
HAL Id: hal-00869263
https://hal.science/hal-00869263

Submitted on 2 Oct 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Implementation and Implications of a Stealth
Hard-Drive Backdoor

Jonas Zaddach, Anil Kurmus, Davide Balzarotti, Erik-Olivier Blass, Aurélien
Francillon, Travis Goodspeed, Moitrayee Gupta, Ioannis Koltsidas

To cite this version:
Jonas Zaddach, Anil Kurmus, Davide Balzarotti, Erik-Olivier Blass, Aurélien Francillon, et al.. Imple-
mentation and Implications of a Stealth Hard-Drive Backdoor. ACSAC ’13, Dec 2013, New Orleans,
United States. pp.978-1-4503-2015-3/13/12. �hal-00869263�

https://hal.science/hal-00869263
https://hal.archives-ouvertes.fr

Implementation and Implications of
a Stealth Hard-Drive Backdoor

Jonas Zaddach†∗ Anil Kurmus‡∗ Davide Balzarotti† Erik-Oliver Blass§ Aurélien Francillon†

Travis Goodspeed¶ Moitrayee Gupta‖ Ioannis Koltsidas‡

ABSTRACT

Modern workstations and servers implicitly trust hard disks
to act as well-behaved block devices. This paper analyzes
the catastrophic loss of security that occurs when hard disks
are not trustworthy. First, we show that it is possible to
compromise the firmware of a commercial off-the-shelf hard
drive, by resorting only to public information and reverse en-
gineering. Using such a compromised firmware, we present
a stealth rootkit that replaces arbitrary blocks from the disk
while they are written, providing a data replacement back-

door. The measured performance overhead of the compro-
mised disk drive is less than 1% compared with a normal,
non-malicious disk drive. We then demonstrate that a re-
mote attacker can even establish a communication channel
with a compromised disk to infiltrate commands and to ex-
filtrate data. In our example, this channel is established
over the Internet to an unmodified web server that relies
on the compromised drive for its storage, passing through
the original webserver, database server, database storage en-
gine, filesystem driver, and block device driver. Additional
experiments, performed in an emulated disk-drive environ-
ment, could automatically extract sensitive data such as
/etc/shadow (or a secret key file) in less than a minute. This
paper claims that the difficulty of implementing such an at-
tack is not limited to the area of government cyber-warfare;
rather, it is well within the reach of moderately funded crim-
inals, botnet herders and academic researchers.

∗Both authors are first authors.
†EURECOM, 06560 Sophia Antipolis, France. Email:
{jonas.zaddach,davide.balzarotti,aurelien.
francillon}@eurecom.fr.
‡IBM Research – Zurich, 8803 Rüschlikon, Switzerland.
Email: {kur,iko}@zurich.ibm.com.
§College of Computer and Information Science, Northeast-
ern University, Boston, MA, USA. Email: blass@ccs.neu.
edu.
¶travis@radiantmachines.com
‖Department of Computer Science and Engineering, UCSD,
La Jolla, CA, USA. Email: m5gupta@cs.ucsd.edu.

1. INTRODUCTION
Rootkits and backdoors are popular examples of malicious

code that allow attackers to maintain control over compro-
mised machines. They are used by simple botnets as well as
by sophisticated targeted attacks, and they are often part
of cyber-espionage tools designed to remain undetected and
collect information for a long period of time.

Traditionally, malicious code targets system utilities, pop-
ular network services or components of the operating system.
However, in a continuous effort to become more persistent
and avoid detection, the target of the infection has shifted
from software components towards more low-level elements,
such as bootloaders, virtual-machine hypervisors, computer
BIOS, and recently even the hardware itself.

The typical hardware-based threat scenario involves a ma-
levolent employee in the manufacturing process or a compro-
mised supply chain. In addition, many devices from trusted
parties have been known to contain rootkits for copyright
protection [14] or lawful interception capabilities in network
devices [5, 10]. Recent reports of hard drives shipping with
viruses [23] show that such threats are also realistic in the
context of storage devices. In this paper, we will demon-
strate that it is not even necessary to have access to the
manufacturer or to the supply chain in order to compromise
a hard drive’s firmware. Instead, a firmware backdoor can
be installed by, e.g., traditional malware after the operating
system has been compromised.

From the attacker’s point of view, a drawback of hard-
ware backdoors is the fact that they are highly hardware
dependent, requiring customization for each targeted de-
vice. This has made hardware backdoors less generic and
less attractive than more traditional operating-system back-
doors. However, the hard-drive market has now shrunk to
only three major manufacturers, with Seagate and Western
Digital accounting for almost 90% of all drives manufac-
tured [4]. While drive firmwares may vary across product
lines, porting a backdoor from one model to another of the
same manufacturer should require only a limited amount of
work, making backdoors on hard drives an attractive attack
vector.

So far, malicious hardware has typically been used as a
stepping stone to compromise other system components: for
example, by exploiting the auto-run functionality, filesystem
vulnerabilities [21], or DMA capabilities on systems lack-
ing properly configured I/O Memory Management Units
(IOMMU). In such cases, malicious code on the operat-
ing system is simply bootstrapped from the hardware device.
Then, to perform its operation, the malware propagates and

infects the OS kernel, using the compromised hardware only
as a way to survive re-installation and software updates.
However, as soon as malicious code “leaves” the firmware
and moves to the system memory, it breaks cover. There-
fore, such malware can be detected and prevented by kernel-
or hardware-supported integrity mechanisms, such as Copi-
lot [25].

In this paper, we describe how an attacker can overcome
the above limitations by leveraging a storage firmware back-
door. Such a firmware backdoor does not require any modi-
fication to the operating system. The backdoor is, therefore,
less intrusive and less dependent on other layers (e.g., OS,
applications, and filesystem). As a consequence, it cannot
be detected by existing mechanisms that guarantee OS in-
tegrity [17, 25].

As a proof of concept, we present a Data Exfiltration
Backdoor (“DEB”) that allows an attacker to remotely re-
trieve and modify any data stored in the device. A DEB
allows a bi-directional communication channel to be estab-
lished between the attacker and the storage device that po-
tentially resides in a data center well outside the attacker’s
reach. As most Internet-based services, such as web forums,
blogs, cloud services or Internet banking, eventually need to
read and write data to disk, a DEB can be used to remotely
exfiltrate data from such services. The rationale of this data-
replacement backdoor is that the attacker can piggy-back
its communications with the infected storage device on disk
reads and writes. Indeed, the attacker can issue a specific
command by encapsulating it in normal data which is to be
written to a block on a compromised hard drive. This com-
mand makes the malicious firmware replace the data to be
written with the data of an arbitrary block specified by the
attacker. In a second step, the attacker can then request
the block that was just written and therewith, effectively,
retrieve the content of any block on the hard-drive. We also
discuss a number of challenges that arise with this technique,
and show how the attacker can overcome them (e.g., data
alignment and cache issues).

Threat Model.
In our threat model, an attacker has compromised an

off-the-shelf computer. This machine may have been ini-
tially infected with a malware by a common attack such as
a drive-by-download or a malicious email attachment. Then
the malware infects the machine’s hard drive firmware by
abusing its firmware update mechanisms. Finally, the OS
part of the malware removes itself from the machine, and
future malicious behavior becomes completely “invisible” to
the OS, anti-virus or forensics tools. Following such an infec-
tion, the malware can keep control of the machine without
being detected even if the drive is formatted and the system
re-installed.

We show in this paper that, surprisingly, the above attack
requires the same amount of effort and expertise as the de-
velopment of many existing forms of professional malware
(e.g., large scale botnets). Moreover, we claim that this at-
tack is well within the capabilities of current cyber-espionage
tools.

Finally, we note that this threat model applies to dedi-
cated hosting providers, since an attacker could temporarily
lease a dedicated server and infect an attached hard drive
via a malicious firmware update. A subsequent customer
leasing a server with this infected drive would then be a

victim of this attack.

Contributions.
We make the following major contributions:

• We report on our reverse-engineering of a real-world,
off-the-shelf hard-disk drive, its code update mecha-
nism, and how one could infect its firmware with a
backdoor that can (generally) modify blocks written
to disk. We measured our backdoor’s worst-case per-
formance impact to be less than 1% on disk operations
(Section 2).

• We present the design of a novel exfiltration mecha-
nism, a data replacement backdoor, allowing a remote
attacker to establish a covert data channel with the
storage device (Section 3).

• We evaluate the impact of our compromised drive in
a realistic attack scenario involving the communica-
tions between the attacker and the disk drive storing
the database of a typical Linux/Apache/PHP web fo-
rum. As our prototype modified disk firmware was not
stable enough for such complete experiments, we have
evaluated this scenario in a QEMU simulation (Sec-
tion 3.4).

• We discuss possible countermeasures and defense strate-
gies against our attack, such as encrypting data at rest.
We also discuss explorative defense techniques, e.g.,
a page-cache-based probabilistic detection mechanism
(Section 4).

2. BACKDOORING A COMMERCIAL OFF-

THE-SHELF HARD DRIVE
In this section we describe how we inserted a backdoor

into the firmware of a stock hard drive.

2.1 Modern Hard-Drive Architecture
The software and system architecture described here are

specific to the drive we analyzed. However, we observed
that it is almost identical for two distinct drives from one
product family of the same manufacturer, and a brief look
at one drive from another major manufacturer revealed a
very similar architecture.

Physical Device.
A hard disk is a set of rigid magnetic disks aligned on

a spindle, which is rotated by a motor. A rotary actua-
tor structure moves a stack of heads relative to concentric
tracks on the surface of the disks. The entire apparatus is
contained in a tightly sealed case. A micro-controller takes
care of steering the motors and translating the higher-level
protocol that a computer uses to communicate with the disk
to and from a bitstream, which is processed by specialized
hardware (a DSP or FPGA) and fed to the heads [8]. To-
day, hard disks interface with other systems mostly through
Serial ATA (SATA) and Small Computer Systems Interface
(SCSI) buses, although bridge chips might translate to other
buses, such as USB. Parts of those protocols are typically
handled directly in hardware.

SATA cable

SATA drive

Relay for serial port

controlled power reset

Spare power cable

Spare relay

Serial to USB cables

Power cord

Figure 1: Custom backdoor development kit. This

apparatus was built to reset the drive, allowing easy

scripting and automated tasks. One USB to serial

cable controls the relay, the second is connected to

the serial port of the drive. The SATA cable is con-

nected through a USB-SATA adapter for backdoor

development. It is then directly connected to a com-

puter motherboard for the field tests.

Execution Environment.
Like many embedded systems, this hard drive is based on

a custom System on Chip (SoC) design. This SoC is built
around an ARM966 CPU core, a read-only memory (ROM)
containing a“mask ROM”bootloader, internal SRAM mem-
ories, an external serial FLASH (accessed via an SPI bus),
and an external DRAM memory. This DRAM is the largest
memory and is used to cache data blocks read from or writ-
ten to disk as well as a part of the firmware code that does
not fit into the SRAM.

Interestingly, this hard drive also provides a serial con-
sole accessible through a physical serial port on the drive’s
Master/Slave jumper pins.

Software Architecture and Boot Sequence.
The bootloader in mask ROM is executed immediately

after the CPU resets and loads a reduced boot firmware
from the serial FLASH chip. The boot firmware has the
capability to initialize the hardware to a sufficient degree to
load the main firmware from the magnetic disks. However,
it does not implement the full SATA protocol that this hard
drive uses to talk to the computer.

Finally, the main firmware is loaded into memory from
a reserved area of the disk (not user accessible) and then
executed. Additional overlays, providing non-default func-
tionality, can be loaded on demand from the reserved area.
For example, a diagnostic menu available through the serial

Storage

Flash memory

On Disk

3rd Bootloader

 2nd Bootloader

System

OverlaysOverlaysOverlays

SD-RAM

Blocks
Buffering

System
Area

ASIC/Microcontroller

Internal RAM

Internal RAM

Mask ROM Bootloader

Ad
dr

es
s

Sp
ac

e

Figure 2: Overview of a hard drive’s architecture.

console is in overlays “4” and “5”. The memory layout at
run-time is depicted in Figure 2.

As our hard drive has a SATA bus, read and write requests
to it are encapsulated in the ATA protocol. This is a simple
master-slave protocol where the computer will always send
a request, to which the hard drive replies with a response.

Inside the hard drive’s firmware, five components take care
of processing data: the interrupt handlers process hardware
events, the SATA task processes data from the SATA port,
the cache task manages the cache memory and evicts blocks
from the cache, the read-write task transfers data to and
from the disk platters, and the management task handles
diagnostic menu commands and background activities.

Analysis Techniques.
Knowledge about the system was acquired from publicly

available information (e.g., [1]) and by reverse-engineering a
hard drive in our lab. While the firmware (except for the
mask ROM bootloader) is contained in update files, their
format is not obvious and the header format was not doc-
umented. Fortunately, the diagnostic menu allows parts of
memory to be dumped while the system is loaded. Thus,
it proved easier to dump the firmware of the running hard
drive through this menu than recovering it from the firmware
update binary.

The mask ROM bootloader contains another menu, which
can be accessed at boot time on the serial console. This
menu provides a means to read and write the memory con-
tents before the boot firmware is loaded. We therefore de-
signed a small GNU Debugger (GDB) stub that we injected
into the hard drive’s memory.

Inconveniently, our target hard drive’s ARM 966 [3] core
lacks hardware debug support. Therefore, we relied purely
on software breakpoints, rather than on hardware break-
points or single-stepping. In this context, software break-
points are essentially instructions that trigger a data abort
interruption. By hooking into that interrupt vector’s han-
dler and replacing instruction by a breakpoint, one can im-
plement a debugger stub fully in software.

If a software breakpoint is overwritten prior to it being
reached, e.g., because the firmware loads new code, the
breakpoint will never be triggered. In addition, we have
observed that interrupt vectors or the debugger code itself
can be overwritten by the firmware. To work around these
problems, because of the lack of hardware breakpoints and
watch-points, we manually identified all sections of code that
load new code and hooked these functions to keep our de-
bugger from disconnecting.

Finally, because setting a software breakpoint requires to
modify instructions, it was not possible to put breakpoints
on the ROM memory that contains the first bootloader and
many other important library functions.

Our debugger stub itself requires only 3.4 kB of memory,
and it can be easily relocated to a new address. It commu-
nicates with a GDB instance over the serial port while still
allowing the firmware’s debug messages to be printed on the
serial port. As the stub is stateless, it does not require any
permanent storage of information. Complex debugging fea-
tures, such as the bookkeeping required for breakpoints, are
managed on the reverse engineer’s workstation by GDB.

2.2 Developing Malicious Payloads
Our main goal in designing a proof-of-concept compro-

mised hard-drive firmware is to be able to modify blocks
as they are read from or written to the disk. Hooking into
write requests allows the backdoor to read and tamper with
data blocks in the write buffer before they are written to the
disk. In particular, we use a sequence of bytes in the first few
bytes of a block, as a magic value. When this magic value

is detected by the backdoored firmware, predefined actions
of the backdoor will be triggered.

Hooking Writes in the Firmware.
A write operation in a modern hard drive specifies the

logical block number to write to (LBA), the number of blocks
to write, and the data to be written. This information is
encoded in ATA commands and transmitted to the hard
drive through the Serial ATA connection.

On the hard drive we reverse engineered, specialized hard-
ware is responsible for receiving the ATA messages and no-
tifying the firmware by raising an interrupt. The firmware
then performs the action corresponding to the opcode field
of the ATA message. In a write DMA extended ATA com-
mand, the data is then passed to the cache management
task. This task keeps the received data blocks in volatile
low-latency memory. When contiguous blocks are received,
the firmware aggregates these blocks in memory. Eventu-
ally, the blocks will be evicted from cache memory, either
because the cache is filled with newer data, or because a
task commits them to the hard drive. Finally, the blocks
will be passed to the read/write task, which takes care of
positioning the head on the right track of the platter, and
writes the data to the magnetic storage.

Figure 3 shows the sequence of the operations inside the
hard drive. Our backdoor inserts itself in the call chain be-
tween the cache manager and the read/write task. By hook-
ing writes after the cache, we ensure that the performance
overhead remains low. At this point ATA commands have
already been acknowledged, thus, the overhead of searching
for the magic command in a block is less apparent to the
user.

Reading Blocks from inside the Firmware.
Reading blocks inside the firmware proved to be harder

than modifying writes. In order to read an arbitrary block,
the modified firmware has to invoke a function providing
several structured parameters. In our prototype implemen-
tation, this operation seems to trigger some internal side
effect that makes the firmware unstable when multiple con-
secutive read operations are performed by our code.

Update Packaging and Final Payload.
Thanks to the debugger and the full firmware image, we

were able to understand the firmware update format. We
then generated a modified firmware update file that includes
the original firmware infected with our proof-of-concept ma-
licious code. Such a firmware update file can then be pro-
grammed to the disk with the manufacturer’s firmware up-
date tool, which could be done by a malware with admin-
istrator rights. The backdoor will then be permanently in-
stalled on the drive.

With the current state of our reverse engineering of the
hard drive, we can reliably hook write commands received
by the hard drive and modify the data to be written to the
magnetic platter. The backdoor can also read and exfiltrate
arbitrary blocks, but it is not stable enough to retrieve mul-
tiple blocks from the disk. A more stable implementation
would allow the full port of the Data Exfiltration Backdoor
that we will present in Section 3. We could invest more time
to try to solve the bug in our code, but there are few incen-
tives to do so as our aim is to demonstrate the feasibility
of such attacks rather than to develop a weaponized exploit
for the hard drive.

However, the current state is sufficient to fully imple-
ment more straightforward attacks. For example, we can re-
implement the famous backdoor presented by Ken Thomp-
son in Reflections on Trusting Trust [29]. In this lecture
Thompson presented a compiler that inserts a backdoor while
compiling the UNIX login command, allowing the password
check to be bypassed. Similarly a compiler would transmit
such a functionality when compiling a compiler. A malicious
drive version of the login program backdoor simply detects
a write to the disk of a critical part of the login binary and
replace the code by a malicious version of the login binary.

2.3 Evaluation of the backdoor
We performed an overhead test to measure the impact

of the backdoor under worst-case hard-drive operation. In-
deed, if the backdoored firmware introduced significant over-
head, this may alert a user of an anomaly.

This experiment is performed on the hard drive with the
firmware backdoor described in Section 2.2, on an Intel Pen-
tium E5200 2.5 GHz desktop computer equipped with 8 GB
of physical memory. The hard drive was connected over in-
ternal SATA controller (Intel 82801JD/DO (ICH10 Family)
4-port SATA/IDE Controller).

Overhead Test.
We measured the write throughput on the test machine

using IOZone [18]. As the backdoor functionality is only ac-
tivated during writes, we use the IOZone write-rewrite test.
We compare the write throughput obtained on the system
running the unmodified hard drive firmware with the one
running the backdoored firmware.

We perform the test with the IOZone o_direct option

Computer

SATA
communication

Hard drive

Cache manager

Backdoor

5: Disk write
(LBAw, count, data,
 memory address)

Read/write disk

- Decode backdoor
 command
- Replace block to write 6: Write blocks

(LBAw, count, replaced data)

 - Merge successive
 write requests

SATA controller

Process
- Write command
 'XYZFXYZFXYZF...' to modify
 block LBAw through
 backdoor

OS: filesystem,
block cache

- Allocate blocks (LBAw, count) to file
- Cache written blocks in RAM

1: Write file (filename, data)

2: Write blocks
 (LBAw, count, data)

3: ATA write
(LBAw, count, data)

SATA link

4: Cache write (LBAw, count,
data, memory address)

Figure 3: Call sequence of a write operation on the hard drive.

set to compare the results when the filesystem cache is not
present. Most applications make use of the filesystem buffer
cache to optimize access to the hard drive. However, with
the cache enabled, our experiments showed it was impossible
to distinguish the performance of the modified firmware from
the original one. Hence, we emulate, as best as we can, a
suspicious user attempting to detect hard-drive anomalies
by testing the direct throughput.

Table 1: Filesystem-level write-throughput

Write test

Mean (MB/s) 95% CI

With backdoor 37.57 [37.56; 37.59]
Without backdoor 37.91 [37.89; 37.94]

We perform 30 iterations of the experiment, with a 30
second pause between successive iterations. For each set
of values measured, we compute 95%-confidence intervals
using the t-distribution. Table 1 shows the comparison of
the write throughputs of the hard drive with the unmodified
and the backdoored firmware. In both cases, we executed
the IOZone write/rewrite test to create a 100 MB file with
a record length of 512 KB.

Comparing the results, we can conclude that the backdoor
adds an almost unnoticeable overhead to write operations.
For instance, to put those results into context, we measured
larger disk throughput fluctuations by changing the cable
that connects the hard drive to the computer than in the
case of our backdoor.

3. DATA EXFILTRATION BACKDOOR
In this section, we present the design overview of a back-

door that allows to send and receive commands and data

Figure 4: A server-side storage backdoor.

between the attacker and a malicious storage device, i.e., a
Data Exfiltration Backdoor (DEB).

Basically, a DEB has two components: (i) a modified
firmware in the target storage device and (ii) a protocol
to leverage the modified firmware and to establish a bi-
directional communication channel between the attacker and
the firmware.

First we describe a concrete scenario in which the data ex-
filtration attack is performed, and then proceed to describe
the challenges and our solution in detail.

3.1 Data Exfiltration Overview
We start with a real-world example of a server-side DEB,

where the compromised drive runs behind a typical two-tier
web server and database architecture, see Figure 4. This
scenario is of particular interest, because the various proto-
cols and applications between the attacker and the storage
device can render the establishment of a (covert) communi-
cation channel extremely difficult. We assume that the web
server provides a web service where users can write and then
read back content. This is the case for many web services.
The specific example we select here is that of a web forum
or blog service where users can post and browse comments.

To perform data exfiltration from a server, the attacker
proceeds in the following way:

First, the attacker performs an HTTP GET or POST re-

quest from his or her browser to submit a new comment
to the forum of the web server. The comment contains a
trigger value, or magic value, and a disguised “read sector
X” command for the backdoor. The web server passes this
comment data and other meta-data—such as the user name
and timestamp—to the back-end database through an SQL
INSERT query. Using the filesystem and the operating sys-
tem, the database then writes the data and meta-data to the
compromised storage device. As one of the write requests
contains the magic value, some of the comment data is now
replaced by the compromised firmware with the contents of
sector X.

Finally, the attacker issues a GET request to simply read
the exact forum comment just created. This causes an SQL
SELECT query from the web application to the database,
which triggers a read request from the database to the com-
promised storage device. The content of the comment dis-
played to the attacker now contains data from sectorX. The
attacker has successfully exfiltrated data.

We stress that this DEB allows the attacker to read ar-
bitrary sectors and access the storage device as a (remote)
block device. The attacker can thus remotely mount filesys-
tems and access files from the device selectively, without
having to exfiltrate the storage device’s contents fully.

For example, by extracting the first couple of sectors,
the attacker can read the device’s partition table, infer-
ring the filesystem types in use. He or she can then follow
the fileystem meta-data either locally inside the disk or re-
motely on his or her client machine to request individual
files. We have automated this process and present results
in Section 3.4. In conclusion, the attacker has a complete
remote read access to the hard disk.

3.2 Challenges in Implementing a DEB
While modern operating systems and disks do little to

actively prevent this type of attack, we have observed some
challenges that we address next.

Data Encoding.
The character encoding chosen by the application should

match the one the backdoor expects. The backdoor may
try different character encodings on the content of incoming
write requests, looking for the magic value in the data. By
knowing the encoded magic value under different encodings,
the backdoor can identify which encoding is being used and
encode the data to be exfiltrated such that it can be read
back without conflicts by the application.

Caching.
Caching at any layer between the attacker and the storage

device will cause delay, potentially both in the reception of
the malicious command and the reply from the device. The
delay corresponds to the time taken to evict the malicious
command from caches above the storage device. Therefore,
this delay depends on the load of the web server and can be
influenced by the attacker.

Magic Value Alignment.
It is difficult to predict the alignment of the magic value

at specific boundaries. This results in considerable over-
head when searching for the magic value in a write buffer.
Searching for a 4-byte magic value in a 512-byte sector, for
instance, would require examining 509 byte sequences. As

discussed in the next section, we mitigate this by repeating

the magic value multiple times in a request, such that the
overhead of searching for it becomes negligible. At the same
time, these repeated sequences form a suitable space for the
exfiltrated data to be written to by the firmware backdoor.

While the above challenges are certainly significant and
render the exploitation of the backdoor more complicated,
they do not prevent the use of DEBs in the general case.
Our implementation provides adequate solutions to all the
above complications.

3.3 Solutions Implemented
When a write request at a block number Y with a to-

be-written buffer B is received, the backdoor checks for a
magic value in buffer B. In our implementation the magic
value is a sequence of bytes (magic), and followed by a se-
quence of bytes (cmd) specifying the malicious command to
be executed. As we now focus on data exfiltration, cmd
contains only the hex-encoded block number to be read. It
would be easy to extend this encoding, for example, to sup-
port other operations, such as appending data to existing
blocks, tampering with stored data, or injecting malicious
code into executables. Here, the attacker submits writes of
length 2 · bkdr bs, formatted in the following way, with ‖
being the concatenation operation:

magic‖ . . . ‖magic
︸ ︷︷ ︸

repeated count times

‖ cmd ‖ magic‖ . . . ‖magic
︸ ︷︷ ︸

repeated count times

‖ cmd

count = (bkdr bs− length(cmd))/length(magic)

Typically, there are layers (such as the filesystem) between
the attacker and the disk that split all writes into blocks
of at least bkdr bs size at an arbitrary offset. Thus, the
blocks created have at least one bkdr bs-sized chunk exclu-
sively containing the repeated magic sequences followed by
the command (modulo a byte-level circular permutation on
the chunk, i.e., a “wrap around”). This allows the backdoor
(i) to make sure the bkdr bs-sized chunk can be safely re-
placed by an equal-size exfiltrated data chunk, and (ii) to
check efficiently for the magic value. More precisely, the
backdoor checks only the first length(cmd)+ length(magic)
bytes of the chunk, because of the possible length(magic)
alignments of the magic value and the possibility of the
chunk starting with cmd. Note that increasing the length of
the magic value increases the performance overhead of the
backdoor. We chose a 4-byte magic value which results in a
low performance overhead.

If the magic value is present in B, the malicious behavior
of the DEB is triggered: The backdoor extracts the com-
mand from the request data, such as “read data at sector
X” for data exfiltration from the storage device, as shown
in Algorithm 1. The backdoor reads data buffer B′ from
sector X, encodes it using base64, which increases its size
by 1

3
, and writes B′. To ensure that the encoded data can

be successfully exfiltrated, the backdoor checks for the pres-
ence of at least bkdr bs ∗ 4

3
bytes of consecutive magic val-

ues in a sequence of blocks and then replaces these by the
base64-encoded data. At this point, a future read request at
address Y will return the modified content, allowing unau-
thorized data exfiltration of the contents at address X from
the device to a remote attacker.

Valid magic sequences could occur during normal, non-

Algorithm 1 backdoor(blocks,magic, cmd size, bkdr bs)

bkdr count← length(magic) + cmd size
for blk in blocks do

if magic present in first bkdr count bytes of blk then

if blk does not contain count successive magics then
continue loop at next iteration

end if

cmd← cmd size bytes after last magic, wrap around
if required
block num← hex decode(cmd)
buf ← read block(block num)
base64 encode(buf)
blk ← buf

end if

end for

malicious use of the storage device. Such a false-positive
would result in the storage device to detect the magic se-
quence and write faulty data to a sector, possibly under-
mining the stability of the system. However, such a false
positive can only occur with negligible probability, as the
backdoor always checks for about two blocks of successive
magic values before attempting a replacement.

Also note that the firmware can write B′ to Y possibly af-
ter modifications through cryptographic and steganographic
operations to prevent easy detection by the administrator of
the target machine.

3.4 DEB Evaluation
As we mentioned in the previous section, our backdoor in

the off-the-shelf disk drive it is not stable enough to per-
form multiple arbitrary reading operations from the disk,
which is required for implementing the complete DEB. In
this section, we therefore report on experiments performed
on a QEMU-based prototype.

We implemented the DEB inside QEMU’s storage device
functionality, which is used when using virtual IDE drives in
system-virtualization software such as KVM and Xen. This
provided us with an easy-to-use platform to develop, test,
debug, and evaluate the backdoor.

In this case, we evaluate the data exfiltration latency from
an attacker’s point of view. In addition, we perform a file
exfiltration test to show the feasibility of retrieving sensible
remote files without needing to exfiltrate the entire disk. We
base this evaluation on the scenario described in Section 3.1.
We have conducted experiments on a virtual machine with
1 GB of memory running on a modified QEMU contain-
ing the backdoor. This is the attacker’s target host. Our
tests were performed on the emulated IDE disk with write-
back caching. The target host runs Ubuntu and an Apache
web server with two PHP scripts providing web forum (or
blog) functionality. The forum shows all (recently) made
comments (or “posts”) using the first PHP script, and also
allows the submission of new comments, using the second
script. These comments are written to and read from a table
in a MySQL database which runs atop an ext3 filesystem.

We emphasize here that the results of this second set of
experiments highly depend on the application, the workload
on the machine, and the total available system memory –
and do not depend much on the caracteristics of the disk or

Table 2: Data exfiltration performance

Mean (s) 95% CI

Insert 10.7 [10.65; 10.71]
Latency 9.7 [9.55; 9.82]
File exfiltration 40.0 [39.6; 40.4]

firmware backdoor. Indeed, because the Linux page cache1 is
essentially an LRU-like cache, forcing the eviction of pages
from main memory requires generating accesses for about
as much data as there is free available memory for buffers
and caches on the system (and the more eager the operat-
ing system is to swap pages, the higher the memory that
is available). For a single block, the time to generate that
workload largely dominates the transfer time from and to
the disk for a single block (even in our setup where rela-
tively little memory is available).

We perform 30 iterations for all tests, with a 30 second
pause between successive iterations. For each set of values
measured, we compute 95%-confidence intervals using the
t-distribution.

Latency Test.
Because of caching, the inserted comments are not im-

mediately updated with the exfiltrated data. In fact, the
malicious blocks are temporarily stored in the page cache —
from where they are retrieved when they are immediately
accessed by the attacker. Therefore, the presence of a cache
forces the attacker to wait until the blocks are evicted from
the cache. In our scenario, this can be forced by the attacker
as well, namely by inserting dummy comments to quickly fill
up the cache and thus force eviction of least recently accessed
data.

The insert time in Table 2 shows the time taken to in-
sert 500 8-KB comments sequentially, using the PHP form.
As described in Section 3.3, the backdoor replaces each of
these comments with 3 KB of exfiltrated data starting at
the sector number included in the comment. The latency

time in Table 2 shows the update latency in seconds for the
500 comments inserted during the insert test — during this
time, the attacker sends many other dummy comments to
speed up cache eviction. It follows that an attacker is able
to exfiltrate 3000 sectors in 10.7+ 9.7 = 20.4 seconds in our
setup, achieving a read bandwidth of 74 KB/s. In practice,
an attacker may limit bandwidth to avoid detection. In addi-
tion, those values will differ depending on the characteristics
of the system (mainly, more physical memory will cause the
comments to persist longer in cache, and more load on the
server will cause the opposite). Hence, these results show
that the latency is likely to be sufficiently low, and that an
attacker can realistically use this technique.

Exfiltration Test.
Let’s now consider a typical case in which an attacker

attempts to exfiltrate the /etc/shadow file on the target
host.

To that end, we created a python program that succes-
sively (a) retrieves the partition table in the MBR of the
disk, (b) retrieves the superblock of the ext3 partition, (c) re-

1The page cache caches blocks read from and written to
block devices, and is integrated with the filesystem cache
(or buffer cache).

trieves the first block group descriptor, (d) retrieves the in-
ode contents of the root directory / (always at inode number
2) in the inode table, and (e) retrieves the block correspond-
ing to the root directory, therefore finding the inode number
of /etc. By repeating the last two steps for /etc, the at-
tacker retrieves the /etc/shadow file on the target host.

Table 2, row 3, shows that /etc/shadow can be exfiltrated
in less than a minute. Because the process of retrieving the
file requires nine queries for a few sectors, each of them de-
pending on the results returned by the preceding query, this
figure is mainly dominated by the time taken to evict com-
ments from the cache. This means that the actual latency
for a single sector is about 4 seconds (for a comparison, note
that the latency figure in row 2 also includes the retrieval
time of the 3000 sectors).

4. DETECTION AND PREVENTION
We first discuss the applicability of existing standard tech-

niques for defeating or mitigating DEBs, including encryp-
tion of data at rest, signed firmware updates, and intrusion
detection systems. Subsequently, we propose two new tech-
niques specifically targeting the detection of DEBs: OS page
cache integrity checks and firmware integrity verification.

4.1 Encryption of Data at Rest
The use of encryption of data at rest is still an exception,

both on servers and desktop computers. When used, it is
often for the purpose of regulatory compliance or to pro-
vide easy storage-device disposal and theft protection (by
securely deleting the encryption key associated with a lost
disk). Under some conditions, encryption of data at rest
mitigates the possibility of data-exfiltration backdoors on
storage devices: it renders establishing a covert communica-
tion channel more difficult for remote attackers and prevents
the untrusted storage device from accessing the data in the
first place.

Hardware-Based Disk Encryption.
Hardware-based disk-encryption mechanisms commonly

rely on the hard disk drive to encrypt data itself. Decryption
is only possible after a correct password has been provided
to the drive. In such a setup, as data is encrypted and de-
crypted within the drive, a backdoor would only have to
hook into the firmware before the encryption component.
Thereafter, the hard-disk will encrypt and decrypt data for
the backdoor.

Software-Based (Filesystem and Partition) Encryption.

Other hard-disk encryption systems, among them Bit-
Locker, FileVault, and TrueCrypt, encrypt full partitions
over arbitrary storage devices. Such mechanisms often rely
on a minimal system to be loaded from a non-encrypted
partition whose integrity is verified by a trusted boot mech-
anism. A trusted boot mechanism relies on a TPM to pre-
vent a modified system, e.g., modified by the drive itself, to
access a protected key sealed by the TPM. However, with-
out an IOMMU, the backdoor on a hard drive can launch a
DMA attack [13] to read arbitrary locations from the main
memory. This allows the backdoored hard disk to obtain the
encryption key. Recently, it has been shown that even mech-
anisms to protect encryption keys against DMA attacks [24]

can be circumvented [7].
In conclusion, neither hardware-based nor software-based

encryption offer full protection against DEBs in all cases.
Disk encryption can prevent DEBs as presented in this paper
when keys are not managed by the disk itself and when the
disk is not able to use DMA to access main memory. This
corresponds to setups in which:

• system-level encryption is used and disks are attached
to the computer (e.g., desktops or laptops) and an
IOMMU (e.g., Intel VT-d or AMD SVM) is present
and properly configured;

• system-level encryption and remote storage are used,
for example, servers with a Network Attached Storage
(NAS) or Storage Area Network (SAN). Such a remote
storage must not support remote DMA capabilities,
like Infiniband or Myrinet protocols does.

We believe that both setups are uncommon. While IOM-
MUs are present in many computers, they are rarely acti-
vated because of their significant performance overhead [6].
On the other hand, servers that rely on a SAN or NAS are
typically not using software disk encryption because of its
significant performance impact.

4.2 Signed Firmware Updates
To protect a device from malicious firmware updates, cryp-

tographic integrity checks can be used. The use of asym-
metric signatures is preferable in this case, and each device
would be manufactured with the public key of the entity per-
forming the firmware updates. Although the idea of signing
the firmware is widely known, we have not been able to
assess how widespread its use is for hard-disks and storage
devices in general. We have found evidence that some RAID
controllers [26] and USB flash storage sticks [20] have dig-
itally signed firmware, but these appear to be exceptions
rather than the rule.

Nevertheless, signed firmwares do not prevent an attacker
with physical access to the device from replacing it with an
apparently similar, but in reality backdoored, device. Also
note that the recent compromise of certification authorities,
software vendors’ certificates, and hash collisions has demon-
strated real-world limitations of signature mechanisms.

Finally, firmware signatures merely check code integrity
at load time and do not prevent modifications at run time.
A vulnerability in the firmware that is exploitable from the
ATA bus2 would allow infection of the drive, bypassing the
signed update mechanism. In addition, such vulnerabili-
ties are likely to be easily exploitable, because no mod-
ern exploit-mitigation techniques are present in the disk
firmwares we analyzed.

4.3 Intrusion Detection Systems
Current network-based intrusion detection systems and

antivirus software products use, to a large extent, simple
pattern matching to detect known malicious content. The
DEBs presented in this paper could be detected by such tools
if the magic value is known to the latter. This can be the
case if the attacker targets a large number of machines with
the same magic value, but is inadequate for targeted attacks.
For instance, an attacker could change the magic value for

2Or an insecure functionality that could be abused without
physical access.

each target machine or it would be possible to make the
magic values a time-dependent function to evade detection.
Finally, the attacker’s channel used for communication with
the firmware may be encrypted. We conclude that today’s
intrusion detection systems do not offer a strong protection
mechanism against DEBs.

4.4 Page-cache-driven Integrity Checks
In addition to the standard mechanisms presented above,

one could also envision detection technique that relies on the
page cache. Most filesystems leverage the page cache to
significantly speed up workloads by caching most recently
accessed blocks. We propose to modify the page cache to
also perform probabilistic detection of DEBs. As the cache
contains recently written data, it can be used to check the
integrity of disk-provided data.

More precisely, the cache would allocate a new entry on
write misses, and, after the data has been written to the disk
(immediately for write-through caches, and after launder-
ing for writeback caches), subsequent reads from the cache
would be randomly subject to asynchronous integrity checks.
The checks would simply read back data from the disk and
check for a match.

However, with deterministic cache-eviction algorithms such
as least recently used (LRU), both the disk and the remote
attacker could estimate the size of the cache in use, and the
attacker could adjust queries to guarantee that the data has
been evicted from the cache by the time it is read back.
Therefore, we suggest to partially randomize the cache evic-
tion policy. For instance, a good candidate would be a
randomization-modified LRU-2 algorithm, whereby the evic-
tion from the first-level cache to the second-level cache would
remain LRU, but the eviction from the second level cache
would be uniformly random. This technique would intro-
duce a performance overhead, but we conjecture that this
could be an acceptable trade-off for detecting such back-
doors in the wild.

4.5 Detection Using Firmware Integrity Veri-
fication

Recent research in device attestation [22] could be applied
to detect malicious firmwares. However, we note that device
attestation is controversial [9], especially in the specific con-
text of this work: the firmware is typically stored in different
regions of the drive (such as disk platters and serial flash),
and accessing those different regions is slow and subject to
various time delays. Delays are difficult to predict, and this
questions standard assumptions made by existing software-
based attestation techniques, rendering them ineffective in
our scenario.

However, one could leverage the fact that the disk always
starts executing from the ROM code, essentially providing a
hardware root of trust. By interfacing with the ROM boot-
loader and using it to control execution and verify code load-
ing one could guarantee that only correct code was loaded.

5. RELATED WORK
Backdoors have a long history of creative implementa-

tions: Thompson [29] describes how to write a compiler
backdoor that would compile backdoors into other programs,
such as the login program, and persist when compiling fu-
ture compilers.

Many papers describe the design and implementation of
hardware backdoors. King et al. [19] present the design and
implementation of a malicious processor with a circuit-level
backdoor allowing, for example, a local attacker to bypass
MMU memory protection. Heasman presents implementa-
tions of PCI and ACPI backdoors [15, 16] that insert rootkits
into the kernel at boot time. However, with the exception
of Triulzi [30], who presented a NIC backdoor that provides
a shell running on the GPU, and contrary to our approach,
those previous backdoors were only bootstrapped from hard-
ware devices, from where they tried to compromise the host
machine’s kernel. Therefore, those kinds of backdoors can be
detected and prevented by kernel integrity protection mech-
anisms, such as Copilot [25], which is implemented as a PCI
device.

Cui et al. [11] present a firmware modification attack on
HP LaserJet printers. The authors remark that, in the
case of most printers, firmware updates could be performed
by sending specially-crafted printing jobs. Cui et al. also
state that firmware updates were not signed and that sign-
ing would not prove sufficient in the presence of exploitable
vulnerabilities, which is in line with our observations. In ad-
dition, they create, as payload, a VxWorks rootkit capable
of print job exfiltration using the network link the printer
is connected to. However, all such communications can eas-
ily be prevented by following network-level best practices
(segregating printers into their own VLANs without direct
internet connectivity). In contrast, in this work, we focus
on hard drives and present a data-exfiltration payload that
works without direct internet connectivity.

Concurrently and independently from our work, Domburg
(a.k.a. sprite tm) reverse-engineered a hard drive from an-
other manufacturer and also demonstrated that modifying a
hard disk firmware to insert a backdoor is feasible [2], albeit
without demonstrating data exfiltration. This confirms our
findings that reverse engineering of a hard-drive firmware is
possible and within reach of moderately funded attackers.

Other examples of data-exfiltration attacks involving NICs
include [27], where the authors use IOAPIC redirection to
an unused IDT entry that they modify to perform data ex-
filtration. More generally, remote-DMA-capable NICs (such
as InfiniBand and iWARP) can be used to perform data
exfiltration [28]. However, such traffic can equally easily be
identified and blocked by a firewall at the network boundary.
Thus, a covert channel is needed to communicate with the
backdoor, as mentioned in [12] for ICMP echo packets (inde-
pendently of any hardware backdoor). In comparison, our
approach leverages an existing channel on the backdoored
system (e.g., HTTP) and therefore cannot be easily distin-
guished from legitimate traffic at the network level.

6. CONCLUSION
This paper presents a practical, real-world implementa-

tion of a data exfiltration backdoor for a SATA hard disk.
The backdoor is self-contained, requiring no cooperation
from the host. It is stealthy, in that it only hooks legiti-
mate reads and writes, with no reliance on DMA or other
advanced features. We compromised a common off-the-shelf
disk drive with a backdoor that is able to intercept and per-
form read and write operations, with an almost impossible
to detect overhead. This backdoor can be installed by soft-
ware in very little time. We have also demonstrated that
it is feasible to build such a backdoor with an investment

of roughly ten man-months, despite difficulties in debugging
and reverse engineering a disk’s firmware. To mitigate the
threat, we recommend encrypting data at rest to reduce the
trust placed in the disk. We also present a number of foren-
sic techniques which can help to identify a similar backdoor,
although we emphasize that further research is needed to
catch such a backdoor in the wild.

7. ACKNOWLEDGEMENTS
The research leading to these results was partially funded

by the European Union Seventh Framework Programme (con-
tract N 257007).

References
[1] HDD Guru Forums, 2013. URL http://forum.

hddguru.com/.

[2] Jeroen Domburg (a.k.a. Sprite tm). HDD Hacking.
URL http://spritesmods.com/?art=hddhack. Talk
given at OHM 2013.

[3] ARM. ARM966E-S, Revision: r2p1, Technical Refer-
ence Manual, 2004. URL http://infocenter.arm.com.

[4] backupworks.com. HDD Market Share - Rankings
in 2Q12, 2012. URL http://www.backupworks.com/
hdd-market-share-western-digital-seagate.aspx.

[5] F. Baker, B. Foster, and C. Sharp. Cisco Architecture
for Lawful Intercept in IP Networks. RFC 3924 (Infor-
mational), October 2004. URL http://www.ietf.org/
rfc/rfc3924.txt.

[6] M. Ben-Yehuda, J. Xenidis, M. Ostrowski, K. Rister,
A. Bruemmer, and L. van Doorn. The Price of Safety:
Evaluating IOMMU Performance. In The Ottawa Linux
Symposium, pages 9–20, Ottawa, Canada, 2007.

[7] E.-O. Blass and W. Robertson. TRESOR-HUNT: At-
tacking CPU-Bound Encryption. In Annual Com-
puter Security Applications Conference, pages 71–78,
Orlando, USA, 2012. ISBN 978-1-4503-1312-4.

[8] Robert A. Caldeira, John C. Fravel, Richard G.
Ramsdell, and Romeo N. Nolasco. Hard disk
drive architecture, July 1995. URL http://www.
freepatentsonline.com/5396384.html.

[9] C. Castelluccia, A. Francillon, D. Perito, and C. Sori-
ente. On the difficulty of software-based attestation
of embedded devices. In Conference on Computer
and Communications Security, pages 400–409, Chicago,
USA, 2009. ISBN 978-1-60558-894-0.

[10] T. Cross. Exploiting Lawful Intercept to Wiretap
the Internet. Black Hat, 2010. URL http://www.
blackhat.com/.

[11] A. Cui, M. Costello, and S.J. Stolfo. When Firmware
Modifications Attack: A Case Study of Embedded Ex-
ploitation. In Network and Distributed System Security
Symposium, 2013 (to appear).

[12] Daemon9. Project Loki. Phrack 49. URL http://www.
phrack.org/issues.html?id=6&issue=49.

[13] M. Dornseif. Owned by an iPod: Firewire/1394 Is-
sues. PacSec, http://md.hudora.de/presentations/
firewire/PacSec2004.pdf, 2004.

[14] J.A. Halderman and E.W. Felten. Lessons from the
Sony CD DRM episode. In USENIX Security Sympo-
sium, pages 77–92, 2006.

[15] J. Heasman. Implementing and Detecting an
ACPI BIOS Rootkit. Black Hat, 2006. URL
www.blackhat.com/presentations/bh-europe-06/
bh-eu-06-Heasman.pdf.

[16] J. Heasman. Implementing and Detecting a
PCI Rootkit. Black Hat, 2007. URL http:
//www.blackhat.com/presentations/bh-dc-07/
Heasman/Paper/bh-dc-07-Heasman-WP.pdf.

[17] O.S. Hofmann, A.M. Dunn, S. Kim, I. Roy, and
E. Witchel. Ensuring operating system kernel integrity
with OSck. In Conference on Architectural Support for
Programming Languages and Operating Systems, pages
279–290, Newport Beach, USA, 2011. ISBN 978-1-4503-
0266-1.

[18] IOZone. IOZone, 2013. URL http://www.iozone.
org/.

[19] S.T. King, J. Tucek, A. Cozzie, C. Grier, W. Jiang,
and Y. Zhou. Designing and Implementing Malicious
Hardware. In Workshop on Large-scale Exploits and
Emergent Threats, San Francisco, USA, 2008.

[20] Kingston. Secure USB Flash Drives, 2013. URL http:
//www.kingston.com/us/usb/encrypted_security.

[21] J. Larimer. Beyond Autorun: Exploiting vulnerabil-
ities with removable storage. Black Hat, 2011. URL
https://media.blackhat.com/bh-dc-11/Larimer/
BlackHat_DC_2011_Larimer_Vulnerabiliters_
w-removeable_storage-wp.pdf.

[22] Y. Li, J.M. McCune, and A. Perrig. VIPER: Verifying
the Integrity of PERipherals’ Firmware. In Conference
on Computer and Communications Security, pages 3–
16, Chicago, USA, 2011. ISBN 978-1-4503-0948-6.

[23] Maxtor. Maxtor Basics Personal Storage 3200
virus, 2013. URL http://knowledge.seagate.com/
articles/en_US/FAQ/205131en?language=en_GB.

[24] T. Müller, F.C. Freiling, and A. Dewald. TRESOR
runs encryption securely outside RAM. In USENIX
Security Symposium, pages 17–17, San Francisco, USA,
2011. URL http://www.usenix.org/event/sec11/
tech/full_papers/Muller.pdf.

[25] N.L. Petroni Jr, T. Fraser, J. Molina, and W.A.
Arbaugh. Copilot – a Coprocessor-based Kernel
Runtime Integrity Monitor. In USENIX Security
Symposium, San Diego, USA, 2004. URL http:
//usenix.org/publications/library/proceedings/
sec04/tech/full_papers/petroni/petroni.pdf.

[26] RSA. Configuring the RSA II adapter, 2013.
URL http://www.scribd.com/doc/3507950/
RSAII-Card-Installation.

[27] S. Sparks, S. Embleton, and C.C. Zou. A Chipset Level
Network Backdoor: Bypassing Host-Based Firewall &
IDS. In Symposium on Information, Computer, and
Communications Security, pages 125–134, Sydney, Aus-
tralia, 2009. ISBN 978-1-60558-394-5.

[28] F. Sultan and A. Bohra. Nonintrusive Remote Heal-
ing Using Backdoors. In Workshop on Algorithms
and Architectures for Self-Managing Systems, San
Diego, USA, 2003. URL http://www.cs.rutgers.edu/
~bohra/pubs/sm03.pdf.

[29] K. Thompson. Reflections on Trusting Trust. Com-
munications of the ACM, 27(8):761–763, 1984. ISSN
0001-0782.

[30] A. Triulzi. Project Maux Mk.II, I 0wn the NIC,
now I want a Shell! In PacSec Conference, 2008.
URL http://www.alchemistowl.org/arrigo/Papers/
Arrigo-Triulzi-PACSEC08-Project-Maux-II.pdf.

