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Computing class polynomials for abelian surfaces

Andreas Enge∗ and Emmanuel Thomé†

9 December 2013

Abstract

We describe a quasi-linear algorithm for computing Igusa class polynomials of
Jacobians of genus 2 curves via complex floating-point approximations of their roots.
After providing an explicit treatment of the computations in quartic CM fields
and their Galois closures, we pursue an approach due to Dupont for evaluating
ϑ-constants in quasi-linear time using Newton iterations on the Borchardt mean.
We report on experiments with our implementation and present an example with
class number 20016.

1 Introduction

Igusa class polynomials describe the complex multiplication points in the moduli space
of principally polarised abelian surfaces, that is, they parameterise abelian varieties of
dimension 2 with complex multiplication by a maximal order of a quartic CM field. Such
abelian surfaces are Jacobians of hyperelliptic curves of genus 2, so that by computing
Igusa class polynomials one may obtain genus 2 curves over finite fields with known
Jacobian cardinality.

In the dimension 1 case of elliptic curves, several approaches have been described in
the literature. While the output of the algorithms (a large polynomial) is of exponential
size in the input (a number field described by a single integer), all of these approaches
may lead to an algorithm with a complexity that is quasi-linear (up to logarithmic fac-
tors) in its output size: The complex analytic method uses floating point approximations
to the roots of the class polynomials [16]; the p-adic approach starts from a curve with
the given endomorphism ring over a small finite field and lifts its invariants to a p-adic
field [13, 8]; the Chinese remaindering approach combines curves over several small prime
fields [2].
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In principle, the same approaches apply to abelian surfaces. A 2-adic algorithm is
described in [21], and there are currently attempts at making the Chinese remainder
based method more efficient [28]. So far, 2-adic lifting appears to have been the most
successful approach: The Echidna database maintained by Kohel1 contains Igusa class
polynomials, the largest of which is of degree 576 and has been obtained by lifting from
a curve over F26

2.
A detailed description of the complex analytic approach, together with complexity

analyses of its different steps, has recently been given in [33, 34]. Our work pushes
the limits for the attainable degrees of Igusa class polynomials: We present an example
of degree 20 016. Moreover, relatively small class polynomials (say, below degree 150)
can be computed in matters of seconds. The key tool in this approach is the use of a
quasi-linear algorithm for the computation of ϑ-constants, initially described in [15].

This article is organised as follows. §2 presents the necessary background material
for discussing the complex multiplication theory of abelian surfaces and states the gen-
eral algorithm. §§3 and 4 show how to explicitly (providing concrete descriptions for the
occurring number fields, maps between them and their embeddings) and symbolically
compute an appropriate set of reduced period matrices, which form the input of the
computationally expensive step of computing ϑ-constants, detailed in §5. The recogni-
tion as algebraic numbers of the coefficients of the Igusa class polynomials from their
approximations by complex embeddings is described in §6, and experimental results are
given in §§7 and 8.

All computations presented in this article have been achieved with the software
package Cmh[20], released under the GNU General Public License.

2 Complex multiplication theory

In this section, we provide a concise introduction to the theory of complex multiplication
of principally polarised abelian surfaces or, equivalently, Jacobians of genus 2 hyperellip-
tic curves over the complex numbers, to the extent needed to describe our algorithms and
implementation. The presentation follows [34], and proofs are given in [31, 30, 34, 33].

2.1 Quartic CM fields and abelian surfaces

A CM field K is an imaginary-quadratic extension of a totally real number field K0.
We denote by κ indiscriminately the complex conjugation on C and the automorphism
generating Gal(K/K0). For any embedding ϕ : K → C, we have κ ◦ ϕ = ϕ ◦ κ, which
justifies the notation ϕ = κ ◦ ϕ.

Quartic CM fields K of degree 4 over Q come in three Galois types. Generically,
K/Q is not Galois, the Galois closure L/K is of degree 2, and Gal(L/Q) is isomorphic
to the dihedral group D4. The Galois closure L is itself a CM field, and the complex
conjugation of L, which we denote again by κ, restricts to the complex conjugation

1http://echidna.maths.usyd.edu.au/echidna/dbs/complex_multiplication2.html
2Personal communication

2

http://echidna.maths.usyd.edu.au/echidna/dbs/complex_multiplication2.html


of K. If K/Q is Galois, it may be either cyclic or biquadratic. We will not consider
the biquadratic case in the following, since then the abelian surfaces of which it is the
endomorphism algebra are products of elliptic curves; so from now on, all Galois quartic
CM fields are tacitly understood to be cyclic.

A CM type of a quartic CM field K is a set Φ = {ϕ1, ϕ2} of two embeddings K →
C such that ϕ2 6= ϕ1; that is, it contains one out of each pair of complex-conjugate
embeddings. Two CM types Φ and Φ′ are equivalent if there is an automorphism σ of K
such that Φ′ = Φ ◦ σ; in particular, Φ and Φ are equivalent. If K/Q is Galois, there
is only one equivalence class of CM types; otherwise, there are two inequivalent classes
Φ = {ϕ1, ϕ2} and Φ′ = {ϕ1, ϕ2}.

For a given CM type Φ = {ϕ1, ϕ2}, its reflex field is the field Kr generated over Q by
the type traces, that is, Kr = Q

(

{ϕ1(x) +ϕ2(x) : x ∈ K}
)

; it is itself a quartic CM field
and we denote by Kr

0 its real-quadratic subfield. Equivalent CM types yield conjugate
reflex fields. In the Galois case, K and Kr are isomorphic, while in the dihedral case,
they are not isomorphic, but the two reflex fields for the two inequivalent CM types are.
In both cases, there is a natural way of defining a dual CM type Φr = {ϕr

1, ϕ
r
2} of Kr,

and the reflex field of Kr is isomorphic to K. Define the (dual) type norm NΦr : Kr → K
by x 7→ ϕr

1(x)ϕr
2(x), so that

NΦr NΦr = N; (1)

this map extends to ideals and ideal classes.
In §3, we provide explicit equations for all occurring number fields and consider their

embeddings from an effective point of view.
Let a be a fractional ideal of OK . A CM type Φ = {ϕ1, ϕ2} induces an embedding

K → C2, x 7→ (ϕ1(x), ϕ2(x)), under which Φ(a) is a lattice of rank 4. Its cokernel
C2/Φ(a), a complex torus of genus 2, is an abelian surface. Let δ−1

K = {y ∈ K : Tr(xy) ∈
Z ∀x ∈ OK} be the codifferent ideal of K. Assume that (aaδK)−1 is principal and
generated by some ξ ∈ K such that ϕ1(ξ), ϕ2(ξ) ∈ iR>0; in particular, ξξ ∈ K0 is totally
negative. Then EΦ,ξ : Φ(K)2 → Q, (Φ(x),Φ(y)) 7→ Tr(ξxy) is a symplectic form over Q

which takes integral values on Φ(a)2. By tensoring with R, one obtains a symplectic form
C2 → R such that (x, y) 7→ EΦ,ξ(ix, y) is symmetric and positive definite, a principal
polarisation on C2/Φ(a).

The principally polarised abelian surface A(Φ, a, ξ) =
(

C2/Φ(a), EΦ,ξ

)

has complex
multiplication by OK ; conversely, any such surface can be obtained up to isomorphism
in this way. Two principally polarised abelian surfaces A(Φ, a, ξ) and A(Φ′, a′, ξ′) are
isomorphic if and only if Φ = Φ′ (up to equivalence) and there is a u ∈ K∗ such that
a′ = ua and ξ′ = (uu)−1ξ. In particular this implies that uu ∈ K0 is totally positive,
and that we may assume a to be an integral ideal of OK .

2.2 The Shimura group, its type norm subgroup and cosets

The Igusa invariants to be defined in §2.3 determine the moduli space M of principally
polarised complex abelian surfaces, which has a model over Q. Let MK,Φ be the subset
of surfaces A(Φ, a, ξ) obtained from an integral ideal of OK and the CM type Φ as
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described in §2.1. Then MK,Φ is stable under Gal(Q/Kr
0). If K is cyclic, then MK,Φ is

even stable under Gal(Q/Q). Otherwise let Φ′ be inequivalent with Φ. Then MK,Φ and
MK,Φ′ are disjoint and conjugate under Gal(Kr

0/Q) [34, Lemmata 1.1 and 2.1].
Let the Shimura class group C be defined by

C =
{

(a, u) : a a fractional ideal of OK , aa = uOK , and u ∈ K0 totally positive}/ ∼
(2)

with component-wise multiplication. The equivalence relation denoted ∼ above is the
one induced by principal ideals, more precisely the equivalence modulo the subgroup
given by the (vOK , vv) with v ∈ K∗ and vv ∈ K0 totally positive.

By the discussion of §2.1, the Shimura class group C acts regularly on MK,Φ via

(b, u) · A(Φ, a, ξ) = A(Φ, b−1a, uξ). (3)

Consider the dual type norm map NΦr : ClKr → C, b 7→ (NΦr (b),N(b)) , which is well
defined by (1). For any A(Φ, a, ξ), the action induced by NΦr (ClKr) is that of the Galois
group of the field of moduli of A(Φ, a, ξ) over Kr [34, Theorem 9.1]; otherwise said, the
field of moduli is the fixed field of ker(NΦr ) inside the Hilbert class field of Kr. The
cokernel of NΦr is elementary abelian of exponent 1 or 2 [34, Theorem 2.2], so MK,Φ

splits into orbits under C of size | im(NΦr )|, and the number of orbits is a power of 2.
As stated above, these orbits are in fact defined over Kr

0 , with the orbits of MK,Φ and
MK,Φ′ being mapped to each other by Gal(Kr

0/Q).

2.3 ϑ-functions, Igusa invariants and class polynomials

Given an ideal a and a principal polarisation EΦ,ξ as in §2.1, one may choose a Z-basis
(α1, α2, α3, α4) of a such that v1 = Φ(α1), v2 = Φ(α2), w1 = Φ(α3), w2 = Φ(α4) form

a symplectic basis, for which EΦ,ξ becomes

(

0 id2

−id2 0

)

. That the change of basis is

defined over Z and not only over R follows from the principality of the polarisation; we
also call this basis of a symplectic. Let V =

(

v1 v2

)

, W =
(

w1 w2

)

∈ C2×2. Rewriting

the ambient vector space C2 and Φ(a) in the basis spanned by w1 and w2, we obtain
Φ(a) =

(

ΩΦ,a,ξ id2

)

Z4 with the period matrix

ΩΦ,a,ξ = W−1V (4)

in the Siegel half space H2 =
{

Ω ∈ C2×2 : Ω symmetric and ℑ(Ω) positive definite
}

. The
symplectic group Sp4(Z) acts on H2 by

(

A B
C D

)

Ω = (AΩ +B)(CΩ +D)−1,

where A, B, C, D ∈ Z2×2. As in the case of genus 1, a fundamental domain for H2

exists under the action of Sp4(Z). Reduction into the fundamental domain is discussed
in §3.3.
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The ϑ-constants are certain modular forms of weight 1/2 for Sp4(Z). Let a =

(

a1

a2

)

,

b =

(

b1

b2

)

∈
(

1
2Z
)2

be two vectors of ϑ-characteristics. Then for Ω ∈ H2,

ϑ16a1+8a2+4b1+2b2
(Ω) = ϑa,b(Ω) =

∑

n∈Z2

e2πi( 1

2
(n+a)⊺Ω(n+a)+(n+a)⊺b). (5)

Only the even ϑ-constants ϑi for i ∈ T = {0, 1, 2, 3, 4, 6, 8, 9, 12, 15} are not identically 0.
The following duplication formulæ relate the values of the squares of the ten even

ϑ-constants in the argument Ω with the values of the four fundamental ϑ-constants
ϑ0, . . . , ϑ3 (which have a = 0) in the argument Ω/2 (omitted from the formulæ for the
sake of conciseness).

4ϑ2
0(Ω) = ϑ2

0 + ϑ2
1 + ϑ2

2 + ϑ2
3

4ϑ2
1(Ω) = 2ϑ0ϑ1 + 2ϑ2ϑ3

4ϑ2
2(Ω) = 2ϑ0ϑ2 + 2ϑ1ϑ3

4ϑ2
3(Ω) = 2ϑ0ϑ3 + 2ϑ1ϑ2

4ϑ2
4(Ω) = ϑ2

0 − ϑ2
1 + ϑ2

2 − ϑ2
3

4ϑ2
6(Ω) = 2ϑ0ϑ2 − 2ϑ1ϑ3

4ϑ2
8(Ω) = ϑ2

0 + ϑ2
1 − ϑ2

2 − ϑ2
3

4ϑ2
9(Ω) = 2ϑ0ϑ1 − 2ϑ2ϑ3

4ϑ2
12(Ω) = ϑ2

0 − ϑ2
1 − ϑ2

2 + ϑ2
3

4ϑ2
15(Ω) = 2ϑ0ϑ3 − 2ϑ1ϑ2

(6)

Denote by hj the following modular forms of weight j:

h4 =
∑

i∈T

ϑ8
i , h6 =

∑

60 triples (i,j,k)∈T 3

±(ϑiϑjϑk)4,

h10 =
∏

i∈T

ϑ2
i , h12 =

∑

15 tuples (i,j,k,l,m,n)∈T 6

(ϑiϑjϑkϑlϑmϑn)4;
(7)

for the exact definitions, see [34, §II.7.1]. These generate the ring of holomorphic Siegel
modular forms over C, see [25, Corollary p. 195] and [34, Remark 7.2]. The moduli
space of principally polarised abelian surfaces is of dimension 3 and parameterised by
absolute Igusa invariants, modular functions (thus of weight 0) in Z

[

h4, h6, h12, h
−1
10

]

.
Different sets of invariants have been suggested in the literature. The most cited one is
Spallek’s, who uses a system in the linear span of h5

12

h6
10

, h3
12

h4

h4
10

, h2
12

h6

h3
10

[32, Satz 5.2]. Streng
defines invariants with the minimal powers of h10 in the denominator as

j1 =
h4h6

h10
, j2 =

h2
4h12

h2
10

, j3 =
h5

4

h2
10

. (8)

The principally polarised abelian surfaces A(Φ, a, ξ) are parameterised by the triples
of singular values (j1(Ω), j2(Ω), j3(Ω)) in the period matrices Ω = ΩΦ,a,ξ, which may
be obtained from the action of the Shimura class group C on a fixed base point β =
(Φ, aΦ, ξΦ). The singular values lie in the subfield of the Hilbert class field of Kr

given in §2.2. Following the discussion there, the Igusa class polynomials Ii(X) =
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∏

(Φ,a,ξ) (X − ji(ΩΦ,a,ξ)) are defined over Q. More precisely their irreducible factors,
over Kr

0 in the dihedral case or Q in the cyclic case, are given by
∏

C∈NΦr (ClKr )

(

X − ji(ΩCC′·β)
)

,

where Φ is one CM type and C ′ ∈ C/NΦr (ClKr).
In the following, we fix a CM type Φ (for its explicit description, see §3) and a base

point β = (Φ, aΦ, ξΦ) and let

H1(X) =
∏

C∈NΦr (ClKr )

(X − j1(ΩC·β)) . (9)

As elements of the same class field, the singular values of j2 and j3 are rational ex-
pressions in the singular value of j1. Computationally, it is preferable to use the Hecke
representation in the trace-dual basis to keep denominators small. We thus define poly-
nomials Ĥ2 and Ĥ3 through jiH

′
1(j1) = Ĥi(j1) with

Ĥi(X) =
∑

C∈NΦr (ClKr )

ji(ΩC·β)
∏

D∈NΦr (ClKr )\{C}
(X − j1(ΩD·β)) (10)

for i ∈ {2, 3}, where H1, Ĥ2, Ĥ3 ∈ Kr
0 [X] in the dihedral case and ∈ Q[X] in the cyclic

case.

2.4 Algorithm for Igusa class polynomials

We briefly summarise the algorithm for computing class polynomials.

Algorithm 1

Input: CM field K and CM type Φ = {ϕ1, ϕ2} of K

Output: Irreducible class polynomials H1, Ĥ2, Ĥ3 ∈ Kr
0 [X] in the dihedral case and

∈ Q[X] in the Galois case

1) Compute NΦr (ClKr) = {(b1, u1), . . . , (bh, uh)} ⊆ C.

2) Compute a base point β = (Φ, aΦ, ξΦ) such that

{

(aΦaΦδK)−1 = (ξΦ),
ϕ1(ξΦ), ϕ2(ξΦ) ∈ iR>0.

3) Enumerate {C · β = (Φ, b−1
i aΦ, uiξΦ) : C = (bi, ui) ∈ NΦr (ClKr)} and compute

the associated period matrices Ωi = ΩC·β for i = 1, . . . , h.

4) For i = 1, . . . , h, compute the fundamental ϑ-constants ϑ0(Ωi/2), . . . , ϑ3(Ωi/2);
then deduce the squares of the ten even ϑ-constants ϑ2

k(Ωi) by (6), the values
hk(Ωi) by (7) and finally the triples Ji =

(

j1(Ωi), j2(Ωi), j3(Ωi)
)

by (8).

5) Let H1 =
∏h

i=1(X − Ji,1), Ĥk =
∑h

i=1 Ji,k
∏

l 6=i(X − Jl,1) ∈ C[X] for k ∈ {2, 3}.

6) Recognise the coefficients of H1, Ĥ2, Ĥ3 as elements of Kr
0 or Q, respectively.

6



The different steps of the algorithm and our implementation are detailed in the
following chapters. The symbolic computations related to number fields in Steps 1)
and 2) and to the period matrices Ωi in Step 3) are described in §3. Step 1) is treated
in §4.2, Step 4) in §5 and Step 6) in §6.

3 Explicit equations and symbolic period matrices

While Algorithm 1 in fine works with complex approximations obtained via CM types,
it starts from an algebraic setting. In this section, we examine how to carry out the
computations as far as possible symbolically with algebraic numbers, which relieves us
from the need to decide on the necessary precision early on. In particular, in §3.1 we
replace the complex embeddings forming a CM type by algebraic embeddings into the
compositum L of all involved fields, followed by a “universal” embedding ψ of L into C.
Taking preimages under ψ, the entries of the period matrices Ω ∈ C2×2 may then be
interpreted as elements of the reflex field and may be handled symbolically. We then fix
a model for the CM field K in §3.2 and derive explicit equations for all considered fields
and embeddings.

Recall the notation of §2: K is a quartic CM field, K0 its real quadratic subfield and
L its Galois closure with Galois group G. We consider only the dihedral case [L : K] = 2
and G = D4 and the cyclic case L = K and G = C4. Let Φ = (ϕ1, ϕ2) be a CM type,
where ϕ1, ϕ2 : K → C are two complex embeddings of K with ϕ2 6= ϕ1, and let Kr be
the reflex field of K with respect to Φ.

3.1 Galois theory, embeddings and period matrices

3.1.1 The dihedral case

Galois theory. Let K = Q(y) be a non-Galois quartic CM field. The following state-
ments are easily seen to be true when choosing a generator y such that z = y2 belongs to
the real subfield K0, so that K = Q[Y ]/(Y 4 +AY 2 +B) for some A,B ∈ Q. The Galois
closure of K is then L = K(y′) = Q(y, y′), where the roots of the minimal polynomial
of y in L are ±y and ±y′ (the former could be identified with ϕ1(y) in (12), the latter
with ϕ2(y)). The automorphisms in G = Gal(L/Q) are uniquely determined by their
images on y and y′, and we obtain the following diagram of fields and Galois groups:

Q

K0

K

Kr
0

Kr∗

L = KKr

〈κ|K〉

〈ρ〉

〈κ|Kr 〉

〈σ〉
〈κ〉

7



Here the automorphisms are given by

ρ : y 7→ y, y′ 7→ −y′ of order 2

σ : y 7→ y′, y′ 7→ y of order 2, which fixes the generator y + y′ of Kr

τ : y 7→ y′, y′ 7→ −y of order 4

κ = τ2 : y 7→ −y, y′ 7→ −y is the complex conjugation.

So G is the dihedral group D4 with generators τ of order 4 and ρ (or σ) of order 2 and
additional relation ρτρ = τ3, and with 〈κ〉 as its centre.

Embeddings and CM types. There is a unique embedding ψ : L → C such that
ϕ1 = ψ|K and ϕ2 = (ψσ)|K (where multiplication denotes composition), which can be
seen as follows. First of all, there are two embeddings which, restricted to K, yield
ϕ1; we denote them by ψ1 and ψ′

1 = ψ1ρ. Now there is s ∈ G, uniquely defined up to
multiplication by ρ from the right, such that ϕ2 = (ψ1s)|K . Since ϕ2 6= ϕ1 and ϕ2 6= ϕ1,
the automorphism s is neither 1, ρ, κ = τ2 nor κρ = τ2ρ. This leaves s as one of
τ = ρσ, τρ = ρσρ, τ3 = σρ or τ3ρ = σ. If s|K = σ|K = (σρ)|K , we may choose ψ = ψ1.
Otherwise, s|K = ρσ, and (ψ′

1σ)|K = (ψ1ρσ)|K = (ψ1s)|K = ϕ2, so we choose ψ = ψ′
1.

Period matrices. Let (α1, . . . , α4) be a symplectic basis for the ideal a of K with
respect to EΦ,ξ as defined in §2.3. Then

V =

(

ϕ1(α1) ϕ1(α2)
ϕ2(α1) ϕ2(α2)

)

= ψ

((

α1 α2

ασ
1 ασ

2

))

,

W =

(

ϕ1(α3) ϕ1(α4)
ϕ2(α3) ϕ2(α4)

)

= ψ

((

α3 α4

ασ
3 ασ

4

))

and

ΩΦ,a,ξ = W−1V = ψ(M) with M =
1

α3α
σ
4 − α4α

σ
3

(

α4α
σ
1 − α1α

σ
4 α4α

σ
2 − α2α

σ
4

α3α
σ
1 − α1α

σ
3 α3α

σ
2 − α3α

σ
2

)

(11)
by (4). The entries of M are invariant under σ and thus elements of Kr.

Remark. It is crucial to choose out of the two embeddings ψ : L → C that extend
ϕ1 the one compatible with ϕ2. The other one corresponds to the second CM type
Φ′ = (ϕ1, ϕ2) with reflex field (Kr)′ and Gal (L/(Kr)′) = 〈κσ〉 = 〈ρσρ〉.

3.1.2 The cyclic case

Here we have the much simpler situation

8



Q

K0

K
〈κ〉 = 〈σ2〉

We may choose ψ = ϕ1. Then there is a uniquely determined σ ∈ Gal(K/Q) such that
ϕ2 = ϕ1σ, and trivially M of (11) has entries in Kr. In general, they will not lie in a
subfield: Since σ is neither the identity nor complex conjugation, it is of order 4.

3.2 Number field computations

In this section we show how to express the elements of the reflex field Kr and the normal
closure L in consistent ways, so as to be able to compute type norms and entries of period
matrices as given by (4). We use the same notation for elements of the Galois group G
of L/Q as in §3.1.

3.2.1 The dihedral case

Field equations. By choosing generating elements as in §3.1.1 we may assume that

K0 = Q(z) = Q[Z]/
(

Z2 +AZ +B
)

with A,B ∈ Z>0, A2 − 4B > 0;

K = Q(y) = Q[Y ]/
(

Y 4 +AY 2 +B
)

.

We then select the CM type Φ = (ϕ1, ϕ2) with

ϕ1(y) = i

√

A+
√
A2 − 4B
2

, ϕ2(y) = i

√

A−
√
A2 − 4B
2

, (12)

where all the real roots are taken to be positive; the other CM type is Φ′ = (ϕ1, ϕ2) with
ϕ2(y) = −ϕ2(y). Recall from §3.1.1 the notations Gal(L/K) = 〈ρ〉, Gal(L/Kr) = 〈σ〉,
and let ψ : L → C be such that ϕ1 = ψ|K and ϕ2 = (ψσ)|K . The reflex field Kr is
generated by the type traces of K; letting yr = y + yσ, the equality

ψ(yr) = ψ(y) + (ψσ)(y) = ϕ1(y) + ϕ2(y) (13)

shows that we may consider yr as a generator of Kr. This gives the equations

Kr
0 = Q(zr) = Q[Zr]/

(

(Zr)2 +ArZr +Br
)

with Ar = 2A,Br = A2 − 4B;

Kr = Q(yr) = Q[Y r]/
(

(Y r)4 +Ar(Y r)2 +Br
)

.

The minimal polynomials of yr over K and y over Kr follow:

(yr)2 − 2yyr + (2y2 +A), (y)2 − yry + ((yr)2 +A)/2.

9



We write the Galois closure L = KKr as the compositum generated over K or Kr by
t = y + yr. The minimal polynomial of t is the resultant

h(T ) = ResY

(

Y 4 +AY 2 +B, (T − Y )2 − 2Y (T − Y ) + (2Y 2 +A)
)

= ResY r

(

(Y r)4 +Ar(Y r)2 +Br, (T − Y r)2 − Y r(T − Y r) + ((yr)2 +A)/2
)

= T 8 + 10AT 6 + (33A2 − 14B)T 4 + (40A3 − 70AB)T 2 + 16A4 − 200A2B + 625B2.

Conversions and Galois actions. We are interested in the action of ρ, the generator
of Gal(L/K), on Kr, and in the action of σ, the generator of Gal(L/Kr), on K. The
defining equations give:

yr + (yr)ρ = 2y, yr(yr)ρ = yr(yr)ρ = 2y2 +A, yρ = y,

y + yσ = yr, yyσ =
(

(yr)2 +A
)

/2, (yr)σ = yr.

An element of K is converted to an element of L, as a relative extension of Kr, using
the identity y = t − yr; in the opposite direction we use yr = t − y. The entries of the
matrix M of (11) are obtained from elements of K and their images under σ, and need
to be expressed as elements of Kr. For this we use the identity yσ = yr − y. This allows
us to work in the relative extension L/Kr and to easily identify elements of Kr.

Dual type norms. For an ideal b of Kr, we have

NΦr (b) = NL/K(bOL),

see [9, §3.1]. Computing dual type norms thus reduces to conversions in relative exten-
sions as described above.

3.2.2 The cyclic case

We may use the same type of equations for K and K0 as in the dihedral case, and may
fix ψ = ϕ1 as in (12). Fixing an arbitrary element σ ∈ Gal(K/Q) of order 4, we obtain
ϕ2 = ϕ1σ. Then the dual type norm for an ideal b of K is computed as

NΦr(b) = bb
σ
,

see [9, §3.1].

3.3 Symbolic reduction of period matrices

Gottschling in [22] has determined a finite set of inequalities describing a fundamental
domain F2 for Sp4(Z)\H2, which directly translate into an algorithm for reducing an
element of H2 into F2. As the Igusa functions introduced in §2.3 are modular for
Sp4(Z), we may transform all period matrices occurring in Algorithm 1 into F2. A
period matrix Ω is reduced if ℜ(Ω) has coefficients between −1

2 and 1
2 (which may be

10



obtained by reducing modulo Z), if the binary quadratic form defined by ℑ(Ω) is reduced
(which may be obtained using Gauß’s algorithm) and if | det(CΩ + D)| > 1 for each of

19 matrices

(

A B
C D

)

∈ Sp4(Z) (which may be obtained by applying to Ω a matrix

for which the condition is violated). The process needs to be iterated and terminates
eventually.

In the light of (11), Ω = ψ(M) with M ∈ (Kr)2×2 and an explicitly given ψ :
Kr → C, see (13) and (12). Letting Kr = Kr

0 + yrKr
0 as before, we have ψ|Kr

0
: Kr

0 =
Q(

√
Dr) → R and ψ|yrKr

0
: yrKr

0 → iR. So ℜ(M) and ℑ(M) are the images under
ψ of matrices with entries in Kr

0 . The condition | det(CΩ + D)| > 1 can be rewritten

as
√

det(Cψ(M) +D) det(Cψ(M ) +D) > 1 and thus also depends only on the images
under ψ of elements of Kr

0 .
Hence the period matrices may be transformed symbolically into the fundamental

domain F2 without computing complex approximations of their entries, which precludes
rounding errors: The test whether the matrix is reduced and, if not, the decision which
transformation to apply depend on the sign of ψ(α) for some α ∈ Kr

0 , that is, on the
sign of some explicitly known a + b

√
Dr ∈ R, where

√
Dr is the positive root of Dr

and a, b ∈ Q. This sign can be determined from the signs of a and b and the relative
magnitudes of a2 and b2Dr.

4 Computing the Shimura group and its type norm sub-

group

4.1 Structure of the Shimura group C

The first step of Algorithm 1 requires to enumerate the Shimura group C of (2), or more
precisely, its type norm subgroup NΦr (ClKr). We need the following exact sequence, a
proof of which can be found in [9]:

1 −→ O+
K0
/NK/K0

(O∗
K)

u 7→(OK ,u)−−−−−−−→ C
(a,α)7→a−−−−−→ ClK

NK/K0−−−−→ Cl+K0
−→ 1, (14)

where O+
K0

is the subgroup of totally positive units in OK0
and Cl+K0

is the narrow class
group of K0.

We have algorithms at hand for the basic arithmetic of C. For a finite abelian group,
decomposed as a direct product of cyclic groups Gi of order di with di | di+1, we call
the di the elementary divisors and a system of generators of the Gi a (cyclic) basis of
the group. Such a basis can be computed for the class group ClK (quickly under GRH)
using the function bnfinit in Pari/Gp. Equality testing of (a, α) and (b, β) amounts
to testing whether ab−1 is principal (either using bnfisprincipal in Pari/Gp, or by a
direct comparison if each ideal is stored together with its generalised discrete logarithm,
its coefficient vector with respect to the basis of the class group), and whether α/β = 1
in O+

K0
/NK/K0

(O∗
K). Let ε0 and ε be the fundamental units of K0 and K, respectively.

If N(ε0) = −1, then O+
K0

= 〈ε2
0〉 = NK/K0

(〈ε0〉) ⊆ NK/K0
(O∗

K), and the quotient group

11



is trivial. If N(ε0) = +1, then O+
K0

= 〈ε0〉, and since ε2
0 = NK/K0

(ε0) ∈ NK/K0
(O∗

K), the
quotient group is either trivial or 〈ε0〉/〈ε2

0〉, in which case bnfisunit of Pari/Gp can
be used to compute the exponent of the unit.

Multiplication is straightforward and can be made more efficient by a reduction step
that outputs a smaller (not necessarily unique) representative. To reduce (a, α), one
computes an LLL-reduced ideal a′ = µa (using idealred in Pari/Gp) and lets α′ = µµα
One then tries to reduce the unit contribution in the size of the algebraic number α′ by
multiplying it with an appropriate power of NK/K0

(ε).
The Shimura group C and its subgroup NΦr (ClKr ) can be enumerated directly; but

the map NΦr : ClKr → C being in general non-injective, this can require a large number
of expensive principality tests in C to avoid duplicates. More elegantly, we may consider
the groups in (14) as given by cyclic bases or, more generally, generators and relations,
and complete the sequence from known data using tools of linear algebra for Z-modules,
in particular the Hermite (HNF) and Smith normal forms (SNF), see [11, §2.4].

Algorithm 2

Input: Cyclic bases for ClK and Cl+K0

Output: Cyclic basis for C

1) Compute a matrix M for NK/K0
: ClK → Cl+K0

.

2) Compute generators a1, . . . , ar of the kernel of M .

3) Lift a1, . . . , ar to C: Pick arbitrary totally positive αi ∈ K0 such that aiai = αiOK0
.

4) Compute a basis for the lattice L0 of relations such that the subgroup of ClK
generated by a1, . . . , ar is isomorphic to Zr/L0.

5) If O+
K0
/NK/K0

(O∗) = 1, let r′ = r; otherwise let r′ = r+1 and (ar′ , αr′) = (OK , ε0).

6) Expand the basis of 4) into a basis for the lattice L of relations between the
generators (a1, α1), . . . , (ar′ , αr′) such that C ≃ Zr′

/L.

7) Determine a cyclic basis of C.

Step 1) requires to apply the generalised discrete logarithm map in Cl+K0
to the small

number of relative norms of the basis elements of ClK . Step 3) is possible since the
aiai = NK/K0

(ai) are trivial in Cl+K0
. Steps 5) and 6) rely on the exactness of the

sequence (14). If r′ = r, there is nothing to do. Otherwise, we first add the relation
(OK , ε0)2 = 1. Lifts of relations from L0 are then in the image of 〈ε0〉/〈ε2

0〉, and if the
unit exponent is odd in the lift, we need to add (OK , ε0) into the relation. Steps 2)
and 4) require an HNF, Step 7) an SNF.

4.2 The type norm subgroup

Algorithm 2 also provides an algorithm for generalised discrete logarithms in C, which
can be used to determine the subgroup NΦr (ClKr) in a similar way: For each genera-
tor of ClKr , we compute the generalised discrete logarithm of its image in C, then the

12



relations between the images using an HNF and a cyclic basis using an SNF. The enu-
meration of the subgroup is then trivial. In the same vein, it is possible to compute all
the cosets C/NΦr (ClKr) if the complete Igusa class polynomial is desired and not only
its irreducible factor H1, see §2.3.

5 Computing ϑ-constants

As explained in Step 4) of Algorithm 1, it suffices to compute the fundamental ϑ-
constants ϑ0, . . . , ϑ3 in the argument Ω/2 to obtain the class invariants for the period

matrix Ω =

(

ω0 ω1

ω2 ω0

)

∈ F2.

In §5.1 we describe an algorithm to compute the ϑ-constants directly from their
q-expansions, using a lower number of multiplications than approaches described previ-
ously in the literature.

As the coefficients of the Igusa class polynomials grow rather quickly, a high float-
ing point precision is needed for evaluating the ϑ-constants. In §§5.2–5.4 we describe
an algorithm with a quasi-linear (up to logarithmic factors) complexity in the desired
precision, using Newton iterations on a function involving the Borchardt mean. The
algorithm is described essentially in Dupont’s PhD thesis [15]; for the corresponding
algorithm in dimension 1, using the arithmetic-geometric mean instead of the Borchardt
mean, see [14]. We provide a streamlined presentation in dimension 2, together with
improved algorithms and justifications.

5.1 Naive approach

For the fundamental ϑ-constants, (5) specialises as

ϑ4b1+2b2
(Ω/2) =

∑

m,n∈Z

(−1)2(mb1+nb2)qm2

0 q2mn
1 qn2

2 (15)

with qk = exp(iπωk/2).
Positive definiteness and reducedness of the binary quadratic form attached to ℑ(Ω)

show that the sum converges when taken over, for instance, a square [−R,R]2 with
R → ∞; [15, p. 210 following the proof of Lemma 10.1, with typos] establishes that for
R >

√
1.02N + 5.43, the truncated sum is accurate to N bits. Better bounds may be

reached using summation areas related to the eigenvalues of ℑ(Ω), but using a square
allows to organise and reuse computations so as to reduce the number of multiplications
of complex numbers.

Proposition 3 The truncated sum over (m,n) ∈ [−R,R]2 for the fundamental ϑ-
constants (15) may be computed with 2R2 + O(R) multiplications and one inversion
using storage for R+O(1) elements.

Letting R = ⌈
√

1.02N + 5.43⌉ and using complex numbers of precision O(N), we
obtain a time complexity of

O(N M(N)) or Õ(N2),

13



where Õ(N) = O
(

N(logN)O(1)
)

, and M(N) ∈ Õ(N) is the time complexity of multi-

plying two numbers of N bits.

Proof. Using symmetries with respect to the signs of m and n, we may write

∑

−R6m,n6R

(−1)2(mb1+nb2)qm2

0 q2mn
1 qn2

2 = 1 + 2
R
∑

m=1

(−1)2mb1qm2

0 + 2
R
∑

n=1

(−1)2nb2qn2

2

+ 2
R
∑

m=1

(−1)2mb1qm2

0

R
∑

n=1

(−1)2nb2qn2

2

(

q2mn
1 + q−2mn

1

)

.

We first compute and store the qn2

2 with 2R + O(1) multiplications via q2n−1
2 =

q
2(n−1)−1
2 ·q2

2 and qn2

2 = q
(n−1)2

2 ·q2n−1
2 . After computing the inverse q−1

1 , a similar scheme
yields the qm2

0 and q2m
1 +q−2m

1 without storing them. At the same time, we may compute
for any given m the sum over n inside the double sum: The term q2mn

1 +q−2mn
1 is the n-th

element vn of the Lucas sequence v0 = 2, v1 = q2m
1 + q−2m

1 , vn = v1 · vn−1 − vn−2, each
element of which is computed with one multiplication. Together with the multiplication
by qn2

2 , each term of the innermost sum is thus obtained with two multiplications.
For the time complexity, recall that complex inversions can be computed in time

O(M(N)), and exponentials in time O(M(N) logN), see [7]. �

This algorithm gains an asymptotic factor of 2/3 over [15, Algorithme 15].

5.2 Borchardt mean of complex numbers

The key tool in the asymptotically fast evaluation of ϑ-constants is the Borchardt mean,
which generalises Lagrange’s and Gauß’s arithmetic-geometric mean of two numbers to
four. The Borchardt mean of four positive real numbers has been introduced in [3, 4].
The complex case is treated in [15], where proofs of most (but not all) propositions below
may be found. It is made complicated by the presence of several square roots in the
formulæ, each of which is defined only up to sign.

Definition 4 Let

H =
{

z ∈ C : arg(z) ∈
]

−π

2
,
π

2

]}

∪ {0}

= {z ∈ C : ℜ(z) > 0, or ℜ(z) = 0 and ℑ(z) > 0}

be the complex half-plane defining the standard branch of the complex square root func-
tion. For a number in H, its square root in H lies in fact in the complex quarter-plane

Q =
{

z ∈ C : arg(z) ∈
]

−π

4
,
π

4

]}

∪ {0}.
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Definition and Properties 5 Given a complex quadruple b = (b0, . . . , b3) ∈ C4, a
Borchardt iterate is a quadruple b′ = (b′

0, . . . , b
′
4) such that there are four choices of

square roots (
√

bj)j=0,...,3 yielding

b′
0 = 1

4 (b0 + b1 + b2 + b3) b′
1 = 1

2(
√

b0

√

b1 +
√

b2

√

b3)

b′
2 = 1

2 (
√

b0

√

b2 +
√

b1

√

b3) b′
3 = 1

2(
√

b0

√

b3 +
√

b1

√

b2)

There are up to eight different Borchardt iterates of a given quadruple. If b ∈ H4, the
standard Borchardt iterate is obtained by choosing square roots in Q, so that b′ ∈ H4

again. More generally, if all entries of b lie in the same half-plane, that is, b ∈ (zH)4

for some z ∈ C, choosing all square roots in the same quarter-plane
√
zQ (with either

choice of sign for
√
z) yields the standard Borchardt iterate in the same half-plane.

A Borchardt sequence is a sequence
(

b(n)
)

n>0
such that b(n+1) is a Borchardt iterate

of b(n) for all n > 0. If all entries of b(0) lie in the same half-plane, its standard
Borchardt sequence is defined by taking only standard Borchardt iterates.

The following result is proved in [15, Chapter 7].

Proposition 6 Any Borchardt sequence converges to a limit (z, z, z, z).
When the elements of b are contained in the same half-plane, the Borchardt mean

B2(b) of b is the limit of the standard Borchardt sequence starting with b(0) = b. The
function B2 is obviously homogeneous.

A standard Borchardt sequence converges quadratically:

∥

∥

∥b(n) −B2(b) = 2−O(2n)
∥

∥

∥ .

This implies that the Borchardt mean is computed to a precision of N bits with O(logN)
multiplications in time

O(M(N) logN).

Comparison of the formulæ in Definition 5 and (6) shows that for any period matrix
Ω ∈ H2, the sequence

(

(ϑ2
j (2nΩ))j=0,...,3

)

n>0
is a Borchardt sequence. This fact alone

does not solve the sign issue, however. One would hope for the ϑ-sequence to be the
standard Borchardt sequence, which would allow it to be computed with the standard
choice of complex square roots. This assumption does not hold in general; however, it
is true for the fundamental ϑ-constants and Ω ∈ F2.

Proposition 7 For Ω ∈ F2, n > 0 and j = 0, . . . , 3 we have ϑj(2nΩ) ∈ Q. Hence
(

(ϑ2
j(2nΩ))j=0,...,3

)

n>0
is the standard Borchardt sequence associated to (ϑ2

j (Ω))j=0,...,3.

It converges to 1.

The result follows from [15, Propositions 6.1 and 9.1].
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5.3 Period matrix coefficients from ϑ-constants

For the time being, we consider the inverse of the function we are interested in and
describe an algorithm that upon input of the values of the four fundamental ϑ-quotients
in a period matrix returns the coefficients of the period matrix. Newton iterations can
then be used to invert this function.

By the modularity of the squares of the ϑ-constants, applying a matrix γ ∈ Sp4(Z) to
their argument Ω permutes the functions and multiplies them by a common projective
factor, which depends on γ and Ω. In this way, information on Ω can be gathered;
informally, three matrices suffice to obtain the three different coefficients of Ω. We
consider three particular matrices, as suggested in [15, §9.2.3], which lead to well-behaved
Borchardt means, see Conjecture 9.

Proposition 8 Let J =

(

0 −id2

id2 0

)

and Mj =

(

id2 mj

0 id2

)

with m0 =

(

1 0
0 0

)

, m1 =
(

0 1
1 0

)

, m2 =

(

0 0
0 1

)

. Let Ω ∈ H2. Then

(

ϑ2
j((JM0)2Ω)

)

j=0,1,2,3
= −iω0

(

ϑ2
j (Ω)

)

j=4,0,6,2
,

(

ϑ2
j((JM1)2Ω)

)

j=0,1,2,3
= (ω2

1 − ω0ω2)
(

ϑ2
j (Ω)

)

j=0,8,4,12
,

(

ϑ2
j((JM2)2Ω)

)

j=0,1,2,3
= −iω2

(

ϑ2
j (Ω)

)

j=8,9,0,1
.

A more general statement with the action on the ϑ-constants (not squared) is given in [12,
Propriété 3.1.24], following [26, Chapter 5, Theorem 2]. The explicit form restricted to
squares of ϑ-constants, as given here, is found in [15, §6.3.1].

The idea of the algorithm is now to apply the Borchardt mean function B2 to both
sides of the above equations. Conjecturally, the left hand side becomes 1, so that each
Borchardt mean of a right hand side yields a coefficient of Ω. So we rely on the following
conjecture, for which we have overwhelming numerical evidence, but no complete proof.
Notice that it is a priori not even clear if the Borchardt means are well-defined, that is,
if the squares of the various four ϑ-values always lie in the same half-plane.

Conjecture 9 Let

U =
{

Ω ∈ H2 : B2

(

(ϑ2
j (Ω))j=0,...,3

)

is defined and equal to 1
}

.

For k ∈ {0, 1, 2} we have (JMk)2F2 ⊆ U .

Under Conjecture 9, we can now formulate an algorithm to obtain Ω from four values
of ϑ-constants. To make the following Newton iterations more efficient, we dehomogenise
all modular functions by dividing by appropriate powers of ϑ0, which allows to work with
only three inputs.
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Algorithm 10

Input: Floating point approximations of (ϑj(Ω/2)/ϑ0(Ω/2))j=1,2,3 for some Ω ∈ F2,
and as auxiliary data the sign of ω1.
Output: Floating point approximations of the coefficients ω0, ω1, ω2 of Ω ∈ F2

1) Use the duplication formulæ (6) to compute (ϑ2
j(Ω)/ϑ2

0(Ω/2))j=0,1,2,3,4,6,8,9,12,15.

2) Compute B2((ϑ2
j (Ω)/ϑ2

0(Ω/2))j=0,1,2,3) = 1
ϑ2

0
(Ω/2)

.

3) Deduce (ϑ2
j (Ω))j=0,1,2,3,4,6,8,9,12,15.

4) Compute

u0 = B2((ϑ2
j (Ω))j=4,0,6,2), u2 = B2((ϑ2

j (Ω))j=8,9,0,1), u1 = B2((ϑ2
j (Ω))j=0,8,4,12).

5) Return ω′
0 = i

u0
, ω′

2 = i
u2

and ω′
1 = ±

√

1
u1

+ ω′
0ω

′
2 with the appropriate sign.

The correctness of Algorithm 10 under Conjecture 9 follows from the discussions
above. Step 1) uses the homogeneity of (6), Step 2) the homogeneity of the Borchardt
mean and Proposition 7. The validity of Step 5) follows from Proposition 8 under
Conjecture 9, using again the homogeneity of the Borchardt mean.

Notice that Ω is only well-defined up to the subgroup of Sp4(Z) for which the ϑ-
constants are modular. Assuming Ω ∈ F2, the fundamental domain for all of Sp4(Z),
it is necessarily unique; Conjecture 9 implies that this particular representative for Ω is
indeed returned by the algorithm.

5.4 Newton lift for fundamental ϑ-constants

Denote by
F : C3 → C3, (ϑj(Ω/2)/ϑ0(Ω/2))j=1,2,3 7→ Ω,

the function computed by Algorithm 10, and by

f : F2 → C3, Ω 7→ (ϑj(Ω/2)/ϑ0(Ω/2))j=1,2,3 ,

its inverse on F2 (where Ω is interpreted as the three-element vector (ω0, ω1, ω2) and not
as a four-element matrix).

We use Newton iterations on F to compute f . The standard Newton approach re-
quires to compute the Jacobian matrix JF of F , that is, its partial derivatives with
respect to its different coordinates. Heuristically, Algorithm 10 may be modified accord-
ingly to also output JF , see [15, Algorithme 16], generalising the dimension 1 approach
of [5, §2.4] and [14]. The description and justification of this algorithm are rather tech-
nical. Instead, we opt for using finite differences, which moreover turn out to yield a
more efficient algorithm (see §7.1).
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Algorithm 11

Input: Floating point approximations y(n) of Ω ∈ F2, to precision 2N bits, and x(n) of
f(Ω), to precision N bits.
Output: Floating point approximation x(n+1) of f(Ω), to precision 2N bits (see Theo-
rem 12).

1) Let ε = 2−N maxj

{∣

∣

∣x
(n)
j

∣

∣

∣

}

.

2) Let (ej)j=1,2,3 be the standard basis of C3. By Algorithm 10, compute F (x(n)) and
∆F
∆xj

= 1
ε

(

F (x(n) + εej) − F (x(n))
)

.

3) Let J = (Jij)i,j=1,2,3 with Jij = ∆Fi
∆xj

.

4) Let

x(n+1) = x(n) −
(

F (x(n)) − y(n)
)

J−1

(where all vectors are seen as row vectors).

All computations in the algorithm are carried out at a precision of 2N bits. But even
without taking rounding errors into account, the approximation of the Jacobian matrix
by finite differences as well as the Newton method itself introduce some inaccuracy in
the result, so that the accuracy improves to less than 2N bits. The following proposition
addresses this issue.

Theorem 12 Assume the validity of Conjecture 9. Let Ω ∈ F2 be such that ϑ0(Ω/2) 6=
0, x = f(Ω), and let x(0) be an initial floating point approximation to x. Not taking
rounding errors into account, there exist two real numbers ε0 > 0 and δ > 0, depending
on x, such that for ‖x(0) − x‖ < ε0, the sequence x(n) defined by successive applications
of Algorithm 11 converges to x, with accuracy increasing in each step from N to 2N − δ.

To reach a given accuracy N , the total complexity is dominated by the complexity of
the last lifting step, that is:

O(M(N) logN).

Proof. By assumption, F is defined and analytic in a neighbourhood of x. In particular,
its second partial derivatives are bounded in a close enough neighbourhood of x, so that
the Jacobian matrix of F in x(n) is approximated to accuracy 2N−δ0 bits by the matrix J
computed in Steps 2) and 3), where δ0 depends on x and on the bound on the second
partial derivatives. The remaining assertion, with some δ > δ0, is the standard result
for Newton’s method (see [35, Chapter 9 and §15.4] and [6, §4.2]).

The complexity is derived from the superlinearity of multiplication, which makes the
last of the O(logN) Newton steps dominate the whole computation; the logarithmic fac-
tor stems from the complexity of computing the Borchardt mean given in Proposition 6.

�
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Notice that for our application of computing class polynomials for primitive quartic
CM fields, the assumption of Theorem 12 is satisfied: As

(

Ω id2

)

Z4 is of rank 4, we have
ω1 6= 0, and therefore none of the ϑj(Ω/2) vanish (see [27, Chapter 9, Proposition 2]).

In practice, we use a fixed initial precision for x(0), computed according to Propo-
sition 3, which determines ε and implicitly δ. The lack of information about δ can be
worked around as follows: If x(n−2) and x(n−1) agree to k bits, and x(n−1) and x(n) agree
to k′ bits, we set δ = 2k− k′. This value of δ accounts at the same time for bits lost due
to rounding errors induced by the floating point computations.

Remark. It is possible to modify Algorithm 10 and consequently Algorithm 11 so
as not to rely on Conjecture 9. The conjecture states that the choices of square roots
inside the Borchardt mean computations correspond to doubling the argument of the ϑ-
constants. So by computing very low precision approximations of the ϑ-constants in 2nΩ
as described in §5.1, one can make sure to choose the correct sign. These computations
do not deteriorate the asymptotic complexity; moreover, as Algorithm 11 requires the
Borchardt means of the same arguments over and over again (albeit with increasing
precision), the sign choices may be fixed once and for all in a precomputation step.

In practice, however, we did not come upon any counterexample to Conjecture 9
with tens of thousands of arguments.

6 Reconstruction of class polynomial coefficients and re-

duction modulo prime ideals

6.1 The dihedral case

The class polynomials H1, Ĥ2, Ĥ3 of (9) and (10) for a fixed CM type Φ are defined
over Kr

0 , but Steps 1) to 5) of Algorithm 1 compute floating point approximations,
precisely of the images of the polynomials under an embedding ψ : Kr

0 → C. To realise
Step 6) of Algorithm 1, we need to invert ψ: Given ψ(α) to sufficient precision, we wish to
reconstruct α symbolically as an element of Kr

0 = Q(zr) = Q[Zr]/
(

(Zr)2 +ArZr +Br
)

,
cf. §3.2. We may limit the discussion to the CM type Φ and the embedding ψ given
by (13) and (12); the second CM type Φ′ leads to class polynomials that are conjugate
under Gal(Kr

0/Q).
Let Dr be the discriminant of Kr

0 ; as the discriminant of the minimal polynomial
of zr is 16B, we have Kr

0 = Q(
√
B), and Dr

B is a rational square. Let w ∈ Kr
0 with

w2 = Dr satisfy ψ(w) =
√
Dr > 0. Write α = a+bw

c with coprime a, b, c ∈ Z. Knowing
an approximation β to ψ(α) ∈ R at our working precision of n bits, we wish to recover
a, b, c, for which there is hope if 2n > |abc|.

Let e be the exponent of β in the sense that 2e−1 6 |β| < 2e, and let e+ = max(e, 0)
and e− = max(−e, 0), so that e = e+ − e−, and at most one of e+, e− is non-zero. We
expect |a| ≈

√
Dr |b| (whereas c is usually smaller), so that 2e− |a| ≈ 2e−√

Dr |b| ≈
2e− |cβ| ≈ 2e+ |c|. On the other hand, the floating point approximation β satisfies
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∣

∣

∣β − a+b
√

Dr

c

∣

∣

∣ ≈ 2e−n (up to a small factor accounting for digits lost to rounding er-

rors), whence 2n+e−
∣

∣

∣cβ − (a+ b
√
Dr)

∣

∣

∣ ≈ 2e+

c is comparative in size to the previous
quantities. Consider the integral matrix









0 0 2n+e+

⌊

2e−√
Dr
⌉

0
⌊

2n+e+
√
Dr
⌉

0 2e+
⌊

β2n+e+
⌉









.

Using LLL, we find a short vector
(

−b
⌊

2e−√
Dr
⌉

, c2e+

, r
)

in the lattice spanned by the
rows of the matrix; the scaling of the last column was chosen, following the arguments
above, such that all entries in the vector have comparable sizes. This determines b and c,

and we let a =
c

⌊

β2n+e+
⌉

−b

⌊

2n+e+ √
Dr

⌉

2n+e+ ∈ Z.
To get back to our standard representation of Kr

0 , we need to relate w and zr. By
(13) and (12),

ψ(zr) = ψ(yr)2 = −A− 2
√
B < 0,

so that

w =

√

Dr

B
· −zr −A

2
. (16)

To obtain abelian varieties over finite fields, we need to reduce the class polynomials
modulo certain prime ideals p1 of Kr

0 . Let p be a rational prime that splits as p1p2

in Kr
0 . Assume that p1 splits in Kr, so that p1 = q1q1, and that the type norm of q1

is a principal ideal of K. Then the class polynomial splits totally modulo p1, and its
reduction may be computed as follows: If p1 = pOKr

0
+ (a + bw)OKr

0
with a, b ∈ Z,

replace each occurrence of w by −a
b and reduce modulo p.

6.2 The cyclic case

Here the class polynomials are defined over Q, its coefficients may be obtained by a
2-dimensional lattice reduction, and reduction modulo primes is trivial.

7 Implementation and parallelisation

Our implementation of the algorithms defined here is available in the software package
Cmh[20], which can be downloaded from

http://cmh.gforge.inria.fr/.

The current version of the Cmh software package is still in development, and will be
named Cmh-1.0 once some packaging improvements, alongside with minor bug correc-
tions, are checked in.

The software implements the different steps of Algorithm 1 as follows:

20

http://cmh.gforge.inria.fr/


• Steps 1) to 3) of Algorithm 1 are performed by a script in Pari/Gp[1], which
does all computations symbolically, and the running time of which is essentially
negligible.

• The computation of ϑ-constants in Step 4) of Algorithm 1 is done by a C program,
based on the library Gnu Mpc[18], itself using the Gnu Mpfr[24] and Gnu
Mp[23] libraries. Newton lifting is used for this step from a base precision of
2 000 bits, and it is parallelised through MPI.

• Reconstruction of the class polynomials from the numerical values of the Igusa
invariants is done inside the same C program, relying on the library Mpfrcx[17] for
basic operations on polynomials using the FFT and asymptotically fast algorithms
on trees of polynomials. In a preparatory step, the leaves of the tree for H1 are
filled with the linear factors of the class polynomial, those for Ĥk, k = 2, 3, are
filled with the values of jk. Let the subscripts l and r denote the left and the right
descendant, respectively, of a given node. Then an inner node n(1) in the tree
for H1 is computed as n(1) = n

(1)
l ·n(1)

r , while an inner node n(k) in the tree for Ĥk,

k = 2, 3, is obtained as n(k)
l · n(1)

r + n
(1)
l · n(k)

r , where n(1) denotes the node at the
same position in the tree for H1; for details, see [35, Algorithms 10.3 and 10.9].
By first combining pairs of complex-conjugate leaves in a preprocessing step, all
computations are in fact carried out with real floating point polynomials, see [19].
So if at a given level the tree for H1 contains m nodes, all nodes at this level of
the three trees can be obtained with 5m independent multiplications, which are
parallelised using MPI.

• Recognition of the polynomial coefficients as elements in Kr
0 is also embedded in

the C program, using Fplll[10] for the LLL step.

• Assuming that K 6= Q(ζ5), for which the result is known, validation of the obtained
class polynomials is performed by computing a Weil number π above a prime
p ≈ 2128, constructing a curve over Fp having as endomorphism ring the ring of
integers of K using Mestre’s algorithm [29], and verifying that the cardinality of
the Jacobian matches NK/Q(1 ± π). This step is done in Pari/Gp and also has a
negligible cost.

In the following we report on the performance of these different steps, illustrated by
both small and large examples.

7.1 Computation of ϑ-constants

We report timing results for the computation of fundamental ϑ-constants for two arbi-
trary period matrices. Table 1 shows that already our implementation of the relatively
simple naive algorithm presented in §5.1 may be several orders of magnitude faster3

3Such a quadratic, yet efficient implementation was used by T. Houtmann to compute class polyno-
mials of degree up to 500 (personal communication, no reference exists).
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than Magma-2.19.4, the performance improvement ratio depending on the period ma-
trix. Newton lifting is preferable above some cut-off value for the precision, here 16 000
and 4 000 bits, respectively. The naive algorithm is rather sensitive to the period matrix;
generally speaking, it converges the faster the larger the imaginary parts in Ω are, which
correspond to smaller q0, q1, q2. A noticeable difference between our naive algorithm
from §5.1 and the implementation in Magma is that the favorable cases are not the
same. This is most likely due do different choices of summation regions, as briefly dis-
cussed in §5.1. We note that the timings of Newton lifting depend much less on the
period matrix entries than those for the naive method.

Ω =

(

−1+5i
2

i
6

i
6

−1+7i
2

)

Ω =

(

2+10i
7

1+2i
6

1+2i
6

4

10
+ 8i

)

bits Magma Cmh-naive Cmh-Newton Magma Cmh-naive Cmh-Newton

≈ 211 0.46 0 0.02 0.03 0 0.02
≈ 212 3.4 0.01 0.04 0.17 0.04 0.03
≈ 213 26 0.07 0.08 1.1 0.20 0.09
≈ 214 210 0.31 0.24 8.2 1.0 0.26
≈ 215 1700 1.3 0.69 60 5.2 0.75
≈ 216 6.4 2.0 430 27 2.2
≈ 217 32 5.7 3100 130 6.0
≈ 218 160 16 720 16
≈ 219 770 39 3100 40
≈ 220 3200 98 96
≈ 221 240 230
≈ 222 560 530
≈ 223 1400 1300
≈ 224 3200 3000
≈ 225 7600 7100
≈ 226 16000 16000

Table 1: Computation of ϑ0(τ) (Intel i5-2500, 3.3GHz; Magma-2.19.4; Cmh-1.0)

Notice that the running times for Newton lifts are consistent with the theoretical
complexity of O(M(N) logN). The code in Cmh implements the approach using finite
differences for estimating the Jacobian matrix as described in §5.4, as well as an al-
gorithm which computes the exact Jacobian matrix along with the Borchardt mean as
given in [15, Algorithme 16]. Both converge equally well, but the latter approach is
computationally more expensive by roughly 45 %, accounted for by a larger number of
multiplications.

7.2 Breakdown of timings for small class polynomial examples

Table 2 illustrates our class polynomial computations on relatively small examples.
Our code distinguishes orbits of the roots of the Igusa class polynomials under

complex conjugation. For instance, there are four real roots and 58 pairs of complex-
conjugate roots in the second example, so that altogether we need to carry out 62 lifts
of ϑ-constants. Instead of targeting a given precision based on arguments as developed
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K = Q[X]/(X4 + 144X2 + 3500)
C = NΦr (ClKr) = Z/2Z × Z/30Z
preparation 0.2
base, 2 000 bits 0.6
lift, 3 984 bits 0.8
lift, 7 944 bits 2.1
reconstruction attempt 0.1
lift, 15 846 bits 6.2

H1, Ĥ2, Ĥ3 ∈ C[X] 0.1
H1, Ĥ2, Ĥ3 ∈ Kr

0 [X] 3×0.3
check 0.8
Total (incl. I/O) 12.4

K = Q[X]/(X4 + 134X2 + 712)
C = NΦr (ClKr) = Z/2Z × Z/60Z

preparation 0.3
base, 2 000 bits 1.1
lift, 3 988 bits 1.6
lift, 7 958 bits 4.4
reconstruction attempt 0.1
lift, 15 886 bits 13.1
reconstruction attempt 0.2
lift, 31 744 bits 38.7
H1, Ĥ2, Ĥ3 ∈ C[X] 0.6
H1, Ĥ2, Ĥ3 ∈ Kr

0 [X] 1.8 + 2×1.4
check 0.7
Total (incl. I/O) 69.2

Table 2: Timings in seconds for two examples (on one Intel i5-2500, 3.3GHz)

in [33], we simply carry out successive lifting steps until the polynomial reconstruction
succeeds. This explains the time needed for failed reconstruction attempts in Table 2,
which could be avoided if we had a sharper bound on the required precisions. It regu-
larly occurs, even though this is not illustrated by the examples here, that the recon-
struction of the class polynomial H1 ∈ Kr

0 [X] succeeds one lifting step before that of
Ĥ2, Ĥ3 ∈ Kr

0 [X]. This can be explained by the relative size of the invariants considered
by Streng, see [34, Appendix 3].

The timings indicated as “preparation” and “check” in Table 2 correspond to the
number theoretic calculations performed in Pari/Gp. The preparation time covers the
enumeration of NΦr (ClKr) ⊆ C, and the creation of the relevant set of reduced period
matrices. Checking means finding a Weil number over a 128-bit prime and generating a
genus 2 curve whose Jacobian has complex multiplication by the maximal order of K.

8 A large example

Our currently largest example is K = Q[X]/(X4 + 1357X2 + 3299), containing K0 =
Q(

√
1828253) of class number 2. Its Shimura class group is C = NΦr (ClKr) ≃ Z/2Z ×

Z/2Z×Z/5004Z of size 20016. On one core of an Intel Core i5-4570 clocked at 3.2 GHz,
the structure of the class group is obtained with our Pari/Gp script in roughly one
second, while the computation of the period matrices and their symbolic reduction into
the fundamental domain F2 takes 388 s.

The associated ϑ-constants consist of 10008 pairs of complex-conjugate values. For
the first ten Newton iterations up to a precision of about 2 000 000 bits, we used 640
cores Intel Xeon X5675 at 3.07 GHz; for the last two iterations, we switched to a machine
with only 160 cores Intel Xeon E7-8837 at 2.67 GHz, but with 640 GB of main memory.
Table 3 gives the timings (in seconds) for the Newton lifts of one particular period
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matrix. The small value of δ, estimated as explained at the end of §5.4, shows that the
effective precision indeed almost doubles in each step as predicted by Theorem 12.

precision δ time
2 000 — 0.03
3 986 14 0.01
7 970 2 0.1

15 932 8 0.3
31 862 2 1.0
63 718 6 2.9

127 434 2 8.2
254 858 10 24
509 714 2 61

1 019 416 12 150
2 038 832 0 360
4 077 652 12 940
8 155 302 2 2 100

Table 3: Time for lifting steps for example with #C = 20 016.

The lifting step accounts for a total of about 420 CPU days, but thanks to its easy
parallelisation on 160 to 640 cores, it was finished in less than 4 days wall-clock time
(including additional overhead for writing intermediate results to disk).

The computation of the floating point polynomials H1, Ĥ2 and Ĥ3 was carried out
at a precision of 7 850 071 bits (the lowest lifting precision reached for one of the period
matrices). After regrouping complex conjugates, the first step consists of 5 · 10008/2 =
25020 multiplications of monic polynomials of degree 2 with real coefficients, which can
be arbitrarily parallelised; we used a machine with 24 Intel Xeon E7540 cores at 2.0 GHz
and 512 GB of memory. At degrees 2 048 to 8192, the FFT multiplications required
too much memory to be executed in parallel on all cores, so we reduced the number
of simultaneous multiplications to the maximum possible, as indicated in Table 4. In
the last step, we needed to multiply a degree 16 384 polynomial with a degree 3 632
polynomial. The wall-clock time of this polynomial reconstruction step, counting input-
output time and the cost of resuming computations, was almost exactly 3 days.

Recognising one coefficient of the floating point polynomials as an element of Kr
0

took on average 980 s per coefficient on one Intel Xeon E5-2650 core at 2 GHz. The
total CPU time for the 60 045 coefficients was thus about 680 CPU days; with up to 480
cores working in parallel, this took less than 2 wall-clock days.

The uncompressed storage size of the three resulting polynomials in base 10 is about
90 GB. The common denominator of the coefficients of H1 has 8 884 distinct prime
factors, the largest one being 1 506 803 839. It occurs to powers 2 in H1 and 4 in Ĥ2

and Ĥ3, consistent with the fact that the power of h10 in the denominator of j2 and j3
is 2 instead of 1 for j1.
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input degree # multiplications wall-clock time (s) #threads
2 25 020 380 24
4 12 510 560 24
8 6 225 780 24

16 3 125 1 300 24
32 1 565 1 800 24
64 780 2 700 24

128 390 3 700 24
256 195 6 300 24
512 100 11 000 24

1 024 50 13 000 24
2 048 25 25 000 10
4 096 10 20 000 10
8 192 5 71 000 3

16 384 5 67 000 5

Table 4: Polynomial reconstruction timings for example with #C = 20 016.
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