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Abstract

The semantic interpretation of images is one
of the core applications of deep learning. Sev-
eral techniques have been recently proposed
to model the relation between two images,
with application to pose estimation, action
recognition or invariant object recognition.
Among these techniques, higher-order Boltz-
mann machines or relational autoencoders
consider projections of the images on dif-
ferent subspaces and intermediate layers act
as transformation specific detectors. In this
work, we extend the mathematical study of
(Memisevic, 2012b) to show that it is possible
to use a unique projection for both images in
a way that turns intermediate layers as spec-
trum encoders of transformations. We show
that this results in networks that are easier
to tune and have greater generalization capa-
bilities.

1. Introduction

Recognizing actions from images is an important chal-
lenge for developmental robotics (Fitzpatrick et al.,
2003; Montesano et al., 2008). Gated neural networks
can lead to state-of-the art performances in action
recognition (Taylor et al., 2010), and are very good at
encoding relation between images (Memisevic & Hin-
ton, 2007; Memisevic, 2012a).

The performances of gated neural networks come from
their multiplicative interactions between different lay-
ers. It actually allows the network to uncouple the
representation of a “dictionary” and a representation
of the plausible transformations of its elements. In

Proceedings of the 30 th International Conference on Ma-
chine Learning, Atlanta, Georgia, USA, 2013. JMLR:
W&CP volume 28. Copyright 2013 by the author(s).

the particular case of the encoding of relation between
images, it allows the network to focus on the transfor-
mation between two images without spending compu-
tational resources on the representation of their con-
tent: the elements of the dictionary are the images
themselves, which are provided as inputs. In this case,
the role of the network is to discover an efficient rep-
resentation of correlations between images, which is
encoded in a layer commonly referred to as “mapping
units”.

Recently, (Memisevic, 2012b) proposed a mathemat-
ical framework for gated autoencoders which links
energy-based models, such as higher-order Boltzmann
machines (Memisevic & Hinton, 2010), with relational
autoencoders. This framework shows that classical
gated autoencoders learn pairs of filters which are re-
lated by the transformation to detect. The projection
of both images on these pairs creates a correlation peak
when the transformation between the two images is
consistent with the transformation encoded in a pair
of filters. Moreover, for each transformation to be de-
tected, two pairs of filters are learned in order to span
the subset of images: to be able to detect a transfor-
mation independently of the content of the images, the
two pairs are in quadrature such that if the images are
orthogonal to the first pair of filters, the transforma-
tion will be detected by the other pair. A factor layer
computes the correlation between the projections of
images on each pair of filters, and a mapping layer
pools over the factor units corresponding to quadra-
ture pairs to obtain a content independent detection
of the transformation. This implies that the number of
filters and mapping units has to grow with the desired
accuracy of transformation detection, since the num-
ber of mapping units grows linearly with the step size
between two transformations to be distinguished. This
can lead to prohibitive network sizes for real world ap-
plications such as action recognition, especially when
the number of filter pairs increases, since each filter
adds one weight per image pixel.
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Furthermore, Memisevic’s work shows that commut-
ing transformations, like translations or rotations, can
share the same set of filters. In this case, the detec-
tion of a specific transformation requires the detection
of an angle between the projection of the first image
on the filters in quadrature and the projection of the
second image on the same filters. However, this raises
the aperture problem if we detect the angle after nor-
malizing the projections, as suggested by Memisevic:
this can lead to false or very inaccurate detection of
transformations when the projections of the images are
close to zero.

In this work, we show that projections normalization
is not mandatory. Thanks to this approach, map-
ping units are no longer transformation specific and
we show that the mapping layer represents a discretiza-
tion of the spectrum of the transformations instead of a
discretization of the transformations themselves. This
reduces the size needed for a correct representation of
transformations, from n×n matrices to n eigenvalues.

2. Gated autoencoders

In this section, we briefly recall the mathematical anal-
ysis of gated autoencoders (a.k.a. relational autoen-
coders) from (Memisevic, 2012b).

Let us consider two images x and y in the form of a
vector (x, y ∈ R

n) related by a transformation L, such
that

y = Lx (1)

where L is an orthogonal matrix (LL⊤ = I, I being
the identity matrix). In particular, orthogonal ma-
trices cover all the permutations of pixels and these
transformations can be roughly seen as “constant in-
formation” transformations where all the pixels of one
image can be fully predicted from the pixels of the
other image.

Orthogonal matrices can be diagonalized by

L = UDU⊤ (2)

where D is the diagonal matrix containing eigenvalues
which are all complex numbers of module 1, and U

contains the eigenvectors. When two transformations
of the same space L1 and L2 commute, they share the
same eigenvectors and their factorization differs only
by the diagonal matrix. Remarkably from (2), since L
is a real matrix, we have U−1 = U⊤ and (1) can be
rewritten

U⊤y = DU⊤x. (3)

It then appears that the eigenvalues can be retrieved
by detecting the rotation angles between the projec-

tions of x and y1. Memisevic showed that the inner
product between normalized projections directly pro-
vides the cosine of the angle, but the normalization of
these projections is unstable when they are too close
to zero, leading to false detection of transformations.

(Memisevic, 2012a;b) reformulates the problem as a
detection task consisting in learning input and output
filters U and V , such that V incorporates D and U .
Then, Eq. 3 becomes

U⊤y = V ⊤x (4)

and the correlation between input and output filters is
a detector whose value depends on the transformation
and the content of the images, through their projec-
tions on U and V . To have a content independent rep-
resentation, it is possible to pool over a set of detectors
which represent the same transformation but span the
space of images (they are in “quadrature”). In these
architectures, a factor layer computes the correlations
between projections, while a mapping layer pools over
the factor layer to obtain the transformation specific
detectors.

3. Encoding relationship with tied

input weights

The approach described in Section 2 is suboptimal
since it requires several pairs of filters to represent each
specific transformation. The idea behind our work is
to use directly Eq. (2) and make the factor layer repre-
sent the diagonal matrix D, while filters represent the
matrix U . This leads to a simpler network, since there
is no more distinction between input and output fil-
ters and the filters are shared between all commuting
transformations.

3.1. Theoretical description

Recalling Eq. (3) and the fact thatD contains complex
values of module 1, all the information about D can
be retrieved through the cosine and sine of the angle
between projections of x and y, that we note generi-
cally ux and uy. If we see these complex values as 2D
vectors, the inner product ux.uy and the magnitude of
the cross product ux × uy

2 provide cosine and sine up
to a multiplicative factor ||ux||.||uy|| which is the same
for both values:

ux.uy = ||ux||.||uy||.cos(ux, uy)

ux × uy = ||ux||.||uy||.sin(ux, uy).
(5)

1A multiplication by a complex of module 1 is actually
equivalent to a rotation in the complex plane

2The magnitude corresponds to the cross product with-
out the unit vector.
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Figure 1. Gated autoencoder with tied input weights.

These equations are sufficient to retrieve the angle
modulo 2π, since their quotient gives the tangent of
the angle. However, taking this quotient would lead to
the same problem as normalization, with very insta-
ble values when the projections (i.e. norms of ux and
uy) are close to zero. It is much better to keep cosine
and sine values apart, so that small values simply in-
dicate that the corresponding eigenvectors are not rel-
evant to describe the considered transformation. Con-
sidering complex numbers, the inner product is given
by Real(uyux) and the magnitude of cross product is
given by Imag(uyux) where · is the conjugate and
Real and Imag are respectively the real and imagi-
nary parts of a complex number. To sum up, all the
information is contained in uyux

3.

Our factor layer is thus given by

f = U⊤y ∗ U⊤x (6)

where ∗ denotes the element-wise multiplication. We
can then use the mapping layer of classical relational
autoencoders to compress the factor layer into a lower
dimensionality representation.

We train our network as classical gated autoencoders,
where the goal is to minimize the error of the recon-
struction of the second image from the first. To do

3From (3), we deduce uyux = d||ux||
2.

that, each image is filtered by a stack of filters U ,
which project the images on the factor space, which
is then projected on the mapping layer. A backward
pass through the network then produces the recon-
struction of the output image (Fig. 1). We also adopt
the denoising approach, in which inputs are corrupted
with some noise before flowing through the network, to
avoid overfitting (Vincent et al., 2010). In our case, we
use a zeromask noise, which sets a fraction of the pixels
(typically 30%) to zero and lets the others unaltered.
We denote x̂ the corrupted version of x. This con-
straint is all the more important than sparsity-based
regularizations (such as (Lee et al., 2008)) are not well-
suited with a spectrum representation.

The mapping layer is given by

m = σ
(

W1f̂ + biasmappings

)

(7)

where f̂ is the factor layer (Eq. 6) obtained from the
corrupted version of x and y and σ is the activation
function of rectified linear units (a.k.a. softplus units):
σ(x) = log(1+ exp(x)). Note that we use rectified lin-
ear units where classical gated autoencoders use sig-
moid units. In fact, since classical gated autoencoders
act as “transformation specific detectors” and pool
over a set of detectors for each transformation, the
mapping units represent the presence or the absence
of a given transformation and a “probability” unit is
a good choice. In our case, we want to represent the
spectrum of the transformation, such that linear units
are better suited than sigmoid units.

The reconstruction is then

r = U(W⊤
2 m ∗ U⊤x̂) + biasoutput. (8)

The reconstruction error used for the gradient descent
is finally given by

error = ||y − r||2. (9)

Note that two weight matrices W1 and W2 are used
between the factor and mapping layers. This is use-
ful since the reconstruction given by (8) is not strictly
correct from our mathematical description. In partic-
ular, it can be seen closer to r = ||U⊤x||2UDU⊤x (be-
cause uyux = d||ux||2) whereas we expect y = UDU⊤x
(Eq. 1 and 2). This would be the case in particular if
W1 = W2, but untying these weights allows the net-
work to scale the reconstructed activation of the factor
layer differently from its bottom-up activation. It also
lets the network cancel out factor values which corre-
spond to irrelevant eigenvectors for a given transfor-
mation in the case where the learning set is composed
of several classes of transformations.



Gated Autoencoders with Tied Input Weights

3.2. Practical implementation

Our mathematical description involves complex num-
bers, whereas neural networks generally work on real
numbers and very few studies have been carried on
more general mathematical frameworks (see for in-
stance (Baldi, 2012; Baldi et al., 2012)). In particular,
our study involves multiplications of complex num-
bers. When working with real numbers, we have to
split real and imaginary parts of each filter into fil-
ter pairs, as mentioned in (Memisevic, 2012b). How-
ever, the element-wise multiplication between projec-
tions of both images, as usually performed in gated
autoencoders, makes impossible to retrieve the com-
plex multiplication. In previous gated autoencoders,
this was hidden by the fact that only specific detec-
tors were learned, so that only the cosine of the angle
was necessary and a simple inner product was suffi-
cient. In our case, we need to retrieve both the co-
sine and sine of the angle, and we also need the cross-
product. Otherwise, it would be impossible to differ-
entiate symmetric transformations, such as rotations
of θ and −θ. One way to deal with this issue con-
sists in making a matrix multiplication between both
projections, which would create all possible two-terms
products, but this would lead to a huge factor layer,
with many weights to project it on the mapping layer.
Moreover, most of these coefficients would be useless,
since they involve multiplications between unrelated
filters. This also prevents mini-batch learning opti-
mizations through matricial representation of multiple
training cases: one training case cannot flow through
the network as one column of a matrix, since the factor
layer would require a matrix for each case.

Our proposed solution is to put prior knowledge on
complex multiplication inside the connectivity of the
network. To do that, we artificially duplicate the fac-
tor layer: the first half involves term-to-term multipli-
cations, while the second half is “crossed” so that term-
to-term multiplications correspond to the multiplica-
tion between real and imaginary part of each filter. In
other words, we shape the network with the sufficient
structure to learn filters corresponding to our math-
ematical description. “Crossing” the second half of
the factors simply consists in duplicating factors from
one image, while the factors from the other image are
multiplied by a block-diagonal matrix B composed of
(

0 1
−1 0

)

blocks.

We also use a pooling matrix to tie the learning pro-
cess of pairs of filters, as mentioned in (Memisevic,
2012a), and retrieve directly the values of inner and
cross products. This pooling matrix is also useful to
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Figure 2. The real-valued implementation of our algorithm
involves some hard-coded operations to simulate complex-
valued multiplications. These operations are computed by
multiplications with constant matrices (see Section 3.2).

restrict the final factor layer size to the one obtained
before our artificial duplication of factors. The whole
process is illustrated in Fig. 2.

Let Pl be the pooling matrix of size l × 2l

Pl =







1 1 0 0 0 0 . . .

0 0 1 1 0 0 . . .

. . .






,

Il the identity matrix of size l, Bl the block-diagonal
matrix B defined above with size l, Rl a reordering
matrix

Rl =















1 0 0 . . . 0 0 0 . . .

0 0 0 . . . −1 0 0 . . .

0 1 0 . . . 0 0 0 . . .

0 0 0 . . . 0 −1 0 . . .
...















and E1, E2, and E3 duplicating matrices of size 2l× l

where l is the size of the factor layer

E1 =

(

Il
Il

)

, E2 =

(

Il
Bl

)

, E3 =

(

Rl

BlRl

)

.

Equations (7) and (8) can finally be rewritten:

m = σ
(

W1P ((E1U
⊤x̂) ∗ (E2U

⊤ŷ)) + biasmappings

)

r = UP ((E3W
⊤
2 m) ∗ (E1U

⊤x̂)) + biasoutput
(10)

Note that E3 could be incorporated in W2 during the
learning process rather than being defined a priori. In
that case, W2 should have twice more rows than W1.

3.3. Relation with quadrature pairs

The notion of “generalized quadrature pairs” was in-
troduced by (Bethge et al., 2007), to highlight the fact
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that any orthogonal transformation L has a block di-
agonal representation W⊤LW = G ∈ R

m×m such that
each block is at most two-dimensional, and each two-
dimensional block belongs to SO(2,R) (special orthog-
onal group). Therefore, the corresponding pairs of ba-
sis functions are referred to “generalized quadrature
pairs”.

Remarkably, if we note L = UDU⊤ the eigende-
composition of L (which involves complex numbers),
we have G = MDM⊤ where M is a block diago-

nal matrix with blocks
√
2
2

(

1 i

i 1

)

. Then, L =

UDU⊤ = WGW⊤ = UM⊤GMU⊤, which leads to
W⊤UM⊤G = GW⊤UM⊤. Thus, G and W⊤UM⊤

commute, so they share the same eigenvectors. Since
D = M⊤GM , the eigenvectors of G are the columns
of M , and W⊤UM⊤M = MΘ where Θ is a diagonal
matrix containing the eigenvalues of W⊤UM⊤ (which
are all complex numbers of module 1 by orthogonal-
ity), leading to U = WMΘ.

Finally, the real and imaginary part of each complex
filter in U correspond to a quadrature pair of W , up
to a rotation in the complex plane (matrix Θ).

4. Experiments

In this section, we present some experimental results
to show the effectiveness of our approach.

4.1. Experimental setup

For all our experiments, we use 13x13 pixels images
consisting in random dots, whose values are randomly
drawn from a normal distribution and independent
from one another. We then apply translations com-
bining uniformly random +/-3 pixels shifts horizon-
tally and vertically, or rotations between -50 and +50
degrees. Pixels of the output image not covered by
the input image are then also drawn randomly accord-
ing to the same law. For each experiment, we create
a training set of 100 000 pairs of images, equally dis-
tributed among the considered transformations. We
measure the error as the arithmetic mean of ||y − r||22
where r is the reconstruction of y (Eq. 10).

We use the network presented in the previous section
with different sizes for each layer and we decrease the
learning rate during the process. We use the theano4

python library (Bergstra et al., 2010), and our code
is an extension of Memisevic’s code of gated autoen-
coders, available online5. This code is also used for

4http://deeplearning.net/software/theano/
5http://learning.cs.toronto.edu/ rfm/code/rae/index.html

Table 1. Common parameters for all the experiments, for
both CGA and our algorithm.

Parameter Value

Corruption type Zero mask
Corruption level 0.3
Weight decay 0
Minibatch size 100

Input size 13× 13 pixels

Learning rate 0.005
max(1,floor(epoch∗0.1))

comparison between our approach and a classical gated
autoencoder in Sections 4.3 and 4.4. In this section,
we will refer to Memisevic’s implementation of classi-
cal gated encoder as “CGA”. Since our network uses
softplus units at the mapping layer, instead of sigmoid
units for CGA, we also test a modified version of CGA
with softplus units, which we call “CGA-softplus”.

We keep some parameters constant for all the experi-
ments. They are given in Table 1. The initial learning
rate is chosen such that no instability of the mean re-
construction error is visible during learning. For other
parameters, the values are those by default in Memi-
sevic’s code, except for the corruption level that we
fixed at 30% instead of 50%.

Finally, we recall that the mathematical study is valid
only for “constant information” transformations. In
practice, this condition is rarely met: for a transla-
tion for instance, pixels at the edges cannot be de-
duced from the previous image. To be closer to the
theoretical conditions, we apply a Gaussian mask on
the images when computing the reconstruction error,
such that edge pixels have a smaller weight than center
ones.

4.2. Experiment 1: Factor layer as spectrum

representation of transformation

In this experiment, we want to test the validity of our
mathematical approach, to see if the network behavior
meets our expectations.

We use a property of orthogonal transformations, that
is LL⊤ = I, i.e. L⊤ = UDU⊤. Thus, by testing in-
verse transformations, like rotations of angle +θ and
−θ, we expect the corresponding factor values to be
conjugate, i.e. their inner products to be the same
while cross products to have opposite signs. There-
fore, we train a network with 400 units on the factor
layer and 40 units on the mapping layer on rotations
and we compare factor values for opposite rotations.
We average the result over 100 rotations of different
images for each angle. As expected, we can see in
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Figure 3. Mean correlations of the activation of units in
the factor layer for rotations between -50 and 50 degrees
(represented by the covariance matrix). We can see that,
as expected, the network learns both an inner product part
and a cross product part, the former being correlated be-
tween opposite rotations, while the latter is anticorrelated.

Fig. 3 that values corresponding to the inner products
are correlated, while values corresponding to the cross
products are anti-correlated.

Our network is thus learning a representation consis-
tent with our mathematical description, even if experi-
mental conditions do not meet exactly our mathemat-
ical assumption of orthogonal transformations, given
noise and border effects.

4.3. Experiment 2: Filters are shared between

commuting transformations

In this section, we want to demonstrate the higher gen-
erality of the learned features compared to CGA de-
scribed in (Memisevic, 2012a). This relies on the fact
that learned filters are shared between all commuting
transformations, whereas in the other approach, each
filter is specific to a given transformation.

To do that, we train the same network as above on
a sparse subset of rotations, of -50,-40,-30,..., 40 and
50 degrees. Then, we test the network on every ro-
tation of integer angles between -50 and 50 degrees.
As before, we average our results on 100 rotations of
different images for each angle.

Fig. 4 represents the distance between mapping layer
activation for each rotation. CGA tends to create
clusters around rotations in the training set, whereas
our network produces a smoother representation: it
interpolates its representations, whereas CGA acts
more like a nearest neighbor algorithm. This effect
is less visible for CGA-softplus. This can be ex-
plained because sigmoid units tend to force the ac-
tivation to be 0 or 1 (to be “transformation specific”
detectors), whereas softplus units allow smoother vari-
ations. However, the discriminative power of our net-
work is better than both versions of CGA: out of the
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Figure 4. Distances between mean activation of the map-
ping layer for rotations between -50 and 50 degrees with a
network trained with only 11 different rotations (see text
for details). Distances have been normalized between 0 and
1. Our network produces a smoother representation of ro-
tations compared to CGA and has a higher discriminative
power: the “block” effect around rotations in the training
set, which leads the network to assimilate all the rotations
in the block, is less visible and distances out of the main
diagonal are bigger.
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Figure 5. Activation of mapping units for rotations be-
tween -50 and 50 degrees with a network trained on 11
different rotations. Our network learns a simpler represen-
tation compared with CGA and CGA-softplus. In partic-
ular, one mapping unit specializes for each rotation in the
training set.

main diagonal, distances are bigger and the transition
is sharper.

Mapping layer activations in our network and in CGA
are compared in Fig. 5. The representation learned by
our network is simpler: one unit specializes for each
rotation in the dataset. Since we have only 11 different
rotations in the dataset for 40 mapping units, 29 units
are not used and their activation keeps close to 0. This
raises one question: how relevant for generalization is
the representation learned by our network?

First, we can assume that the learned weights for each
unit correspond to the spectrum of the rotation for
which its response is maximum. Then, the network
approximates intermediate rotations between two con-
secutive learned rotations by a linear mixing of their
spectrum. If rotations in the training set are not too
far from each other, this is a good approximation. Let
A and B be two commuting transformations and a and
b their eigenvalues corresponding to eigenvector v. We
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Figure 6. Activation of mapping units for rotations be-
tween -50 and 50 degrees. Compared to Fig. 5, there are
less units than rotations in the training set. In this case,
mapping units span regularly the set of rotations.

consider T the average transformation between A and
B, i.e. T = (AB)

1

2 where we define the matrix square

root by M
1

2M
1

2 = M . In particular when M is di-
agonalizable, M = V DV −1, then M

1

2 = V D
1

2V −1

and the eigenvalues of M
1

2 are the square roots of
those of M . In our case, the eigenvalues of T are thus
the geometric mean of the eigenvalues of A and B:
t =

√
ab. Finally, approximating the geometric mean

by the arithmetic mean is a good approximation when
both numbers are not too far from each other (which is
the case for the eigenvalues of nearby orthogonal ma-
trices, by continuity): if a = c + δ and b = c − δ, the

first order error is δ2

2c
.

Fig. 6 shows what happens when there are less map-
ping units than transformations in the training set.
We use the same dataset as above, but with only 5
mapping units. In this case, the mapping units span
regularly the set of transformations for the three algo-
rithms: since the resources are very constrained, each
unit is forced to represent a different subset of trans-
formations. These results illustrate the fact that our
network is easier to tune, since an oversized mapping
layer has a lower impact on its generalization capabil-
ities than for CGA.

4.4. Experiment 3: Comparison between CGA

and our tied input weights autoencoder

Finally, we compare the performance of our network
with the one described in (Memisevic, 2012a). We
train the networks for 500 epochs on a set of rota-
tions and translations, and measure their reconstruc-
tion error on test images spanning the whole set of
transformations we used for training (10 000 pairs of
images equally distributed). Given the proximity be-
tween both algorithms, we compare their performances
with the same parameters, especially for the learning
rates, the mini-batch size and the input corruption
level (see Table 1).
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Figure 7. Learning curves for our algorithm and CGA,
both trained for 500 epochs. We represent the evolution of
the reconstruction error between both algorithms. Tempo-
ral course happens from upper right corner towards bottom
left corner. We can see that for small factor layers, CGA is
better (the end point is below the principal axis), but our
algorithm converges faster and becomes better for bigger
factor layers (see the text for explanation). However, we
must recall that for a given factor layer size, CGA has twice
more input-to-factor weights than our algorithm. When
we compare for a given number of weights, our algorithm
is better (see Fig. 8).

Fig. 7 shows the learning curves of both algorithms for
different sets of parameters. Our algorithm converges
faster and has a lower final error than CGA when the
number of factor units is large enough. In contrast,
CGA is better for small factor layers. This can be sur-
prising given our study, which states that filters are
shared between commuting transformations. However,
when there are not enough factor units to represent all
the eigenvectors of a transformation, this is equivalent
to assigning a null eigenvalue to the missing eigenvec-
tors, while eigenvalues of orthogonal transformations
are values of module 1. Moreover, we must recall that
for a given size of factor layer, CGA has twice more
input-to-factor weights providing more flexibility. This
explains why our algorithm makes worse estimations
for small factor layers. On the other hand, we can see
that the limit predicted by the mathematical descrip-
tion, which is reached when the size of the factor layer
is equal to the number of eigenvectors for every trans-
formations, is confirmed by our experiments. With
two classes of transformations, we expect a limit for
2× 2× 132 = 676 factor units6.

Fig. 8 plots the mean reconstruction error on the test
set for the algorithms. We can see that CGA is sub-
ject to a severe degradation of performances when the
number of factor units increases, which is not the case
for our algorithm (the performance only slightly de-

6Each transformation is represented by a 169×169 ma-
trix, and has 169 eigenvectors. In our architecture, each
eigenvector is represented by two factor units (real and
imaginary parts).
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Figure 8. Mean reconstruction error on the test set for both
algorithms with 50, 100, 200, 400, 700 and 800 factor units.
Left: comparison with the same factor layer size for both
algorithms; right: comparison with the same number of
input-to-factor weights. For a given number of free param-
eters, our algorithm outperforms CGA (right).

Figure 9. Features learned at the factor level by our algo-
rithm on a dataset which contains rotations and transla-
tions. The network has 700 factor units and 100 mapping
units.

creases for 100 mapping units). This observation is
coherent with the fact that our network generalizes
better.

In particular, our network is easier to design since an
oversized factor layer has a smaller impact on perfor-
mance compared with CGA, and there are less de-
pendences between factor and mapping layers sizes
(Fig. 8).

Fig. 9 shows the filters learned by our network. As
expected, most filters come by pairs which represent
the real and the imaginary part of one complex filter.
They are similar to the ones learned by a CGA (see
for instance (Memisevic, 2012a)).

5. Conclusion and future work

In this work we presented a new architecture for re-
lational autoencoders, which achieves better perfor-
mances with respect to previous methods, in particu-
lar from the generalization point of view, while having
less parameters to learn. It relies on a complex-valued
reformulation of classical gated networks.

Our network differentiates from previous gated au-
toencoders since both images are projected on the
same subspace, through the same matrix of weights U .
There is thus only one weight matrix shared between
inputs at different timesteps. This makes our network
closer to classical recurrent networks than usual gated
networks which consider either a sliding window of a
time dependent input signal or pairs of related inputs
and associate each input with a different weight ma-
trix (Le et al., 2011; Memisevic, 2012a; Susskind et al.,
2011; Sutskever & Hinton, 2007; Taylor et al., 2011;
Baccouche et al., 2011). This opens the way to a sim-
ple recurrent gated autoencoder, where the input con-
sists of only one image. In particular, we believe that
this could be useful for motion analysis with a mov-
ing camera, a situation often encountered in robotics,
for instance. Actually, motions of the camera induce
images transformations like translations and rotations,
which can be encoded by a network similar to the one
described in this paper. A multiplicative interaction
at the mapping layer, between visual inputs and an
action-based encoding of the camera’s motion (or of
the gaze position, as in (Larochelle & Hinton, 2010;
Denil et al., 2012)) could achieve better performance
and robustness in motion recognition.

One of the obvious extensions of our work is to handle
more realistic image sizes, by using for instance convo-
lutional techniques, to use the network on real videos
streamed from cameras. Like other gated networks,
the algorithmic complexity of our algorithm is actually
quadratic in the number of pixels. This makes these
algorithms unscalable directly to bigger images and
convolutional techniques are one way to keep compu-
tational complexity under control. Furthermore, con-
volutional techniques are well suited to handle some
invariances, like the position of a moving object in a
video, and provide greater factorization possibilities,
for instance when several objects are moving in differ-
ent ways on the same video.

Finally, unsupervised clustering algorithms, such as
self-organizing maps, could be used to cluster au-
tonomously the different classes of transformations
and extract a more semantic discretization of the ob-
served transformations.
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