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Abstract

We present a fast solution for performing multi-scale detail decom-
position. The proposed method is based on an accelerated iterative
shrinkage algorithm, able to process high definition color images in
real-time on modern GPUs. Our strategy to accelerate the smooth-
ing process is based on the use of first order proximal operators. We
use the approximation to both designing suitable shrinkage opera-
tors as well as deriving a proper warm-start solution. The method
supports full color filtering and can be implemented efficiently and
easily on both the CPU and the GPU. We demonstrate the perfor-
mance of the proposed approach on fast multi-scale detail manipu-
lation of low and high dynamic range images and show that we get
good quality results with reduced processing time.

CR Categories: I.3.6 [Computer Graphics]: Methodology and
Techniques—Interaction techniques; I.4.3 [Image Processing and
Computer Vision]: Enhancement—Filtering.

Keywords: fast edge-aware smoothing, multi-scale image decom-
position, tone mapping.

1 Introduction

During the past few years, there has been a significant amount of
work on edge-aware filtering. Unlike regular Gaussian smooth-
ing, edge-aware filters blur the image while preserving sharp edges.
Probably the most popular edge-aware filter is the bilateral fil-
ter [Tomasi and Manduchi 1998] which performs a weight aver-
aging of the colors in a window based on both space and range dis-
tances. The bilateral filter can be seen as a high-dimensional filter
working in a 5D space when performed on 2D RGB images [Barash
2002]. A naive implementation of this filter is too slow as it oper-
ates on a high-dimension space. Many researchers tried to boost
this filter or at least simulate bilateral-like results by either using
linear interpolation [Durand and Dorsey 2002], reformulation and
downsampling [Paris and Durand 2009; Banterle et al. 2012] or di-
mensionality reduction [Gastal and Oliveira 2011], among others.

Other methods such as [Farbman et al. 2008] and [Xu et al. 2011]
use gradient-based optimization formulation to perform edge-
preserving filtering. Farbman et al. formulate edge-aware smooth-
ing as a Weighted Least Squares optimization problem (WLS). Xu
et al. make use of the L0-minimization framework to progressively
suppress details. In this brief, we perform edge-aware smoothing
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by running very few gradient shrinkage-reconstruction iterations.
Similar methods such as [Xu et al. 2011] unfortunately need a rel-
atively high number of iterations to produce a suitable result. Our
strategy to improve half-quadratic solvers is based on two points :
(1) designing new shrinkage operators that can produce a suitable
photographic look for multi-scale detail manipulation at low itera-
tions, (2) deriving an efficient warm-start solution. We show that
we get good quality results with reduced processing time as can be
seen in Figure 1.

(a) Input (b) Proposed method (0.083 secs)

(c) BF (30.7 secs) (d) RF filter (0.3 secs)

(e) WLS (6 secs) (f) Extrema (58 secs)

(g) Half quadratic L1 (0.93 secs) (h) Half quadratic L0 (0.85 secs)

Figure 1: Image smoothing comparison. (a) Input image. (b) Proposed method
with λ = 0.03, γ = 12 and α = 25 for 2 iterations using f2. (c) Bilateral filter
with (σs = 20,σr = 0.15) for 2 iterations. (d) RF filter [Gastal and Oliveira 2011]
with (σs = 30,σr = 0.4) for 3 iterations. (e) [Farbman et al. 2008] with λ = 0.25

and α = 1 for 2 iterations. (f) [Subr et al. 2009] for 2 iterations. (g) FFT half-
quadratic solver as described in section 2.1 for the L1-norm. (h) FFT half-quadratic
solver for the L0 quasi-norm [Xu et al. 2011].
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2 Iterative Shrinkage Smoothing

2.1 Problem Formulation

Given an input image g, we seek a smooth image u. The problem
can be posed as follows :

argmin
u

λ

2
||u− g||22 + ψ(∇u), (1)

where ψ(∇u) is a gradient function and λ is a positive regular-
ization term. Producing a smooth image requires forcing the out-
put u to have ”sparse” gradients. Thus, ψ(.) should be a sparsity-
inducing function1. Problem (1) is not easy to solve as the function
ψ(.) can be a non-smooth function or not even convex. One pop-
ular method to tackle such problem is by introducing an additional
variable v to obtain a half-quadratic form :

argmin
u,v

λ

2
||u− g||22 + ψ(v) +

β

2
||∇u− v||22, (2)

where β is a new regularization term. The problem above can be
solved by alternative minimization :

v(k+1) ← argmin
v

ψ(v) +
β

2
||∇u(k) − v||22

u(k+1) ← argmin
u

λ||u− g||22 + β||∇u− v(k+1)||22,
(3)

where k is the current iteration number. Calculating v(k+1) cor-
responds to a shrinkage operation while calculating u(k+1) corre-
sponds to the screened Poisson equation [Bhat et al. 2008]. This
equation can be solved either using the FFT (Fast Fourier Trans-
form) or the preconditioned conjugate gradient method [Saad
2003] with an appropriate preconditioner. In this brief, we use the
FFT solver as sparse linear systems are not yet supported for GPU
computing in Matlab :

u(k+1) ← F−1

F
(
λg − β div(v(k+1))

)
λ− β lap

 , (4)

where F is the Fourier transform, div is the discrete divergence
operator 2 and lap is the OTF (optical transfer function) of the dis-
crete Laplacian filter that is calculated only once when the input is
loaded. Adopting this splitting scheme, the method needs two FFTs
per iteration (per channel) to recover u(k+1) which is costly when
the number of iterations needed is high. Our goal in this brief is to
perform faster multi-scale detail decomposition by making use of a
first order estimation of proximal operators.

2.2 Accelerated Iterative Shrinkage Smoothing

In this subsection, we describe the proposed strategy to make the
shrinkage scheme described above faster and suitable for multi-
scale detail decomposition.

2.2.1 First Order Proximal Operators

Let h be a differentiable function. We define the proximal operator
proxth of h as follows :

proxth(x) = argmin
v

{
h(v) +

1

2t
||v − x||22

}
, (5)

1A function which can model heavy-tailed distributions.
2The discrete Laplacian operator ∆ corresponds to ∆ := −(∇Tx∇x +

∇Ty∇y) := −L, where L is the discrete Laplacian matrix.

where t is a positive regularization term. This operator is important
in splitting algorithms and has many useful interpretations (please
refer to [Parikh and Boyd 2013] for an excellent study of proximal
algorithms). Solution can be written as :

proxth(x) = (I + t∇h)−1 (x), (6)

where I is the identity matrix. By using a first order Taylor expan-
sion h(x) ≈ h(v)+∇h(v)T (x− v), the proximal operator can be
approximated with :

proxth(x) ≈ x− t∇h(x). (7)

The solution is refined iteratively as in a gradient descent method.
In this brief, we use this approximation in two important steps of
the smoothing algorithm ; defining new shrinkage operators and
deriving an efficient warm-start solution.

2.2.2 Photographic Derivative Prior

One important parameter in multi-scale detail decomposition is
defining the smoothing behavior. This is directly related to the
derivative distribution prior adopted in the method. For instance,
considering ψ as the l1-norm is supposing that the derivative dis-
tribution follows a Laplacian law (p(x) ∝ e−τ |x|). However, stud-
ies have shown that real-world images’ gradients distribution has
a heavier tail than a Laplacian. In this brief, we consider modi-
fied Cauchy and Welsch derivative priors that we found empirically
fitting better natural images than the Laplacian distribution. It is
important to define appropriate derivative priors for multi-scale de-
tail decomposition to correctly remove details at each step while
preserving salient structures. More important, an appropriate prior
will give a better quality result with reduced iterations, which is our
main motivation in this brief. Unfortunately, using sophisticated
sparse distributions makes the problem non-convex and deriving
the shrinkage operator in this case remains a challenge. Using the
first order proximal operator defined in the preview subsection, we
get accurate estimation of the shrinkage operation. The shrinkage
subproblem of problem (3) can be formulated as :

v(k+1) ← prox 1
β
ψ(∇u

(k)) ≈ ∇u(k) − 1

β
∇ψ

(
∇u(k)

)
, (8)

which simplifies to :

v(k+1)
p ← ∇u(k)

p

(
1− 1

β
wψ
(
∇u(k)

p

))
, (9)

where wψ(x) = ψ(x)′

x
is a weight function of ψ and p is a pixel

location. For the sake of simplicity, we consider fixed β = 1
throughout the brief. Shrinkage can thus be approximated with
simple pointwise multiplication v(k+1) ← ∇u(k) ◦ f(∇u(k)). For
color images, we define the following gradient measure instead of
the norm of each channel of∇u :

T (∇u) =

√√√√( ch∑
k=1

|∂uk
∂x
|

)2

+

(
ch∑
k=1

|∂uk
∂y
|

)2

, (10)

where ch is the number of channels. As discussed before, we con-
sider modified Cauchy and Welsch priors that give the following
weights :

f1(T (∇u)) = 1− 1

1 + (T (∇u)/γ)α (11)

f2(T (∇u)) = 1− e−(T (∇u)/γ)α , (12)

where α and γ are positive parameters. In the original distributions
α = 2. We introduce the parameter α for more sparsity 3.

3In fact, it is easy to see that when α → +∞, f1 and f2 correspond to
hard-thresholding operators.



2.2.3 Efficient Warm-Start

Solving problem (3) corresponds to an iterative process. Thus, the
initial solution u(0) plays an important role in terms of speed of
the algorithm. To accelerate the method, we derive a warm-start
solution u(0). This initial solution should be very fast to compute
and has to be calculated only once, when the input image is loaded
by the user. Clearly, the difficulty is due to solving the screened
Poisson equation in (3). We rewrite the problem in the matrix form

(βL+ λI)︸ ︷︷ ︸
A

u(0)︸︷︷︸
x

=
(
−βdiv(v(0)) + λg

)
︸ ︷︷ ︸

b

, (13)

whereL is the discrete Laplacian matrix and I is the identity matrix.
Applying the first order proximal operator gives :

u
(0)
k+1 ← u

(0)
k − t

{
(βL+ λI)u

(0)
k + βdiv(v(0))− λg

}
. (14)

For one iteration, the warm-start solution u(0) can be approximated
with the following formula :

u(0) ≈ g + ξdiv (∇g −∇g ◦ fi(T (∇g))) , ξ > 0. (15)

We fix β = 1 and run very few iterations (1 to 2) of problem (3)
to recover the base layer in the multi-scale detail decomposition
process. For the warm-start parameters, ξ is set between 0.01 and
0.25, α is fixed to 2 and γ is set to around 400. We summarize
the proposed method for edge-aware smoothing in algorithm 1.

Data: Input image g, parameters λ, γ, α, warm-start parameters
and the number of iterations iter.

Result: Smoothed image u.
Step 1 : Calculate the filter lap and store it;
Step 2 : Calculate the warm-start solution u(0) and store it;
for l=1 to iter do

Step 3-1 : Calculate the shrinkage weights fi(T (∇g));
Step 3-2 : Calculate v(l) = u(l−1) ◦ fi(T (∇g));
Step 3-3 : Calculate u(l) with equation (4);

end
Return the smoothed image u← u(iter);

Algorithm 1: Our solution to fast edge-aware filtering.

Figure 1 demonstrates the performance of the proposed approach in
comparison with various state-of-the art methods. Smoothing was
performed in the CIELab colorspace. Note the quality of the result
after only 2 iterations. The method takes less processing time with
improved quality compared to the RF filter of the domain transform
method [Gastal and Oliveira 2011]. Note that the domain transform
is one of the fastest methods up to now. The proposed strategy is
able to make half-quadratic solvers about 10 times faster while still
producing a good result.

2.3 Performance Evaluation

We have implemented all the applications present in this paper in
Matlab2012b. The proposed filter requires only 1 to 2 iterations.
All the experiments run on Intel Xeon CPU E5-2606 @2.4Ghz and
Nvidia Tesla C2075 GPU. Filtering a 1-megapixel full color image
with our filter takes around 0.15 seconds, 0.33 seconds for a 1080p
color image and less than 2 seconds for a 12 megapixel color image
on the CPU. On the GPU, we filter 720p and 1080p images in real-
time. As mentioned before, solving the screened Poisson equation
can be also performed using fast sparse linear solvers. We found
that the proposed filter preserves time consistency and can be thus

used also for fast video edge-aware manipulation. Please refer to
the supplementary material for video examples ( c© copyright 2008,
Blender Foundation / www.bigbuckbunny.org).

3 Fast Multi-Scale Detail Manipulation

Multi-scale Detail Enhancement Edge-aware filtering can be
used to decompose one image into several layers according to its
degrees of details. One can thereafter manipulate each layer and
recombine them to boost details on multiple scales [Farbman et al.
2008]. Let B0,...,Bk be different smoothed versions of the input
image g. As k becomes larger, Bk becomes coarser, with g = B0.
These layers are called base layers. Detail layers Dl are extracted
by subtracting the base layer Bl+1 from its richer version Bl as
Dl = Bl − Bl+1. Each detail layer is then multiplied by a pa-
rameter as well as the coarsest layer Bk and summed to form the
output image. Figure 2 (b) presents an example of fine-scale detail

(a) Input (b) Proposed method (c) WLS

(d) Extrema (e) Domain transform (f) EAW

Figure 2: Fine Detail Enhancement. (a) Input image. (b) Proposed
method using f1. (c) Weighted-least squares approach [Farb-
man et al. 2008]. (d) Local extrema decompositing [Subr et al.
2009]. (e) Domain transform [Gastal and Oliveira 2011]. (f) Edge-
avoiding wavelets from [Fattal 2009].

enhancement applied to the flower (a). As can be seen, the result
generated with the proposed method is visually similar to the one
produced with the WLS filter (c). However, generating the two
layers took only 0.047 seconds with our approach. WLS method
[Farbman et al. 2008] took 2.7 seconds in Matlab R2012b with the
direct solver and around 1.5 seconds with the PCG method [Saad
2003] using an incomplete Cholesky factorization preconditioner.

HDR Tone Mapping As regular display screens have a low dy-
namic range, high dynamic range images (HDR) require compres-
sion before displaying them. This operation is known as ”tone map-
ping”. Edge-aware filtering can be used for tone mapping by per-
forming a multi-scale decomposition of the log-luminance channel
similar to the one discussed in the previous paragraph. We present
in Figure 3 an example of HDR tone mapping with our approach.
Our result (d) is artifact-free and visually similar to (c). The pro-
posed solution took only 0.025 seconds on Matlab2012b to extract
the base layer. Another example of HDR tone mapping is presented
in Figure 4 with a 3 layers decomposition. The method produces a
suitable photographic look with reduced processing time.



(a) [Durand and Dorsey 2002] (b) [Gastal and Oliveira 2011] (c) [Farbman et al. 2008] (d) Proposed method

Figure 3: HDR Tone Mapping. (a) Result with the bilateral filter. (b) Result using the domain transform approach. (c) Result using WLS
[Farbman et al. 2008]. (d) Our result for 1 iteration with λ = 0.006, γ = 40 and α = 2 using f2;

(a) [Farbman et al. 2008] (b) Proposed method

Figure 4: Multi-layer HDR Tone Mapping. (a) Result with WLS.
(b) Proposed method. (HDR image c© Industrial Light & Magic.
All rights reserved.)

4 Conclusion

We present a fast solution for multi-scale detail manipulation. Our
approach is based on an accelerated iterative shrinkage method. We
introduce new sparsity-inducing weights and an efficient warm-start
solution for fast processing. We show that we get good quality re-
sults with reduced processing time. We demonstrate the perfor-
mance of our solution on low and high dynamic range images.
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