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Wireless sensor networks are of energy-constrained nathieh
calls for energy efficient protocols as a primary design goals,
minimizing energy consumption is a main challenge. We are
concerned in how collected data by sensors, can be processed
to increase the relevance of certain mass of data and redece t
overall data traffic. Since sensor nodes are often densely de
ployed, the data collected by nearby nodes are either reshind
or correlated. One of the great challenges for the aforeioresd
problem is to exploit temporal and spatial correlation agithe
source nodes. Our work is composed of two main tasks: 1- A
predictive modeling tasthat aims to capture the temporal corre-
lation among collected data. 2- data similarity detection task
that measures the data similarity based on the spatiallabare

Key words:Wireless sensor networks; Time series forecasting; Data ag
gregation; Data similarity; Redundancy; Spatial corietat Temporal
correlation;

1 INTRODUCTION

Wireless Sensor Networks have opened up new opportunitiesany do-
mains including environmental monitoring, agriculturgjustrial, biological
detection (On/In-Body sensor networks), home securitysamnan.
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A main task of sensor networks is the regular collection aygregation
of data towards the base station. participating nodes isetinetworks are
typically battery operated, and thus have access to a linsiteount of en-
ergy and processing power. One node, called the leadeectoltlata from
surrounding nodes and then sends the summarized infommatiopstream
nodes (many-to-one flows). It happens that some collocaiddsnotify the
sink about the same event, at almost the same time and apai®ly the
same values. This induces a propagation of redundant higiiglated data,
which is costly in terms of system performance, and resaoleniergy deple-
tion, network overloading, and congestion. However, intgatrideas in last
decade arise to lighten the importance of redundancy onatataracy and
sensing reliability in WSNs. Therefore, methodologies ¢argéase or even
eliminate the redundancy are often needed to make a balataedn the
benefits and disadvantages while maintaining the systetintié in WSNSs.
For this purpose, clustering and data aggregation appesacas been ex-
tensively studied [1], since the energy consumption of teevork can be
minimized if the amount of data that needs to be transmittedinimized.

The idea behind data aggregation is to combine the data gdingim dif-
ferent sensor nodes en route, eliminating redundancymmi#img the number
of transmissions and thus saving energy [21]. Many reseasdimve noted
the importance of data aggregation in sensor networks sJ@8h Basically,
there are two types of data aggregation techniques: Spiatialaggregation
which aggregates data from different sources and tempatalabgregation
which combines data from different periods of time.

Along with this, the performance of data collection and aggtion in
WSNSs can be enhanced by exploiting the data correlationsnsd®anodes
are often densely deployed in sensor network[2], hencedteabllected by
nearby sensor nodes are either redundant or correlatesl d@ita correlation
can be exploited to reduce the amount of data transmittedeémetwork,
resulting in energy savings.

Spatial Correlation occurs when observations from the@ersdes which
are in close proximity are highly correlated (the degreeoofelation depends
upon the distance between nodes). Therefore, informabontean event is
captured by many surrounding sensor nodes, which genelatgeaamount
of traffic on the wireless channel and consumes a lot of hateergy. Fur-
thermore, the nature of the physical phenomenon condithi& Temporal
Correlation between each consecutive observation of asansle.

In this paper, we propose an estimation-based algorithnvestigate tem-
poral and spatial correlations among data in WSNs to de¢eletrdancy and



reduce data transmission traffic. Our work is composed ofrivain tasks:

A predictive modeling tasand adata similarity detection taskThe goal of

a predicting modeling is to build a model that can be usedédipt— based

on known examples collected in the past, future values ofesphenomena
which will reduce the transmission rate from a sensor nodbédase sta-
tion. This model aims to capture the temporal correlatiomagncollected

data. While the data similarity detection task (relayed emkl based meth-
ods) measures the similarity between collected data inrdedienprove the

performance of data collection while preserving data samoyur The use of
these two tasks produces a considerable accuracy predactibtransmission
rate reduction as we will show later in this paper.

The rest of the paper is structured as follows: Section 2ige®an overview
of time series techniques, describes our prediction mattpaesents its ef-
ficiency in terms of communication traffic and rate. In Settd we present
key concepts on similarity functions. We also propose diatdayity detec-
tion algorithm and show its efficiency. Section 5 concludespaper.

2 FORECASTING TECHNIQUES

To improve the performance of data aggregation, Times séoiecasting
was proposed as a means to reduce the amount of communibatiwaen
the wireless sensor and the sink. The sink node exploitsgaries model to
predict local readings instead of direct communicatiomwsgnsors.

Some approaches [27, 19] use AR/ARMA models (AutoRegressiu-
toRegressiveMoving Average) [4] contained in both the sinét each sensor.
Other approaches were based on Kalman filters [20]. Some Usveel-
atively complex probabilistic models (e.g., multi-vagaBaussians [10] or
generalized graphical models). Other works were more snliide [27] in
which the framework relies mostly on local probabilistic aets computed
and maintained at each sensor. This model is similar in ckeréo our pre-
diction model, in that each sensor continuously maintagiecal model, and
notifies the sink only of significant changes. However, it hawe heavy-
weight learning phase than our model as we mention later.efegork
in [19], gives nodes, additional task over environmentahitoing. Every
node, has to calculate an Adaptive-ARMA model (A-ARMA) franhistory
of samples to discover the time series correlation betwesasarements. Al-
though it uses ARMA, the work proposed in [19], is close tososince it
uses recent readings to predict future local readings. Vdheading is not
properly predicted by the model, the sensor choose to re-tha model, and
notify the sink by sending new model parameters and a centainber of



recent readings samples. Predictions would then begimagad continue,
until an error tolerance is violated.

2.1 Modeling time series

A time series is a set of observatioXs, each of which is recorded at time
t, representing a phenomena evolving over time. An imponant of the
analysis of time series is the description of a suitable ttaogy data model
to predict future values using some recent history of regalilPAR/ARMA
models are principal models for time series. Being more Erifgan ARMA
model due to its lower computational cost and memory reqmergs, AR
model becomes popularin many domains (such as in financenooioation,
weather forecasting, and a variety of other domains [4] flihe series (AR)
of orderk is represented as follows:

AR(]{I) : XfL'Jrk = Qo + ale-Jrk,l + -4 ale- (1)

whereay,...a; are the model parameterx, is the time series. The work
in [27] shows that AR models, while simple, still offer exesit accuracy
in sensor networks for monitoring applications, makinghsomdels practi-

cal on many current-generation sensor networks. We wilpatlus model

due to its simplicity, which leads to lower computationastand memory
requirements (unlike the fully general ARMA models).

2.2 Our Estimation approach

Motivation

Our prediction model design is motivated by the need to redct@mmmu-
nication overhead between sensors communicating on on@dtbp in or-
der to increase sensor lifetime and the monitoring operati&since sensor
nodes are energy-constrained and they are difficult to ce@aery time when
consumed: such as implantable body sensors (pacemakecaatidverter-
defibrillators), disaster or battle field monitoring serssetc. Moreover, since
it was indicated by empirical studies [13], that the trarssiun of one bit over
100 meters would cost about the same level of energy as exg@@00 in-
structions in sensor node. We try to achieve our goals usiedjgtion model
without loosing accuracy by exploring temporal correlatnong data.

Prediction Model Overview

Basically, the communication between a sensor and a sirduisedl by an er-
ror threshold violation. Regularly, when a sensor collectew observation,

it computes the error valuebetween this new observation and the predicted



value from the model. If the prediction error becomes bighan some pre-
specified error tolerance, the prediction is not acceptaiiien sensor node
re-computes the parameters of the model from a number ofrseenples,
and sends information about the changes to the sink as maditificto update
its model. In most cases, the information sent to the sinklaanodel pa-
rameters and optionally a list of measures such as in [27]28id In [15],
we proposed two algorithms with a pre-specified error boune. reduced
the communication overhead by sending only one previousuregAlgo-
rithm 1 denoted by¥ E ) then a list of recent errors (Algorithm 2 denoted by
EEET) for more accuracy and energy-saving. We assume havingraahor
data series with no anomalous values and we demonstratedfitiency of
EEET algorithm in terms of communication traffic and energy caonption.

Preliminaries

In this part, we rely on cluster-based data aggregation ax@sims in which
each node can reach its corresponding sink (e.g Cluster)ida@adtly in one-
hop (such as In/On-Body sensors for personal health mamitor) and we
assume having a proper routing protocol.

We employ an AR-based model for data prediction. The modebis
tained in both: the sink and each source sensor node, tacpradiies instead
of direct communication. As [26], we ignore the trend andsseal compo-
nents of the time series and we set a narrow prediction windewoted by
k = 3in order to decrease the complexity of learning and adagtiegnodel.

The choice of a narrow prediction window is made for two reasgl) to
simplify our model similarly to [26, 27], (2) Our experimemisults depicted
in Figure 1 show that a large prediction window does not yealtrease the
percentage of accepted values. In fact, a too large windcanmthat we take
into account very old information that may have changedhsatgorithm re-
action to change may be too slow. This could explain the dievian number
of accepted values when the window size increases. Thislcequire more
re-learning phases. Moreover, Figure 2 shows that the ptge error is
limited (~5%) while changing the prediction window size for this dafaet.
So typically, we consider a value of 3 a reasonable compmis

2.3 Predictive modeling task¥ E E* algorithm

The prediction task is based on the work presented in [15§uRely, when
a sensor collects a new observatiipat timet, it computes the error value
e between this new observation and the predicted valuérom the model.
If the prediction error becomes bigger than some pre-speélcdiror toler-
anceth (X is mispredicted value), the sengerlearnsthe prediction model
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FIGURE 2
Influence of the prediction window size on the estimatioroeusing EEE™ and
therr = 0.05.

from a number of recent samples, and sends information aheuthanges
to the sink as notification to update its model. It also getesra new error
prediction bound as follows:

k
N; — N;_
th/ = Z(%) + Trand (2)
i=1

Trand IS random values [ﬁ,c—\/";] to add some reliability the choice of.
We denote by the standard deviation of the differences between thetlates
data sampled/;. c indicates the level of uncertainty (for a confidence waér

of 95% we choose = 1.96). The prediction would then begin again and

continue until the new error prediction bound is violated.

2.4 Our prediction model Efficiency

Performance of the models is statistically evaluated in rrepaf different
tables such as Data point statistics (RMSE, correlatiofficamt,..), Relative
error statistics (Mean value of the relative error,..) atitecs. To evaluate the
performance in estimation of our model and AR/ARMA models, wge the
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Relative error produced b EE* and different other models such as AR(2), AR(3)
and ARMA(3,3)

relative error measure between the real values and theastinones, the
residual values and the correlation coefficient.



Prediction Accuracy

Information about the absolute error is little use in theesloe of knowledge
about the magnitude of the quantity to be measured. So, ier doddeter-
mine if the estimation error produced is too high or acceptambrding to the
dynamic threshold change, we choose to use the relative leetaveen the
estimated and the real values, as folloﬂsj;ﬁ. Figure 3, shows the relative
error obtained using EE* on real data series such as: the chemical pro-
cess temperature readings taken every minute, the mongagunements of
carbon dioxide above Mauna Lbaand cardiac frequency measureménts

Data type AR(2) AR(3) ARMA(3,3) EEE*
Garden (T°) up to 43% | upto 50% | Divergence up to 7%
Chemical process (T°) upto 40% | upto43% | upto41l% up to 6%
Carbon dioxide upto10% | upto11% | upto11l% up to 2%
Cardiac frequency | upto50% | upto50% | upto35% | 99% of errors

were< 5%
Radiosity up to 60% | upto 60% | upto60% | 99% of errors
were< 8%
Female (T°) ~5% ~5% ~4% ~3%

TABLE 1
The relative error produced by each model estimations: ARR(3), ARMA(3,3)
andEEE™"

Figure 3 shows the relative error producedby E* and different other
prediction models such as AR(2), AR(3), ARMA(3,3). In faptedictions
generated by AR/ARMA models using different estimation imoefs such as
MLE, Burg, OLS and Yule-Walker, did not produce better rekaerrors com-
pared to our prediction model. AR/ARMA models tend to be dieat in
some cases such as Figures 3(a). This is due to the effeatesdriess of
accuracy along the prediction process.

As shown in Table 1, the relative error producedtiy E* did not exceed
8% for most data types used. In cases such as cardiac freguencan no-
tice that 99% of errors wer€ 5%, and that about 12 of 2565 predictions was
increased up to 15%. We consider that this could be pertunpetifferent
factors (sudden emotions or actions, etc..). Note thatignghper, we do not
detect or take into consideration such events or even deitesions that may
occur in other WSNs applications.

Figure 4, shows the relative error produced by Adaptive-AR83) pro-

* http://www.robjhyndman.com/TSDL/
T http://www.inrialpes.fr/Xtremlog/
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FIGURE 4
Relative error produced by Adaptive-ARMA(3,3) with a boedD5 andE EE™.

posed in [19] and® EE* model on the different data types. For the sake
of fairness, we used A-ARMA(3,3) with a boua€).05. We can notice that
A-ARMAC(3,3) yields the predictions better then classicdk/ARMA mod-
els, due to its model adjustment during the prediction pgscélowever, it
produces less accuracy théhWwE*. Hence, as for the precision and data
transmission traffic, we deduce th&t E* is an appropriate algorithm for



Garden Chemical Carbon dioxide| Cardiac Freq.
Temperature| process (T°)
AR(2) ~1.956 e-08| ~1.586e-06| 5.58e-06 3.343e-06
AR(3) ~0.01523 ~3.363e-05| 6.90e-07 2.752e-08
ARMA(3,3) | 0.00439 0.018 0.00012 0.00012
EEE*" 0.996 0.9889 0.983 0.964
TABLE 2

RV value measuring the correlation between real values aedigtions of AR(2),
AR(3), ARMA(3,3) andEEE*

slow variation data series measurements. We can noticeFthdt* does
not provide greatest estimation quality for the radioatgtias shown in Fig-
ure 4(c). However, we note that 90% of relative errors produced for the
radioactivity were around 8%.

RV coefficient

We also refer to the correlation coefficient to observe thaimnship between
values. The purpose of this is to see how much the real dattharshmples
produced by the discussed models are correlated. In othat, Widwo vari-
ables are correlated, we can predict one based on the otleecaWwnotice
in Table 2 that the correlation coefficient tends to 1IH#& E* and is greater
then other models correlation coefficient values. Thisdathis a strong lin-
ear relationship between the value produced by our modettanckal data.
Combining these results with the one produced in Table 3,amsider that
our model is a good prediction model and produces more aigcestimations
then AR/ARMA models.

Scatterplots

Having a correlation coefficient value that tends to zerolfsas for AR/ARMA
in Table 2), does not mean the absence of relation. There maynbn linear
relation between the models outputs and the real data.

The possibility of such non-linear relationships is anotieason why ex-
aminingscatterplots is a necessary step in evaluating every correlation. Fig-
ure 5 shows the relationships between the ARMA(3,3) &ifdE™ models
andCO2 data values. It indicates thatE’ E* is a suitable algorithm to pre-
dict data studied here then ARMA(3,3) model. As the scalidésdor other
models revel similar results using the different data tygiadied, we did not
show them.
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3 DATA SIMILARITY MEASUREMENTS

3.1 Role of similarity measurements

Similarity measures play a central role in reasoning in mapglications
such as bioinformatics, natural language processing (Ninfjge process-
ing, pattern recognition and different other problems é&imation retrieval.
The similarity functions (called also affinity functionshédenoted by :
X x X — R are in some sense the converse to dissimilarity functions:
meaning that the similarity between two objects should gfdheir dissim-
ilarity decreases. In particular, a similarity functionsispposed to increase
the more similar the points are. Different methods was thiced to mesure
the similarity between two objects, we present below, af lmteoduction to

a special type of similarity functions: the "Kernel funati'.

3.2 Kernel based-methods

Kernel functions are one of the most popular tools in Machiearning and
this has by now reached full maturity as evinced by the nurabgublication
and books related to it. Kernel-based learning algoritt8ha/prk by embed-
ding the data points into a Hilbert space, and searchingrfeat relations in

11



such a space. The embedding is performed implicitly, byi§pag the inner
product between each pair of points rather than by giving twordinates
explicitly. This approach has several advantages, the mysirtant deriv-
ing from the fact that often the inner product in the embeddipace can be
computed much more easily than the coordinates of the pitiatsselves.
Given an input sekX, an embedding spadéand a map) : X — F. Hav-
ing two pointsz; € X andz; € X, the function that returns the inner product
between their images in the spakds known as thé&ernel function.

Definition 3.1 : A kernel k is a function, such that k(x, z)= ¢ (X), ¢ (2)-
for all X, ze X, whereg is a mapping fromX to an (inner product) feature
spaceF'.

Kernel methods can handle different problems of classifing8, 23, 12],
data compatibility, data integration, and data completibimey are based on
measures of similarity (kernel functions) that allow us &fprm classifica-
tion, regression and related tasks (for a complete intribolucefer to [3]).
In-fact, many generic kernels (e.g. Gaussian kernels) glisas specific ker-
nels (e.g. Fisher kernels), describe different notionsimilarity of objects.

The gaussian kernel (3) is a popular and powerful kernel irs@attern
recognition. Theoretical statistical properties of thésriel can be employed
for different techniques such as fuzzy aggregation teakesd11].

—lz—yl?
2% 02 3)
wherek(z,y) € [0, 1], o determines the width of the Gaussian kernel (Note
that we haver = y whenk(z,y) = 1). In what follows, we will adopt the
gaussian kernel function in (3) with = 1.74 such as [9].

k(x,y) = exp

3.3 Data Aggregation scheme

Achieving energy efficiency to prolong the network lifetirisean important
design criterion for Wireless Sensor Networks. Since comioation be-
tween nodes is the main source of energy consumption [2f5relnt tech-
nigues have been used suchDeta Aggregatiorto reduce the communica-
tion cost There are a large number of existing mechanismshwhike data
aggregation more efficient. One of these focuses on edtaidis proper
routing schemes. These schemes organize the sensor ntmlelsaim, a tree
or clusters. As a brief descriptio@hain-based data aggregation algorithms
organize sensor nodes as a shortest chain along which daengnitted
to the sink. WhileTree-based data aggregation algorithmigyanize sensor

12



nodes into a tree. Data aggregation is performed at inteateedodes along
the tree and a concise representation of the data is traedntd the root
node which is usually the sink [22][18Tluster-based data aggregation al-
gorithms organize sensors into clusters. Each cluster has a désibsensor
node as the cluster head which aggregates data from all tHs®rsein the
cluster and directly transmits the result to the sink (suefR8, 17]). In this
paper, we adopt cluster-based data aggregation schemesadbiption of
other schemes is discussed in our future work.

3.4 Related works

A significant challenge in WSNs is to prolong the monitoringeaation of
sensor nodes by efficiently using their limited energy, badth and com-
putation resources. Due to the high density in the netwagpkltmy, sensor
observations are highly spatially correlated. By allowihg nodes to cor-
porate to carry out joint data from aggregation, the amotidiata commu-
nicated within the network can be reduced. Recent techriffrgorocessing
multiple sensor streams in an energy efficient manner has pesposed.
These techniques make use of both spatial and temporalations as well
as clustering approaches to perform data reduction.

The work in [16] proposes an algorithm that manages spatigporal data
in a distributed fashion, it performs in-network regressising kernel func-
tions assuming rectangulaegions of support. The network is assumed
to contain multiple overlapping regions and in each regignifcant spatial
correlations are expected to be observed. The authordimteothe usage
of kernel functions; a region’s kernel function maps a pairib a number,
depending on the position af in the region. Other techniques propose the
use of statistical models of real world processes to redueeodst of sens-
ing and communication in sensor networks such as [10]. To®type built,
BBQ, consists of a declarative query processor and an widgiprobabilis-
tic model and planner, based on time-varying multivariad& &ians.

Here, we extend the previous part to integrate spatial aiityjlmeasure-
ment. This work relays on the idea of decreasing the commatinitoverhead
between nodes towards the base station by: 1- detectingednding redun-
dancy by exploiting data similarity measurements. 2- rgaythe number of
communicated bits since it was indicated that the transamss one bit over
100 meters would cost about the same level of energy as exg@@00 in-
structions in sensor node [13]. An aggregator will not justfprm temporal
aggregation, but also checks for data correlation durimgesgation to reduce
his data transmission amount.

13



Due to the spatial correlation in the sensed data, aggmytdchniques
have been incorporated into the routing protocols. Difiereuting strategies
have involved data compression via coding in correlated dggregation, to
reduce data traffic. These strategies (like aggregatidnigtributed source
coding strategy-DSC [7]) have been based on lossless cedimgmas (such
as Slepian-wolf coding [6]) in data aggregation. In this grapve do not
propose a clustering/routing methods or discuss a codimgnsa and its de-
pendence of optimal cluster-sizes on spatial correlatidfe suppose that
clusters and clusters heads (CH) are determined usindpbdistd or central-
ized methods such as LEACH, HEED [17, 29] and others [24]. Y¢aiae
having a suitable routing protocols that do not interferthwie spatial ag-
gregation described in section 3.5. Each non cluster hedd sends data to
the CH node in its own cluster instead of to the base stati@).(Bhe ap-
proach of clustering has the following advantages: 1) nehs€nsor nodes
can save energy consumption because the nodes can avoidittagce com-
munication and have only to send data to its own CH being yeamtl 2) the
amount of data to be sent to BS can be reduced, which also tevesergy
consumption. In what follows, we propose an algorithm basetime series
estimations to investigate temporal and spatial coriatio reduce the com-
munication overhead and ensure estimation accuracy. @eriexent results
show that the relative errors between estimations madeebgdhrce sensors
and the ones deduced by the sink, are very small.

3.5 Data similarity detection task
Given a typical WSNs in which each node records informatiomfits vicin-
ity and transfers this information to a centralized basgata Nodes which
are close to each other, eventually sense similar infoonatience the infor-
mation is geographically correlated. So, before senditwgthie central agent,
a huge saving in data transmission costs may be achievedgoggaging in-
formation from nearby nodes, removing redundancy and keegéta trans-
mission to a minimum. We will call these geographical regiotsimilarity
regions”, denoted byR?; and we consider that these regions are pre-defined
by the base station at the deployment time. Since clustersletermined
based on nodes’ battery level, their coverage capabijlitiescommunication
cost and the node density such as [17, 29, 5] it may happetvtbateigh-
boring clusters may share spatial data correlation. Hersbaidarity region
may contain different clusters spatially correlated assshim Figure 6. We
denote byA ; the number of clusters in a similarity regidty.

Our goal is to detect data similarities during aggregatdceep data trans-
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mission and overhead to a minimum. Thus, during aggregéitidora-/inter-
clustering aggregation), an aggregator verifies the soof@ach received
data (if it is a source node inside its own cluster or a CH ndda eeigh-
boring cluster) as well as the degree of similarity to redwedhundancy and
overhead communication as possible. Along this line of ¢fims, event de-
tection/anomalies can be also observed. Let us describe sotations used

| Cluster Head

l L
Base station
Y
| Similarity regions |
FIGURE 6

The concept of similarity region.
in this section:

+ 4. the spatial similarity degree threshold. More specificalk, and
. are respectively the degree of similarity thresholds iasicgimilar-
ity region R; and cluster (determined during clustering and similarity
regions decomposition).

+ I': the data similarity threshold. Preciselyr, andI'. refers respec-
tively to the degree of data similarity inside a regiBn and a cluster
(The choice of” values could be a user defined threshold when clusters
and similarity regions are determined).

* dn, n,: the distance between two nodesandny. For simplicity, we
refer to the euclidean distance.

15



For every pair of nodes; andn. belonging to the same clustey,, ,, <
.. While belonging to the same similarity regiaf),,,, < dr; (We
denote bydscy the distance between a sour§eand a cluster head
CH). If A; = 1, the similarity regionR; is a cluster withz, = d. and

Ty, =T..

» We choose to capture the (dis)similarity between two arcfydata A
and B of lengttp by K (A, B) = IIY_k(A;, B;).

We capture the temporal data correlation using our proposadel in sec-
tion 2.3, each sensdf uses a prediction model to estimate future environ-
ment values and communicates with the sink only when a ptiedithresh-
old violation occurs. the values to be transmitted are noentbe model
parameters or recent data raw, but a recent numbeerror values; where

i € {0,..,p}. An aggregator, while monitoring the environment may reeei
an array of data error values{) from a source sensor in its cluster or a CH
neighboring node, and it may combine these values with its @mor values
e;99, if it has, then routes these values to the base station.

During aggregation, distinguishing between fused datmsortant. Simply
speaking, fusing similar data can ensure redundancy add teshuge com-
munication cost. In fact, two nodes andn, located in the same similarity
region or cluster, may have their valueg) and (e;?) highly correlated,
which produces redundancy if they are sent both to the sitdo,Ahe choice
of a similarity region can ensure reliable event detectialicious tasks or
anomalies, based on similarity measurement during inltestering fusion,
for example when a CH node sends to another CH (resided irathe sim-
ilarity region) an information that is not similar to the tiat one, while it
should be, one can deduce that something interesting hagheg.

We assume that neighbor nodes monitor the same event, tii®pas
each sensor is predetermined. Our algorithm is presenteti@ass: When a
sensor nodé sends data array{) to a CH node, the latter -before starting
processing these data- calculates the spatial degree ibdisiynto ensure if
they are in the same cluster or similarity region:

e If dscyg < .. The source and the CH nodes are in the same cluster.
Then, the aggregator uses the Gaussian kernel functiohcolaie the
degree of data similarit) (e, e“) = TI?_ k(e;, e$'H) between his
array of data¢¢*) and (e?) of the source.

—if K(e%,e“H) > T'., the values are highly spatially correlated
and redundancy occurs. Then the aggregator routes its otan da
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values (e$'#) toward the sink. But, to ensure reasonable data
quality and accuracy by the sink while updating its predicti
model, the CH sends in addition to its own values, the array of
similarity measureg (e, e ) between its data values and the
sensors’ ones. These values belonf§)td], and we consider that
sending their decimal part (integer values) instead of tharar-

ror values(e?) (float values) can help reducing the data traffic in
terms of number of bits. Note that the choice of a node CH to

send its ¢¢'#) values is more energy saving especially in case of

data fusion coming from different sensors.

— if K(e“H e%) < I'.. This indicates that an anomaly may occur,
sensors are misbehaving or that something interesting &as h
pened (e.g., the sensor became hot because a fire startbg)near
these cases of which the sink should be aware. In this case, th
aggregator decides to send both valug§ ande; toward the
sink.

* Otherwise, if sensors are in the same similarity regibf-z < Jr;)
, the CH node follows the same process mentioned above bytitan
I'.to FR].

» Note that if both sensors are not in the same similarityaegihe ag-
gregator decides to send both valugé’ ande?.

In the following section, we apply our methodology usingrapie example,
and we try to figure out the communication overhead and dagdigiion
accuracy between the sink and the source sensors (note seasar and a
sink use the same time series prediction model with okderp = 3). In the
experiment below, we considered two values as similar whein tlegree of
similarity k(e?, e#) > 0.3 henceK (e, e“H) > (0.3)P. We then defined
I'. =0.027.

4 EXPERIMENTATION AND ACCURACY RESULTS

We applied our algorithm on a simple 2-hop network topologmposed of
a sensor, an aggregator and a sink. We assume that the sensoe and the
CH nodes are in the same similarity regiBn (A; = 1,T'g, = I'. = 0.027).
Since our prediction model in [14] is suitable for a slow adon measure-
ments, we applied our algorithm on different real data \siluewind speed
at Lille (aggregator at Paris) (see Figure 7), Humidity ager at Limoges

¥ http://www.wunderground.com/global/stations/
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(Source) [CH)

!

Lille Paris Base station

FIGURE 7
Wind speed measurement: the source sensor is locatedeatlhile the cluster head
at Paris.

and Sea Low Level pressure at Limoges (aggregator at Lyo®) méasure
the data prediction accuracy between the sink and the sesticeations after
training the sink prediction model based on the aggregadtal d

Figure 8 shows that the relative error values between s@andaink esti-
mationsc [-7x10~7,10~%], which maintain good data quality and accuracy.
In addition, Table 3 shows the number of data aggregated@mdneinicated
to the base station before and after using the similaritysmeanent. The data
could be the error values (float numbers) and/or the sirhjldegree (integer
values) according to the similarity examination resulte #8n see that the
number of floats communicated after introducing the sirtjlaneasurement
is reduced about 41% for wind speed,20% for humidity and~ 39% for
sea low level pressure which can increase energy saving giemumber of
transmitted bits is reduced. Table 4 represents the totghead in terms of
bytes before and after using the similarity measuremehige consider that
an integer is represented on 4 bytes and a float on 8 bytes. Xpariment
shows a reduction in terms of bits of abeu®20% for wind speed;- 10% for
humidity and~ 20% for sea low level pressure.

Using sim. meas.| Without sim. meas.
Data traffic | #float(a) # int. # float(b) o
Wind speed 51 36 87 ~ 0.586
Humidity 24 6 30 0.8
Pressure 69 42 111 ~ 0.62
TABLE 3

The data traffic produced before and after introducing thelarity measurements.
Here%, is the fraction between the data traffic (in terms of floatsipobe
and after using similarity measurements .
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The relative error between the sensor and sink estimations.

Data traffic | Without sim.(a) | Using sim.(b) %
Wind speed 696 bytes 552 bytes | ~0.79
Humidity 240 bytes 216 bytes 0.9

Pressure 888 hytes 720 bytes | ~0.81

TABLE 4
The data traffic represented in terms of bytes before andiafteducing the similarity
measurements.

5 CONCLUSION

The batteries on today’s wireless sensor barely last a feus,dend nodes
typically expend a lot of energy in computation and wirelessmmunication.
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Hence, the energy efficiency of the system is a major issu¢a Ealection
process and redundancy might have their negative impactretess network
(e.g., waste of energy and bandwidth) due to high data coroation traffic
and rate. We have adopted time series forecasting tectsape we have
proposed an algorithm based on the AutoRegressive modél tARredict
local readings and reduce the data communication rate gieadoy sensors.
We also integrated data similarity measurements basedroelkaethods to
reduce the overall communication load and avoid the trassion of redun-
dant messages. Our experiments show that it's possibledtaesthe com-
munication overhead between nodes while ensuring a rebsodata quality
and accuracy. Our future work is to enhance our algorithmexmperiment it
on complex topologies with clustering/routing methodssiaur experiments
has focused on a simple case topology.
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