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Abstract. An important step in simulation via isogeometric analysis
(IGA) is the assembly step, where the coefficients of the final linear sys-
tem are generated. Typically, these coefficients are integrals of products
of shape functions and their derivatives. Similarly to the finite element
analysis (FEA), the standard choice for integral evaluation in IGA is
Gaussian quadrature. Recent developments propose different quadrature
rules, that reduce the number of quadrature points and weights used.
We experiment with the existing methods for matrix generation. Fur-
thermore we propose a new, quadrature-free approach, based on inter-
polation of the geometry factor and fast look-up operations for values
of B-spline integrals. Our method builds upon the observation that ex-
act integration is not required to achieve the optimal convergence rate
of the solution. In particular, it suffices to generate the linear system
within the order of accuracy matching the approximation order of the
discretization space. We demonstrate that the best strategy is one that
follows the above principle, resulting in expected accuracy and improved
computational time.

Key words: isogeometric analysis, stiffness matrix, mass matrix, nu-
merical integration, quadrature

1 Introduction

The advent of IGA by Hughes et al. [11] has motivated new approaches to the en-
tire process of simulation and numerical solving of partial differential equations
(PDESs). The benefits of the isogeometric paradigm include the exact represen-
tation of the geometry by using flexible B-spline representations as a basis for
analysis. In this realm, the whole of the analysis process is revisited to exploit
the new possibilities. Lately special focus has been given to the matrix genera-
tion step, since it is one of the sub-processes that is likely to admit considerable
improvement in this new analysis environment. Indeed, e.g. in [8] the authors
perform simulations on the deformation of turbine blades using both IGA and
FEA and conclude that even though IGA has a clear advantage regarding the
number of degrees of freedom, matrix generation (by means of quadrature) con-
stitutes a bottleneck in the overall running times.
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During the analysis process, several approximate computational steps are
executed, while computing an unknown field over the given geometry. Typi-
cally, given a geometry (or physical domain) and a boundary value problem,
the unknown solution field is projected onto a finite-dimensional sub-space, i.e.
we restrict ourselves to finding a solution in that space. Then a linear system is
generated, consisting of a matrix with e.g. mass, stiffness terms, as well as a load
vector containing the moments with respect to the right-hand side. The solution
of the resulting linear system yields the coeflicients of the unknown field in the
chosen discretization space. In each of these steps, errors are introduced and
accumulate in the final solution. In most cases the principal error sources during
the process are the discretization error coming from projection of the solution
and the integration error made in the generation step.

Typically, the discretization of a differential equation leads to matrices with
entries being integrals of products of shape functions and their derivatives. These
integrals over elements in the physical domain are transformed to integrals over
the support of the basis functions, resulting in integrands involving the (inverse
of the) Jacobian of the geometry map. The most we can hope for is a good
approximation of these quantities, since the integrals of rational functions in the
best case lead to non-rational expressions.

When it comes to convergence, a main parameter is the order of accuracy
of the entire process. We shall confirm that a minimal order of accuracy has to
be maintained throughout the analysis pipeline in order to obtain the expected
convergence. Similarly, an intermediate step with a higher order of convergence
is unnecessary, since a current super-convergence is likely to be canceled by a
subsequent step.

Numerical integration by use of evaluations of the integrand alone is often
referred to as quadrature in one dimension and as cubature in higher dimensions.
The problem of deriving quadrature rules for integrals involving B-splines was
first considered over 30 years ago. Indeed, in [10] the authors computed rules for
the moments of (linear, quadratic and cubic) B-spline functions, in order to solve
a parabolic PDE using Galerkin’s method. The interest in the topic is revived
lately, after the introduction of IGA.

In [12] the authors present optimal quadrature rules for the mass and stiffness
of uniform B-spline discretizations, i.e. rules with the minimum number of nodes
that are exact for the product of two B-splines, upto a fixed degree. The number
of nodes (points) plus the number of weights in this minimal rule coincides with
the dimension of the spline space of integrands, and this is why it is known as the
half-point rule. The optimal rule is defined over the whole domain of the B-spline
space, and the computation of the nodes and weights leads to a global, non-linear
system of equations, which is tackled with a Newton iteration. This limits the
practical ability to derive of the rule to small degree and to small number of
elements. The authors anticipate this constraint by splitting big domains into
macro-elements, thus resorting to a non-optimal strategy.

In [1] the spline space of the product of two uniform B-spline basis functions is
further investigated, in order to produce a feasible, computable rule. The basis



Exploring Matrix Generation Strategies in Isogeometric Analysis 3

functions are grouped with respect to the size of their support. In particular,
basis functions have support over at most two elements and are translates of
a small group of distinct basis functionals. This allows to derive a rule which
is defined over one or two elements, and can be obtained as the solution of a
“local” non-linear system that, unlike [12], does not depend on the number of
elements.

An experimental study of the Gauss rule, and the optimal rule on macro-
elements of [12] is done in the recent work [15]. They perform experiments on
a Poisson problem over a domain given by the identity mapping, with a unit
Jacobian determinant. Their focus is on the degree of exactness of different rules
as well as their practical computational cost. Since the parameterization is the
identity, the shape functions are simply B-splines, therefore exact evaluation of
the stiffness matrix is feasible when using quadrature rules that integrate exactly
the respective integrands.

Throughout this paper we consider uniform knot vectors; we note that any
mesh can be properly refined so that it becomes uniform almost everywhere.
We focus on the univariate case, since for higher dimensions the tensor-product
structure allows re-using the same technique coordinate-wise.

We set up a model Poisson problem, and use it firstly to briefly review the
different available approaches for matrix generation in IGA. We elaborate on a
new approach based on (quasi-)interpolation of the geometry factor in the inte-
grand. An ingredient needed for our method is the exact evaluation of integrals
of tri-products of B-splines, which can be done symbolically. We experiment with
the different approaches, and demonstrate that the requirement for a method
having high degree of exactness is not crucial, in the sense that this exactness
does not propagate to the final solution, since the accuracy of the final solution
is limited by the discretization error. Instead we verify that it suffices to adopt
a method whose accuracy matches the discretization error, in order to maintain
all essential information that is contained in the stiffness matrix regarding the
problem. The proposed quadrature-free method has the above property, while
avoiding the use Newton iteration for deriving quadrature nodes and weights.
Contrarily to high-accuracy quadrature it requires less evaluations, therefore it
partially overcomes a common bottleneck in terms of computational cost.

In the next section we describe the model problem, its discretization and the
expected numerical error. Then we look at different quadrature-based assembly
strategies in Section 3 and we introduce our method in Section 4. Experimental
results are presented in Section 5 and short conclusions follow in Section 6.

2 The model problem

In this section we present the model problem that is used to present the different
assembly methods and perform experiments in Section 5.

We consider a homogeneous bar of length L = 5, subject to a distributed load
f(z) that is acting along the z—axis (Figure 1). The longitudinal displacement
u(z) that is produced by the force is the solution of the one-dimensional Poisson
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Fig. 1. A homogeneous bar problem with zero-displacement boundary on the left. A
horizontal line force f is applied and an end condition.

equation
—u"(x) = f(z) , =x€i, (1)

with physical domain being a real interval {2 = [0, L]. For an isogeometric model,
we parameterize the bar by a B-spline geometry map G : [0,1] — 2,

supported on a uniform, open knot vector (Figure 2). The B-Spline basis func-
tions NV, , are piece-wise polynomials of degree p, and have continuity CP~! across
the interior knots, provided that the knot vector has only simple knots. We refer
the reader to standard textbooks, e.g. [6] for an introduction to spline theory.
For parameterizing this one-dimensional problem, an identity map would be the
best choice. However, when we use the tensor-product of univariate B-spline
spaces for 2D or 3D problems, a linear geometry map for non-trivial geometries
is no longer possible. Our aim is to simulate this fact, and therefore we shall
consider non-trivial mappings (of several degrees) for the bar. In particular, the
integrands that we aim at treating are rational functions, so that we shall access
the full effects of a geometry mapping on the simulation process.

We impose a Dirichlet boundary condition on the left end and a Neumann
condition on the right end of the bar,

w0)=cy and /(L) =cy, (2)

where cg, c¢; are constants. The physical interpretation is that we have an initial
displacement c¢g in the fixed end of the bar, and we know the magnitude ¢; of
the force acting at the free end.
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Fig. 2. Parameterization of the bar using B-splines of degree 6.

First we derive the weak formulation. We multiply (1) by a test function
v(x), and after integration by parts we get

/ o () () de = / o(@) f@)de +erv(l) or a(u,v) = (fé) + di(D)er
N 0 (3)

using trial and test spaces
U={u : u(0)=co} and V={v : v(0) =0},

for u and v respectively. One can show that a(-,-) is bi-linear, symmetric, co-
ercive, and bounded. Hence, the theory of abstract boundary value problems
can be applied to show the existence of a unique weak solution in the infinite-
dimensional Hilbert space H'({2).

2.1 Discretization

We restrict test functions and trial solutions to the push forward of the (finite
dimensional) B-spline space V" C H'(£2), i.e. we apply Galerkin approximation:

n

v'(z) =) vigi(z) € V" and (4)

i=1

uh(x) = Zul@(x) + codo(x) € u" (5)
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with ¢; = N; , 0 G~ and ¢;(0) = 1 for i = 0, and 0 otherwise. Using the weak
form (3) we arrive at a linear system of equations

> uiali, ¢;) = U¢) + ¢i(Ver — coaldisdo) , i=1,....,n  (6)
j=0

with a(¢;, ¢;) : / ¢ (2)d (x)dx and L(¢;) = (f, ds) / ¢i(t) f(t)dz. The

coefficients of the solution u” are described by the linear system

; (7)
where K;j = a(¢i, ¢;), bi = (f, ¢i) + ¢i(1)er — coa(¢i, ¢o) and w stands for the

Ku=»>

vector of unknown coefficients (u,...,u,). Plugging in B-splines of degree p,
we arrive at the stiffness entries
, dt
Kij = al6i,03) = [ 6l(@)6 (@i = O )
0 .Qg (t)’

whereas the right-hand side involves the inner product
Uei) = (9 / f(x)pi(z)de = i F(G())Ni ()G ()] dt . (9)
9]

Finally, it is useful to mention the mass term, that may also appear in the
variational form,

(Di:05) = | dilx)o;(x) dm:/ Nip()N; ()G (t)] dt . (10)
20 2

2.2 A priori error considerations

In this section we recall some facts regarding the numerical error that is expected
to appear during the analysis pipeline. Looking at every individual step of the
process, we see that the following error factors are likely to occur:

1. The approzimation error for the geometry representation, e.g. in case of
polynomial B-spline discretization of planar domains with circular boundary,
or the use of linear splines on domains with curved boundaries.

2. The discretization error, coming from the projection of the unknown solution
field onto the solution space V.

3. The error coming from interpolating non-constant Dirichlet boundary con-
ditions.

4. The numerical integration or consistency error appearing during the gene-
ration of K and b in (7), involving integrals of products of shape functions
and moments of the source function respectively.

5. The possible numerical inaccuracy introduced when solving the linear sys-
tem (7).



Exploring Matrix Generation Strategies in Isogeometric Analysis 7

Therefore, the quality of the final solution is determined as a combination of
all intermediate strategies chosen for these steps.

1. Geometry approximation error in the context of IGA can be safely assumed
zero, since we shall be using for analysis (a refinement of) the same basis in
which the geometry is given in the first place.

2. Discretization error is of order p + 1 if measured in the L?—norm, when
B-splines of degree p are used [2,21]. Consequently, this is the optimal con-
vergence rate that we expect to obtain in the final solution.

3. The error factor coming from incorporating Dirichlet boundary is usually
zero, e.g. for constant or polynomial conditions on the boundary; in partic-
ular it is always zero in the 1D case we are considering [3].

4. The consistency error influences greatly the quality of the numerical solution,

since the computed values of the bi-linear form a(-,-) and inner product
(-, ) can deviate significantly from theoretical values. Indeed, the consistency
error stems from approximating the stiffness matrix and the load vector by
some computed (perturbed) versions a;, = a and ¢, = ¢, e.g. we actually
compute f(ij = ap(di, ¢;) instead of (7). These quantities are in general
rational and could be evaluated exactly only if the geometry transformation
is linear (i.e. the Jacobian determinant is a constant) and the PDE has
constant coefficients.
Consequently, when approximating the (matrix of the) bilinear form a by a
numerically computed ap, we replace the original problem (3) by the per-
turbed one ap(un,vy) = €p(vp). The effect of this perturbation on the so-
lution of the original problem is captured by Strang’s first lemma Strang’s
first lemma [16, 17]:

. a\Vp, W — Ap\Vp, W
ot — an v SC( g {||u—vh||+ sup (vn, wn) — an(vn, h)} n
v EVY wpE€Vh ||’U}h||\/

+ sup —é(wh) _Eh(wh)), (11)
wh€Vh llwn v

with a(-,-) and £4(-) as in (6) and C being a constant that does not depend
on the discretization step-size h.

The lemma describes (under reasonable assumptions, e.g. smoothness and
Vp-ellipticity) the accumulation of discretization and consistency errors on
the solution. It states that the variation of the computed solution is bounded
by the a best approximation error inf,, ¢y, |[u—wvp| and the consistency error
present in the bi-linear form and load vector. We expect to observe the same
type of behavior in our isogeometric setting.

5. Finally, the error introduced while solving the resulting linear system Ku =
b is negligible, when iterative solvers are utilized. Indeed, the quality of the
solution will depend on the number of iteration steps executed, therefore
in practice at the point where we have generated the linear system we can
approach its solution up to high precision using stable solvers with precon-
ditioning and sufficiently many iteration steps. We also mention that the
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condition number of the stiffness matrix for uniform knot-meshes is known
to be of order O (h=2) for mesh-size h, which is analogous to the case of the
traditional finite element method (see [7] for more details).

3 Quadrature-based approaches

We now consider our main topic of interest, the assembly step. We need to
compute the quantities (8)—(10) in order to form (7). In the present section
we discuss existing quadrature methods in order to prepare the ground for a
quadrature-free approach that follows right after.

As already mentioned, we focus on the 1D case, since the derivation of quadra-
ture rules for 2D or 3D is done by taking the tensor product of univariate rules.
We introduce two notations; we denote by P™ the space of polynomials of degree
m and by S7* the space of piece-wise polynomial (spline) functions of degree m
and continuity ¢ at the knots.

Numerical integration is typically based on a quadrature (or, in higher di-
mension, cubature) formula:

/1 g(z)dx = Zwig(xi) +eg, (12)
- i=1

with weights w;, nodes (or integration points) x;, and error term e,. A quadrature
formula is specified by providing weights w; and nodes z; for the integration
domain [—1, 1]. Then the weights and nodes can be mapped to any other interval
with a linear change of variables.

When designing or choosing quadrature rules for a problem, an important
parameter is the trade-off between the number of evaluations of the integrand
used and the quality of the approximation of the integral in question. In the frame
of IGA, locality of the support of basis functions favors quadrature approaches: at
a given point, it suffices to evaluate only those functions whose support contains
the point.

3.1 Gauss quadrature

The most commonly used quadrature rule is the Gauss integration rule [18]. We
shall briefly describe its advantages.

We define the degree of exactness (or algebraic precision) of a rule to be
equal to p, if all polynomial functions of degree at most p are exactly integrated
by the rule, i.e. in (12) e, = 0 for all ¢ in the polynomial space PP and the
exists g € PPT! such that e, # 0. Under certain smoothness assumptions on the
integrand, applying a rule of degree of exactness p guarantees an approximation
error of p+ 1, where p is its degree of exactness. A formula of the form (12) can
be chosen to be exact on a polynomial space of degree p if it has at least p + 1
“quadrature degrees of freedom”, ie. 2r > p + 1.
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The nodes are the at roots of the r-th Legendre polynomial mapped onto the
integration interval, and the weights follow from a simple formula. This choice
of nodes (and weights) is minimal (or optimal) with respect to the degree of
exactness; they provide the unique rule with r nodes that is exact on P> 1.

The approximation power for sufficiently regular integrands is 2r [13]; this
error bound is based on the fact that all the weights are positive. This means
that if we are interested in approximating an integral within an order of accuracy
p+ 1, then it suffices to evaluate the integrand on r = [(p + 1)/2] Gauss nodes.

3.2 The half-point rule

The half-point rule of [12] is an attempt to specify minimal exact rules for ™, i.e.
the analogue of Gauss rules for P". For a spline space of dimension n, an optimal
quadrature formula is one with [n/2] nodes. Note the limit case of discontinuous
splines, where dim S™; = kdim P™, with k being the number of knot-spans; this
equality implies that the optimal rule for S™ is the Gauss rule, as expected. But
if the continuity is bigger then the spline space dimension drops, and we should
be able to do better.

The derivation of such rules requires solution of a global non-linear problem,
expressing the exactness of the rule on the basis functions. Since the Newton
solver is only applicable for a limited number of unknowns, this computation
can only be carried out for small n, or equivalently for a small number of ele-
ments. However, the authors succeeded in using the rule in an non-optimal way
by computing the node values for problems with a small number of elements and
then tiling the rule along larger meshes, that is, they consider rules on so called
macro-elements. The rules where derived numerically for B-spline discretizations
of degree up to three. In addition, the node values for degree four are computed
n [15]. Questions regarding uniqueness and stability of these numerically com-
puted rules (for example weight positivity, approximation power) are still open.

3.3 A local, feasible rule

In the recent work [1] the authors explore quadrature rules for specific product-
spline spaces, where the stiffness or mass integrands belong to. The B-spline
space (of higher degree) of the product of two uniform B-spline basis functions
(or derivatives) is further investigated, in order to produce a feasible, computable
rule. It is observed that the basis functions of the product-spline space Sffi 5 are
supported in at most two knot-spans, and the basis functions are grouped with
respect to the size of their support.

Using the periodicity of uniform basis functions supported on one or two
elements, they derive a system of equations expressing exactness on the basis,
this time mapped back to a reference interval. This allows to setup a rule which
can be obtained as the solution of a “local” non-linear system that, unlike [12],
does not depend on the number of degrees of freedom. An additional system
of equations is set up for deriving a rule for boundary basis functions, where
multiple knots are present. The number of variables in these Newton systems
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depends on the degree and the smoothness, but not on the number of elements.
Moreover, the number of quadrature nodes taken for this rule is close to the half-
point rule. The quadrature nodes and weights can be computed for any degree
using GeoPDEs [5].

4 Quadrature-free assembly

In this section we explore a quadrature-free method for the assembly task. We
shall replace the quadrature by an approximation, by means of interpolation or
quasi-interpolation, of the part of the integrands (8), (9) or (10) that contains
the geometry mapping G and its derivatives. This strategy aims at reducing
the number of evaluations needed in quadrature-based approaches as well as
avoiding the need to solve non-linear systems in order to derive quadrature
rules. The proposed method consists in an initial approximation of the geometry
factor that appears in the integrand (for example G’ or 1/G’) and a fast look-up
operation for the resulting integrals, involving only products of B-splines. The
idea is to approximate the integrand within the order of accuracy that matches
the discretization error and consequently exploit the periodic nature of uniform
B-spline bases. Similarly to quadrature-based approaches, with our approach the
tensor product of 1D instances can be used to apply our technique to 2D or 3D
patches. The only change is that the interpolation of the geometry factor needs
to be carried out in higher dimension, which is also done by the tensor-product
of 1D interpolation operators.

We shall use the stiffness term (8) for presentation purposes. The scheme is
as follows:

1. First we approximate the geometry factor G by projecting it onto Sﬁ:;.
Applying an interpolation operator @ to 1/G’, we get

zg —/ N/ N/ (G’) dt = qu/ le-yka’pfldt. (13)

The geometry factor is thereafter expressed in the B-spline space and stiffness
entries break down to a sum of tri-product integrals of B-splines.

2. Consequently we construct (or load) a look-up table I} PP for the
integrals of tri-products NV; ,—1 - Njp—1 - Nip—1 of basis functions of SZ:%
that appear in (13), after eliminating derivatives.

3. At this point we are able to assemble the matrix K by summing up contri-

butions from the look-up tables.

A similar formula can be deduced for the load vector, by applying @ on f o G.
Note that the approximation of the “geometry factor” does not interfere
with the exactness of the geometry representation, that is, the preservation of
the boundary of the physical domain after discretization, as known in IGA. In-
deed, this factor refers to the contribution of the integral transformation from
the physical to the parameter domain and of possibly non-constant coefficients
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of the PDE. For the numerical evaluation of integrals of rational function ap-
proximating is inevitable, and usually some kind of interpolation takes place, e.g.
polynomial interpolation in the case of Gaussian quadrature. In our approach
we restrict this interpolation to the actual non-polynomial part of the integrand.

When using open knot vectors, a number of special B-Splines appear at the
boundaries of the parametric domain, due to the multiplicity of the boundary
knots. We may incorporate these cases in our setting by including the corre-
sponding integral values in a lookup table that is used for all boundaries. Their
values may be obtained exactly by means of Gaussian quadrature. In the one-
dimensional case, however, we employ directly Gaussian quadrature for the two
boundaries, since the potential savings in this case are negligible. Note that
having only uniform B-Splines also on the boundaries would still need special
treatment, since the integration domain would be in that case a genuine subset
of the intersection of the supports of the B-Splines that are involved.

The ingredients required are a suitable interpolation operator @ and a look-
up table for the integral of B-spline tri-products. We address these two require-
ments in the following paragraphs.

4.1 Approximating the geometry factor

The first ingredient of the proposed method is an approximation operator @ to
be applied on the geometry factor denoted hereafter n(t).

There are at least two options for ); one can use a global interpolation
scheme, that would require solving a linear system, or a local quasi-interpolation
scheme [4,14]. The interpolation points used in @ are directly available, for
instance one can use the Greville abscissae or any other point-set given by the
quasi-interpolation scheme. This way we replace 7(t) by a B-spline function

Qn(t) =Y niNim(t) - (14)
=1

Strang-Fix conditions (cf. [17]) hold for the B-spline basis, which implies that
quasi-interpolation can be applied to approximate n within order m + 1 when
S, is used for interpolation, that is, halving the knot-spans should decrease
the error by 2m+1 |

The geometry map (and the geometry factor) is almost everywhere smooth
except from the knots of the coarse mesh. Therefore approximation on the fine
grid is expected to behave nice; this is confirmed by the experiments in Section 5.
Since in the case of the stiffness matrix the denominator of n(t) is a B-Spline
function of degree p— 1, we choose m = p—1 to match the continuity of n at the
knots. Another strategy is to add double knots and use 82_2, but experiments
indicate that the degree m = p — 1 is sufficient.

4.2 Exact integrals of products of B-splines

The scheme requires look-up tables for the integral over their support of product
of two or three B-spline functions. For this, we consider uniform splines of degree
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p over the infinite knot vector hZ, for some length A € R. Note that all formulas
presented in this section refer to B-Splines without repeated knots; integrals that
involve “boundary” B-Splines, e.g. the few ones appearing at the two endpoints
of the basis shown in Figure 2 will need special care and are not covered.

The computation of integrals of inner products of B-splines is studied in [19].
Furthermore, a formula for the inner product (N;,(t), Nit;,) of two uniform
B-splines of the same degree (i.e. entries of the Gramian matrix), the second
being a shift by j knots, seems to be known to the B-spline community, even
though we were not able to locate a proof of that formula in the literature. More
generally, for different degrees we discovered that the integral (Figure 3 left):

mh
Ni,m(t)NiJrj,n(t) dt = thﬂ@,n 5 ] =1- ny...,m — 1 s (15)
0
where I;-"’" corresponds to h = 1 can be computed explicitly by the formula
Em+n—-1n+j—-1)
(m+n-—1)!

; (16)

m,n __
Ij =

forall j =1—mn,...,m—1. Here E(i, j) denotes the so-called Fulerian numbers
(cf. [20]):

B = Y0 (H ke ez,
k=0

Eulerians can be computed by the recursion:

which is in fact quite close to the B-spline recursion. The relation between Eu-
lerian numbers and B-splines secems to be a deep one, see [9,20] for more in-
formation. By symmetry I;"" = I”?, therefore assembling the Gramian matrix
of uniform B-splines involves essentially computing p distinct integrals, namely

Ig,;ﬂ I{MD I;D,;Dl
, soees I
For the tri-product integral we write down the factors in terms of shifts, and

analogously to (15) we have (Figure 3 right):

mh
; Ni’m(t)NiJrj)n(t)NiJerrk’p(t) dt = h[;-?k’n’p. (17)

In this case there is no closed formula available yet, however, since these are
just integrals of piece-wise polynomials, we can compute their values by an ex-
act Gauss rule in every knot-span, or by using symbolic integration. A closed
formula for I7;"™* might also exist; nevertheless up to now computing these val-
ues symbolically has not been a problem. In particular, a small Mathematica
worksheet can produce the values for degrees up to 10 in less than one second.
Table 1 provides these data for degrees 2 to 4.
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Fig. 3. Overlap of the support of 2 and 3 uniform B-splines after shifting.

Table 1. Values for B-spline tri-products for B-spline degrees 2 to 4. The rows corre-
spond to the degree and the values correspond to 177",

j. k|l 0,0 0,1 0,2 0,3 0,4 1,1 1,2 1,3 2,2
12 43 1 1
2 35 420 840 0 0 168 0 0 0
3 1979 18871 31 1 0 85 17 0 0
7560 181440 6480 181440 6048 181440
4 4393189 | 3465461 129119 13411 1 6474701 376723 349 251
20756736 | 34594560 | 14152320 | 155675520 | 88957440 [ 311351040 | 622702080 | 622702080 | 155675520

5 Experimental results

We use the problem of Section 2, considering a bar described by the geometry
map G : [0,1] — [0, 5], using B-splines of degrees up to 10, and exact solution

u=(7t+2t*—3t%)sin (t) cos ().
For this solution we get a right-hand side
f= (18 —8t—14) cos (2t) — (6¢> — 41> — 23t + 2) sin (2¢),

an boundary conditions u(0) = 0, /(1) = sin(2) + 6 cos(2).

The control points for the experiments are chosen randomly, with some care
to avoid singular parametrizations, e.g. for degree 6 we used the geometry func-
tion of Figure 2. For our new method, the interpolation of the geometry factor
was performed using a simple global interpolation operator using the Greville
abscissae as interpolation points.

The methods considered are

— Gauss(m): Gauss rule with m nodes.

We take m = p+ 1 (“full” Gauss), aswellasm=p—1,p—2, p— 3.
— ACHRS: The exact integration rule of [1].
— Quadrature-free: The method of Section 4.
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Full Gauss quadrature Gauss(p + 1), is the exact rule for mass and stiffness
integrands, since they have degree upto 2p. Also, the Gauss rule matching the
approximation order of the discretization has p—1 quadrature points. We choose
to employ the ACHRS rule of [1] in our experiments, since it is defined for any
degree, and an implementation to derive the rules is available in GeoPDEs [5].
Lastly, we test the strategy presented here-in using interpolation of a part of the
integrand.

Convergence depends greatly on the assembly of the load vector. To access
the effect of the quadrature on the stiffness matrix alone, we used a high precision
rule for the load vector in all experiments. We present plots for degrees 5 and
6 in figures 5 and 6 respectively. We have experimented with degrees up to 10,
and in all cases the results follow the same pattern.

Our first task is to investigate the order of convergence and the convergence
threshold using different assembly strategies. Monotonic convergence of order 6
(resp. 7) for degree 5 (resp. 6) of the overall error is confirmed for Gauss(p + 1),
ACHRS and Quadrature-free, as seen in 5(a) and 6(a). Since the discretization
error is known, the result we get is in agreement with the prediction of Strang’s
lemma (11). Note that using Gauss quadrature with [(p + 1)/2] points or less,
the order or convergence drops, as expected.

The second experiment studies the consistency error. We look at a central
entry of the stiffness matrix and in terms of numerical accuracy, and the results
are presented in figures 5(b) and 6(b). Interestingly, the accuracy in terms of
the relative error, in which we estimate the bi-linear form K;; = a(¢;, ¢;) using
Gauss(p—1), Gauss(p—2) or Gauss(p—2) remains constant under h—refinement.
This can be justified by the fact that refinement shrinks both the integrand and
the integration interval, i.e. this is not an adaptive quadrature, where the inte-
grand is fixed and the integration interval is subdivided. The rule ACHRS be-
haves very similarly to full Gauss quadrature with p+1 points. Using quadrature-
free assembly, we gain adaptivity, since the function that is approximated is fixed
(because the Geometry map is fixed), therefore refinement improves the approx-
imation accuracy in the stiffness matrix. Indeed, when refining the mesh, we are
not re-computing the same stiffness, or load vector entries. On the other hand,
we enrich the solution space with finer elements, and consequently quadrature-
free assembly takes advantage of this refinement in approximating the (geometry
factor and) integrals with higher precision, while quadrature approaches deliver
a roughly constant order of accuracy in the approximation of stiffness and mo-
ments for the refined set of functions.

To estimate the computational load, we choose a qualitative approach. In Fig-
ures 5(c) and 6(c) we plotted the relative L? error that we obtained in relation to
the number of evaluations invested, i.e. the number of evaluations performed for
computing an entry of the the stiffness matrix versus the error that is observed
in the final solution. The same error with less evaluations implies a more efficient
strategy, whereas the slope reveals the convergence of each strategy. We see that
the first four strategies converge with the same rate, but each one uses a differ-
ent number of evaluations, with the ones of the Quadrature-free technique being
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at a minimum. Let k& be the number of elements. The number of evaluations
performed by full Gauss quadrature is k(p + 1). The ACHRS quadrature re-
quires roughly (k — 2)(p 4 2)/2 evaluations, while the Quadrature-free approach
requires evaluation on an interpolation point-set of cardinality k. In Figure 4 we
plot the number of evaluations performed for the different methods with respect
to k and p. In both cases the advantage of the new method is clear.

1,000 400
800 - -
@ » 300
=] =)
2 2
= 600 n =
= =
L%B L;g 200
o 400 I -
S) 1S
* 200 * 100
) 4
0 | ! ! 0 ! ! ! !
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# elements degree p

Fig. 4. Number of evaluations for fixed degree p = 5 (left) and for fixed number of
elements (right). Legend: ® ACHRS, W Gauss(p + 1), ¥ Gauss(p — 1), ¢ Quad-free.

6 Conclusions

In the context of IGA, we explored the computational load for matrix generation
and the related consistency error of different techniques. As expected, apart
from discretization, the order of accuracy in the entries of the stiffness matrix
influenced crucially the quality of the final result.

The experiments indicated that the quadrature-free technique is promising,
since it is flexible (e.g. in choosing the interpolation operator), adaptive ( the
accuracy in the computation of the integrals is improved after refinement of the
basis), and has a lower complexity when compared to quadrature approaches. In
particular, we replaced the set of quadrature points for the stiffness integrand,
which are usually solutions of non-linear systems of equations that are not known
in advance, with a set of interpolation points for the geometry factor of clearly
lower cardinality, that are straight-forward to compute. By exploiting intrinsic
properties of B-splines, we showed how one can precompute integrals of shifted
tri-products and therefore avoid duplicated computations. We believe that there



16 Angelos Mantzaflaris and Bert Jiittler

(a) DoFs vs L? error, p =5 (b) DoFs vs relative error in K;; (p =5)
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(c) Evaluations vs L? error, p =5
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Fig. 5. Relative L? error of the solution (a) and relative numerical error of an entry of
K (b) plotted against the DoFs of the problem. In (c), we plot the relative L? error of
the solution against the number of evaluations performed during stiffness generation,
for different strategies. Discretization is done using uniform B-splines of degree 5.
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(a) DoFs vs L? error, p = 6. (b) DoFs vs relative error in K;j, p =16
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Fig. 6. Relative L? error of the solution (a) and relative numerical error of an entry of
K (b) plotted against the DoFs of the problem. In (c), we plot the relative L? error of
the solution against the number of evaluations performed during stiffness generation,
for different strategies. Discretization is done using uniform B-splines of degree 6.
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exist closed formulas, or even better, recurrences, that compute these integral
values, at least in the uniform case; this is a topic for further research.

The behaviour of Gauss quadrature rules with decreasing number of points,
that we experimented with, demonstrates that an optimal assembly strategy
with respect to computational load is to generate the system within the order
of accuracy implied by the discretization error. The quadrature-free approach
presented here-in follows this principle while using a minimum number of eval-
uations.

Finally, we think that it is a worthy challenge to extend the rules of [1,12]
to spaces such as Sg_Q and prove good approximation properties, as in the case
of Gauss quadrature where the degree of exactness is closely connected to the
approximation order.
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