6] EdmundM. Clarke, JamesR. Faeder, ChristopherJ. Langmead, LeonardA. Harris, SumitKu-
mar Jha, and Axel Legay. Statistical model checking in biolab: Applications to the auto-
mated analysis of t-cell receptor signaling pathway. In Monika Heiner and AdelindeM.
Uhrmacher, editors, Computational Methods in Systems Biology, volume 5307 of Lecture
Notes in Computer Science, pages 231–250. Springer Berlin Heidelberg, 2008.

[7] Ales Corp. Adevanced laboratory on embedded systems, June.

[8] Danse. Designing for adaptability and evolution in sos engineering, dec 2013.

[9] Jasmin Fisher, Thomas A. Henzinger, Dejan Nickovic, Nir Piterman, Anmol V. Singh, and
Moshe Y. Vardi. Dynamic reactive modules. In CONCUR, volume 6901 of LNCS, 2011.

[10] Carlo Ghezzi. Engineering evolving and self-adaptive systems: An overview. In Software
and Systems Safety - Specification and Verification, volume 30 of NATO. IOS Press, 2011.

[11] INRIA. Plasma-lab: a statistical model checker, December 2012.

[12] Cyrille Jégourel, Axel Legay, and Sean Sedwards. A platform for high performance statistical
model checking - plasma. In TACAS, pages 498–503, 2012.

[13] Sumit K. Jha, Edmund M. Clarke, Christopher J. Langmead, Axel Legay, André Platzer,
and Paolo Zuliani. A bayesian approach to model checking biological systems. In Proceedings
of the 7th International Conference on Computational Methods in Systems Biology, CMSB
’09, pages 218–234, Berlin, Heidelberg, 2009. Springer-Verlag.

[14] OMG. Object managment group, feb.

[15] OMG. Ocl v2.2, feb 2010.

[16] OMG. Uml v2.1.2, November 2011.

[17] OMG. Sysml v1.3, June 2012.

[18] OMG. Updm v2.0, January 2012.

[19] Atos Origin. Mdt ocl/ocl checker, December 2011.

Inria

Contracts and Behavioral Patterns for SoS 21

[20] Kwiatkowska M. Parker D., Norman G. The probabilistic model checker prism, jan 2012.

[21] Modelica Association Project. Fmi v2.0 beta 4, aug 2012.

[22] Koushik Sen, Mahesh Viswanathan, and Gul Agha. On statistical model checking of stochas-
tic systems. In Kousha Etessami and Sriram K. Rajamani, editors, CAV, pages 266–280,
2005.

[23] SPEEDS. D 2.5.4: Contract specification language, apr 2008.

[24] SPEEDS. Speculative and exploratory design in systems engineering, apr 2010.

[25] Samir Younes, Edmund M. Clarke, Geoffrey J. Gordon, and Jeff G. Schneider. Verification
and planning for stochastic processes with asynchronous events. Technical report, 2005.

[26] Ji Zhang and Betty H. C. Cheng. Model-based development of dynamically adaptive soft-
ware. In ICSE. ACM, 2006.

RR n° 7003

RESEARCH CENTRE

RENNES – BRETAGNE ATLANTIQUE

Campus universitaire de Beaulieu

35042 Rennes Cedex

Publisher

Inria

Domaine de Voluceau - Rocquencourt

BP 105 - 78153 Le Chesnay Cedex

inria.fr

ISSN 0249-6399

	Introduction
	System of Systems Modeling
	A Contract Language for UPDM/SysML Requirements
	Translating Contracts into Bounded-LTL Formulas
	Statistical Model Checking of SoS Contracts
	Illustration using the CAE incubator
	Grammar
	Patterns

