
HAL Id: hal-00794303
https://inria.hal.science/hal-00794303

Submitted on 12 Mar 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Aspect-oriented design with the UML
Ho Wai Ming, François Pennaneac’H, Jean-Marc Jézéquel, Noël Plouzeau

To cite this version:
Ho Wai Ming, François Pennaneac’H, Jean-Marc Jézéquel, Noël Plouzeau. Aspect-oriented design
with the UML. Proc. of the ICSE2000 Workshop on Multi-Dimensional Separation of Concerns in
Software Engineering, Jun 2000, LIMERICK, Ireland. �hal-00794303�

https://inria.hal.science/hal-00794303
https://hal.archives-ouvertes.fr

Aspect-Oriented Design with the UML?

Wai-Ming Ho, François Pennaneac'h, Jean-Marc Jézéquel, Noël Plouzeau

1 IRISA, Campus de Beaulieu, 35042 Rennes Cedex, FRANCE
2 waimingh, pennanea, jezequel, plouzeau@irisa.fr

1 Introduction

Separation of concerns [4] is a basic engineering principle that can bring many
bene�ts: additive, rather than invasive, change; improved comprehension and re-
duction of complexity; adaptability, customizability, and reuse. Having evolved
from best practices in object-oriented software engineering, the Uni�ed Modeling
Language (UML) o�ers such a separation of concerns with the decomposition of
a software system along four main dimensions: functional (use case diagrams),
static (class and package diagrams), dynamic (sequence, collaboration, activity
and state diagrams) and physical (component and deployment diagrams). Fur-
thermore the designer can add many non-functional informations to a model by
labeling model elements, e.g. with design pattern occurrences [2], stereotypes or
tag values.

It is appealing to think of many concerns as being independent or �orthogo-
nal�, but this is rarely the case in practice. It is essential to be able to support
interacting concerns, while still achieving useful separation. It can then be an
overwhelming task for the engineer to reconcile the various aspects of a model
into a working implementation. To overcome this problem, we propose the con-
cept of aspect-oriented design (AOD for short) which provides some method-
ological support for a workable separation of concerns in building UML models
(Section 2). In Section 3, we brie�y describe the UML All pUrpose Transformer
(UMLAUT) 1 framework and how its use can help the designer to program the
�weaving� of the aspects at the level of the UML metamodel.

2 AOD with the UML

The aim of this section is to extend the ideas expressed in aspect-oriented pro-
gramming (AOP) [5] to the software design level.

In [1], it is shown how the application of subject-oriented programming con-
cepts to the complete software development cycle can help to maintain consis-
tency of requirements, design and code. Paper [1] also points out that some
tool support is needed to express the various subjective views of the system
being designed. We conjecture that the same approach can be applied in the
case of AOD, as subject-oriented programming addresses complementary issues

? Work partially funded by France Telecom R&D in the METAFOR project
1 UMLAUT is freely downloadable from http://www.irisa.fr/pampa/UMLAUT/download.htm

with respect to AOP [3, 5]. We propose to use UML as a design language. In
addition to being an open standard [?], general purpose object-oriented mod-
eling language, UML supports the concept of multiple views. This allows the
software designer to express various requirements, design and implementation
decisions using each view independently. The views themselves are related to
one another through the underlying metamodel of UML, ensuring the coherence
of the software model. The extensibility of UML enables customizations for a
speci�c modeling environment.

2.1 Extending Modeling Dimensions of UML

The UML itself includes speci�c notations to help modeling along several di-
mensions [6]. Four major dimensions of modeling are supported: functional (use
case diagrams), static, dynamic and physical. While such builtin dimensions
are a good starting point, they often need to be extended to take many design
concerns into account. The UML provides us with notation hooks such as stereo-
types, tag values and design pattern occurrences. These hooks can be used to
add new dimensions.

Stereotypes can often be used to subtype a given model element type. Auto-
matic tools can then identify this element among the other model elements of the
same type. For instance, we may mark in Figure 1 objects of class History are
persistent. At the same time, a di�erent stereotype designates the operations of
class ServiceProvider that should participate in the application of the Command

design pattern [2].

Command

receiver

invoker

History
<<persistent>>

0..*

ServiceProvider

<<command>>action_1()
<<command>>action_2()
<<command>>action_3()
initialize()

Interpreter

0..*

invoker

Fig. 1. UML class diagram with stereotype

Design pattern occurrences may be used to adorn a class with additional
information on its role within the design model. Using this information, a weaver
software can be constructed to select out classes that participate in this design
pattern occurrence, and use the information annotated on the operations to
create the appropriate command classes, one for each ServiceProvider action_i

methods.

Tag values are key-value pairs. Such pairs provide a weaver with additional
information to guide the weaving process. Going back to our previous example,
tag values could be put on ServiceProvider to specify a choice among existing
implementations of the Command design pattern at weaving time.

These extension and annotation mechanisms gives us �exibility to model all
the necessary aspects into our AOD model. The �nal implementation decision
consists in telling the weaver which group of aspects to compose, and how they
should be composed according to these non-functional informations.

3 UMLAUT: A Weaver for the UML

The role of the weaver in AOP is to integrate the di�erent dimensions of a design
model. A weaver automates the task of blending together the di�erent decisions.
In order to perform this integration, a weaver is programmed with a given set of
rules that guide it in resolving con�icting demands of cross-cutting concerns. A
weaver is thus composed of two components: a driver program that reads vari-
ous design decisions, and a rule applicator that decides how these decisions are
bound in the �nal product. The UMLAUT tool takes on this two steps approach.
The core of the tool serves as the weaver 'driver' and an open transformation
framework provides the mechanism for specifying di�erent integration rules.

UMLAUT is a tool dedicated to the manipulation of UML models. Since
UML is itself described by a metamodel in UML, manipulating the metamodel
is the same as manipulating any model. Hence we deal with the weaving of AOD
designs by handling the model at the metamodel level. In our UMLAUT tool, a
weaving process is implemented as a model transformation process: each weaving
step is a transformation step applied to a UML model.

3.1 General Architecture

UMLAUT's architecture is a three layers architecture (Figure 2). The input
front end provides the interface for reading UML models described in various
formats (XMI, Rational RoseTM MDL, Ei�el source, Java source). UMLAUT
also provides a graphical user interface for editing UML models interactively.
The middle core engine is made up of the UML metamodel repository and the
extendible transformation engine. Finally, the output back end contains various
code generators (Ei�el, XMI). The design concept of UMLAUT is a basic core
(the middle layer) that communicates with its surroundings via hot spots (i.e.
interfaces). Functional modules can be plugged in order to specialize the behavior
and to meet speci�c requirements.

3.2 The Core Engine

The core engine is made up of the UML metamodel [?] implementation and a
transformation framework. The metamodel is implemented as a set of collabo-
rative Ei�el classes. The resulting implementation is a direct mapping of UML

Outil
Commercial tool

Outil
Commercial tool

�✂✁☎✄✝✆✟✞✡✠☞☛✍✌✝✎✑✏
✒✔✓ ✄

1 *

*

1

✕ ✖ ✖ ✗ ✘ ✙ ✚ ✛ ✘ ✜ ✢
✜ ✣
✛ ✤ ✚ ✢ ✥ ✣ ✜ ✤ ✦ ✚ ✛ ✘ ✜ ✢

UML Meta-model

Application Framework

Outil
Java/Eiffel/C(++)

Validation Framework

✧ ★ ✩ ✪ ✫ ★ ✬ ✪ ✭ ✮ ✯ ✮ ✰ ✪ ✮ ✯ ✱ ✲ ✳ ✴ ✯ ✮ ✵ ✶ ✷ ✸ ✶ ✹ ✺
Outil
 GUI (Applet) ✻✽✼✿✾❁❀❂✻❄❃

❅❇❆❉❈❋❊●❈■❍✝❈❑❏

▲ ▼ ◆
❖❂P❘◗❁❖❚❙✍❯✑❱●❲❳❙

Outil
 BDL Tools<->

(MSC/Statecharts)

❨✽❩✿❬❁❭❂❨❄❪❫❇❴❉❵❋❛●❵❝❜❞❵❑❡

❢❤❣❥✐❧❦❳♠✿♠❤♥♣♦✍♥rq✝s✉t✿t✇✈②①✑③

Fig. 2. UMLAUT Architecture

metaclasses to Ei�el classes. At runtime, a UML model is canonically repre-
sented as an abstract syntax tree of Ei�el class objects. This direct mapping
of UML metamodel speci�cation with an object implementation gives us true
representation of any UML model without the risk of information loss along the
translation.

3.3 The Extendible Transformation Framework

UMLAUT's transformation engine is implemented as an object-oriented frame-
work, allowing two levels of utilisation:

Application The framework is used as a weaving tool. A weave opera-
tion is a composition of transformation operators, chosen from
a library in UMLAUT. In general, these operators involves
metaprogramming queries like get_class_name, modi�ers like
add_class_method or code generation operators such as gener-
ate_attribute_setter.

Aspect New implementation strategies may be added to the existing li-
brary by aspect developers who have in-depth knowledge of per-
formance issues. For example, the Command design pattern in
�gure 1 may have multiple implementations and they are added
to the library using the framework abstractions.

The open framework gives users control over how an implementation is real-
ized, while preserving a high level of abstraction. At a di�erent level, it allows
aspect experts to develop di�erent strategies for optimal implementation. It en-
courages a separation of concern between application implementation and aspect
implementation.

4 Conclusion

Recent approaches such as adaptive programming, aspect-oriented program-
ming, role-modeling, and subject-oriented programming have enhanced object-
oriented programming by providing separation of concerns along additional di-
mensions, beyond the class concept. We aim at building upon the emerging
success of this approach by adopting AOP for the entire software development
cycle, in particular at the design level. In order to achieve separation of concerns
for multiple aspects during the design process, we propose to use the multiple
view modeling capabilities of UML. Each aspect of design and implementation
should be declared during the design phase so that there is clear traceability
from requirements through source code.

We propose to use UML as the design language and with the help of an
open framework as our weaver, to provide an aspect-oriented design environ-
ment. UMLAUT builds on the idea of integrating the functional programming
paradigm into an object-oriented context. UMLAUT o�ers the designer a ver-
satile framework for transforming UML models in a way that closely resembles
the metaprogramming approach of software refactoring[7�9].

References

1. Siobhán Clarke, William Harrison, Harold Ossher, and Peri Tarr. Separating con-
cerns throughout the development lifecycle. In ECOOP '99 Workshop Proceedings
on Aspect-Oriented Programming Proceedings, 1999.

2. Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns:
Elements of Reusable Object-Oriented Software. Addison Wesley, 1995.

3. William Harrison and Harold Ossher. Subject-oriented programming (A critique of
pure objects). In Andreas Paepcke, editor, OOPSLA 1993 Conference Proceedings,
volume 28 of ACM SIGPLAN Notices, pages 411�428. ACM Press, October 1993.

4. Walter Hürsch and Cristina Videira Lopes. Separation of concerns. Technical report,
Northeastern University, february 1995.

5. Gregor Kiczales, John Lamping, Anurag Menhdhekar, Chris Maeda, Cristina Lopes,
Jean-Marc Loingtier, and John Irwin. Aspect-oriented programming. In Mehmet
Ak³it and Satoshi Matsuoka, editors, ECOOP '97 � Object-Oriented Programming
11th European Conference, Jyväskylä, Finland, volume 1241 of Lecture Notes in
Computer Science, pages 220�242. Springer-Verlag, New York, N.Y., June 1997.

6. OMG. Uml notation guide.
7. William F. Opdyke. Refactoring Object-Oriented Frameworks. Ph.D. thesis, Uni-

versity of Illinois, 1992.
8. Don Roberts, John Brant, and Ralph E. Johnson. A refactoring tool for smalltalk.

Theory and Practice of Object Systems (TAPOS), 3(4):253�263, 1997.
9. Lance Tokuda and Don Batory. Evolving object-oriented applications with refactor-

ings. Technical Report CS-TR-99-09, University of Texas, Austin, March 1, 1999.

