
HAL Id: hal-00912882
https://inria.hal.science/hal-00912882

Preprint submitted on 2 Dec 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Integrated CHOReOS middleware - Enabling large-scale,
QoS-aware adaptive choreographies

Amira Ben Hamida, Fabio Kon, Nelson Lago, Apostolos Zarras, Dionysis
Athanasopoulos, Dimitris Pilios, Panos Vassiliadis, Nikolaos Georgantas,

Valérie Issarny, Georgios Mathioudakis, et al.

To cite this version:
Amira Ben Hamida, Fabio Kon, Nelson Lago, Apostolos Zarras, Dionysis Athanasopoulos, et al..
Integrated CHOReOS middleware - Enabling large-scale, QoS-aware adaptive choreographies. 2013.
�hal-00912882�

https://inria.hal.science/hal-00912882
https://hal.archives-ouvertes.fr

ICT IP Project

Deliverable D3.3

Integrated CHOReOS middleware

- Enabling large-scale, QoS-aware

adaptive choreographies

http://www.choreos.eu

LATEX template v. 1.16

Project Number : FP7-257178

Project Title : CHOReOS

Large Scale Choreographies for the Future Internet

Deliverable Number : D3.3

Title of Deliverable : Integrated CHOReOS middleware - Enabling large-scale,

QoS-aware adaptive choreographies

Nature of Deliverable : Report + Prototype

Dissemination level : Public

Licence : Creative Commons Attribution 3.0 License

Version : 3.3

Contractual Delivery Date : 30 September 2013

Actual Delivery Date : 30 September 2013

Contributing WP : WP3

Editor(s) : Fabio Kon (USP)

Author(s) : Amira Ben Hamida (EBM), Fabio Kon (USP), Nelson Lago

(USP), Apostolos Zarras (UOI), Dionysis Athanasopoulos

(UOI), Dimitris Pilios (UOI), Panos Vassiliadis (UOI), Niko-

laos Georgantas (Inria), Valerie Issarny (Inria), Georgios

Mathioudakis (Inria), Georgios Bouloukakis (Inria), Yesid

Jarma (Inria), Sara Hachem (Inria), Animesh Pathak (Inria)

Reviewer(s) : Daniel Batista (USP)

Abstract
This document describes the final implementation and the evaluation of the CHOReOS middleware.

Evaluation is achieved both via the use of the middleware on CHOReOS use-cases and via synthetic

experiments and simulation. The conclusion was that the implementation of the CHOReOS middle-

ware has achieved a good level of maturity for an open source project and it is ready to be used in

real-world, complex choreographies.

Keyword List
middleware, architecture, choreography, large-scale, SOA, Internet of Things, Cloud

CHOReOS

FP7-257178 III

CHOReOS

FP7-257178 IV

Document History

Version Changes Author(s)

1.0 Initial Commits of the deliverable on SVN Fabio Kon

1.1 Detailed descriptions of some components Leonardo Leite

1.2 Detailed descriptions of all components WP3 team

1.3 Added evaluation WP3 team

1.4 General review WP3 team

2.0 Final version after internal review WP3 team

2.1 Final version after Valerie’s additional review WP3 team

Document Reviews

Review Date Ver. Reviewers Comments

Outline July 25th 0.1
Agreed outline by

all partners
na

Draft August 15th 1.0 Fabio Kon Comments sent by mail

QA October 9th 1.4 Daniel Batista Comments sent by mail

PTC October 18th 2.1 Valerie Issarny

Internal review and Valerie’s com-

ments addressed and final version

ready

CHOReOS

FP7-257178 V

CHOReOS

FP7-257178 VI

Glossary, acronyms & abbreviations

Item Description

API Application Programming Interface

BC Binding Component

CA Consortium Agreement

CSDL Client/Server Description Language

DL Deliverable Leader

DoW Description of Work

DPWSDL DPWS Description Language

DSB Distributed Service Bus

ESB Enterprise Service Bus

GA Generic Application

IAC Industrial Advisory Committee

IOTS Internet of Things Services

JBI Java Business Integration

JMSDL JMS Description Language

JSDL JavaSpaces Description Language

LTS Labeled Transition System

MST Management Support Team

QoS Quality of Service

OSS Open Source Software

PL Project Leader

PMT Project Management Committee

PO Project Officer

PTC Project Technical Committee

PSDL Publish/Subscribe Description Language

SL Scientific Leader

SE Service Engine

TDD Test Driven Development

TSDL Tuple Spaces Description Language

ULS Ultra-Large Scale

WP Work Package

WPL Work Package Leader

xDL Description Language

XSA eXtensible Service Access

XSB eXtensible Service Bus

XSC eXecutable Service Composition

XSD eXtensible Service Discovery

CHOReOS

FP7-257178 VII

CHOReOS

FP7-257178 VIII

Table Of Contents

List Of Tables . XI

List Of Figures . XIV

1 Introduction . 1

2 CHOReOS Middleware: Architecture & Implementation . 3

2.1 eXecutable Service Composition. 5

2.1.1 Things Composition and Estimation C&E . 6

2.1.2 AoSBM Service Substitution . 6

2.2 eXtensible Service Access. 7

2.2.1 XSB . 7

2.2.2 EasyESB . 9

2.2.3 LSB. 10

2.3 eXtensible Service Discovery . 14

2.3.1 AoSBM Discovery . 14

2.3.2 Things Discovery . 15

2.3.3 Plugin Manager . 15

2.4 Cloud and Grid Middleware . 15

2.4.1 The CHOReOS Enactment Engine . 16

3 How to Use the CHOReOS Middleware. 19

3.1 XSC – How to Use . 20

3.1.1 Composition and Estimation – How to Use. 20

3.1.2 AoSBM Service Substitution – How to Use. 20

3.2 XSA – How to Use . 23

3.2.1 XSB – How to Use. 23

3.2.2 EasyESB – How to Use. 24

3.2.3 LSB – How to Use . 24

3.3 XSD – How to Use . 27

3.3.1 AoSBM – How to Use. 27

3.3.2 Things Discovery – How to Use . 27

3.3.3 Plugin Manager and Plugins – How to Use. 28

3.4 Cloud and Grid – How to Use . 29

4 Evaluation . 33

4.1 Use-Case-Based Evaluation . 33

4.1.1 IoTS Middleware Use-Case-Based Evaluation . 33

4.1.2 XSB Use-Case-Based Evaluation . 34

4.1.3 EasyESB Evaluation. 35

CHOReOS

FP7-257178 IX

4.1.4 AoSBM Discovery and Service Substitution Use-Case-Based Evaluation. 36

4.1.5 Cloud Enactment Engine Use-Case-Based Evaluation . 36

4.2 Experiment-Based Evaluation. 37

4.2.1 ULS Evaluation of IoTS Middleware . 37

4.2.2 XSB Evaluation. 46

4.2.3 EasyESB Evaluation. 51

4.2.4 AoSBM Discovery Evaluation . 52

4.2.5 AoSBM Service Substitution Evaluation . 55

4.2.6 Cloud Enactment Engine Evaluation. 60

5 Conclusion . 65

Bibliography . 67

A Enactment Engine Listings . 71

CHOReOS

FP7-257178 X

List Of Tables

Table 3.1: CHOReOS middleware components and associated requirements fulfilled 19

Table 3.2: Choreos maven repository. 23

Table 3.3: Sensor access middleware REST API. 25

Table 3.4: Response containing the sensing value . 25

Table 3.5: Phone services proxy REST API . 26

Table 3.6: Response for pending requests . 26

Table 4.1: Use of the middleware components by the use cases . 33

Table 4.2: EasyESB evaluation. 35

Table 4.3: EasyESB footprint. 36

Table 4.4: Development effort for the application developer . 47

Table 4.5: Development effort for the JMS binding component . 48

Table 4.6: Results for one-way interaction in all four scenarios with 50 concurrent clients. 49

Table 4.7: Interaction latency on the bus for each interconnection . 51

Table 4.8: WSBQL Query . 53

Table 4.9: Experimental Setup . 54

Table 4.10: Enactment Engine deployment scenarios . 61

Table 4.11: Choreography enactment time . 62

Table 4.12: Enactment Engine scalability analysis. 63

Table 5.1: CHOReOS middleware components summary of achievements . 66

CHOReOS

FP7-257178 XI

CHOReOS

FP7-257178 XII

List Of Figures

Figure 2.1: The CHOReOS middleware overall architecture . 4

Figure 2.2: The CHOReOS eXtensible Service Bus . 8

Figure 2.3: Binding component architecture. 9

Figure 2.4: Sensor access middleware architecture . 12

Figure 2.5: LSB – overall architecture . 13

Figure 2.6: LSB – binding component architecture . 13

Figure 2.7: Enactment Engine components . 17

Figure 3.1: AoSBM graphical user interface. 21

Figure 3.2: The Enactment Engine data model for choreography specification . 30

Figure 4.1: Global IoTS evaluation environment architecture. 39

Figure 4.2: Example deployment of the device registry . 40

Figure 4.3: Internal operations of the NodeLauncher . 41

Figure 4.4: Deployment used for performing ULS evaluations . 43

Figure 4.5: Comparison of registration response times for different input rates . 44

Figure 4.6: Time analysis of probabilistic registration for different input rates. 44

Figure 4.7: Comparison of query response times for different input rates . 44

Figure 4.8: Time analysis of query response times for different input rates. 45

Figure 4.9: Comparison of registration and query response times for ∼15000 nodes at an input

rate of 1000 requests per second . 45

Figure 4.10: Components of mock environment for XSB capacity testing . 49

Figure 4.11: Throughput for one-way interaction of DPWS and JMS services with or without XSB

in scenarios 1, 2, 3 and 4 . 50

Figure 4.12: Latency for one-way interaction of DPWS and JMS services without XSB in scenar-

ios 1 and 2 . 51

Figure 4.13: Latency for one-way interaction of DPWS and JMS services with XSB in scenarios

3 and 4. 52

CHOReOS

FP7-257178 XIII

Figure 4.14: Latency for one-way interaction of DPWS and JMS services with XSB in scenarios

3 and 4 for up to 50 concurrent clients . 52

Figure 4.15: Querying service abstractions vs. concrete service descriptions – 1st set 54

Figure 4.16: Querying service abstractions vs. concrete service descriptions – 2nd set 55

Figure 4.17: Time breakdown for the delegation overhead of the

AbstractWeatherForecastService, when called as a Java API (numbers indicate the

different phases of the translation of abstract to concrete invocations) . 58

Figure 4.18: Time breakdown for the delegation overhead of the

AbstractWeatherForecastService, when called as a Web Service (numbers indicate

the different phases of the translation of abstract to concrete invocations) . 58

Figure 4.19: Total execution time for the invocation of the

AbstractWeatherForecastService . 59

Figure 4.20: Delegation overhead breakdown for AbstractHotel,

AbstractSecurityCompany, AbstractAirplane,AbstractDisplaysManagement,

and AbstractAirportBusCompany, when called as Java APIs (numbers indicate the different

phases of the translation of abstract to concrete invocations). 59

Figure 4.21: Delegation overhead breakdown for AbstractHotel,

AbstractSecurityCompany, AbstractAirplane,AbstractDisplaysManagement,

and AbstractAirportBusCompany, when called as Web services (numbers indicate the

different phases of the translation of abstract to concrete invocations) . 60

Figure 4.22: Total execution time for AbstractHotel, AbstractSecurityCompany,

AbstractAirplane,AbstractDisplaysManagement, and AbstractAirportBusCompany

60

Figure 4.23: Time breakdown for the substituion overhead as a function of the number of services

that use the substituted service. 61

Figure 4.24: Choreography synthetic topology . 62

CHOReOS

FP7-257178 XIV

1 Introduction

The CHOReOS middleware is organized as a collection of software modules, which work together to

support the development, deployment, and execution of complex, large-scale Web Service choreogra-

phies on a Future-Internet-like environment. It brings together technologies related to the Internet of

Things, the Internet of Services, and Cloud Computing to facilitate such tasks. This is achieved by pro-

viding higher-level abstractions and services that organizations can rely upon to build complex, scalable,

and adaptive service compositions.

This document describes the CHOReOS middleware implementation, whose open source code is

available at http://www.choreos.eu/bin/view/Download/Forge and whose documentation is

available at http://www.choreos.eu/bin/view/Documentation/WebHome. The document is

organized as follows. Chapter 2 first presents the middleware overall architecture and then describes

the implementation of each of its major components. Chapter 3 describes how to use the CHOReOS

middleware as a choreography runtime environment. Chapter 4 presents our evaluation of the middle-

ware, based both on the CHOReOS use cases and on synthetic experiments and simulations, stressing

the middleware capabilities. Finally, we present our conclusions in Chapter 5.

CHOReOS

FP7-257178 1

http://www.choreos.eu/bin/view/Download/Forge
http://www.choreos.eu/bin/view/Documentation/WebHome

CHOReOS

FP7-257178 2

2 CHOReOS Middleware: Architecture & Implemen-

tation

The CHOReOS middleware is organized in four major modules: eXecutable Service Composition

(XSC), responsible for coordinating the composition of services and things, eXtensible Service Access

(XSA), which provides the means to access services and things, eXtensible Service Discovery (XSD),

which manages protocols and processes for discovery of services and things, and the Cloud & Grid

Middleware, which manages computational resources and drives the deployment of choreographies.

Figure 2.1 depicts the overall architecture of the CHOReOS middleware, presenting each middleware

module, the components inside them, and the interactions among the components. The figure also

shows the interactions between the CHOReOS middleware developed with WP3 and the Governance

and V&V Framework developed within WP4.

Application developers may choose to use all the middleware components to facilitate the construction

of choreographies or, alternatively, to pick only the components that provide the functionality in which

he/she might be interested. Details about the architecture and implementation of each module are

described in this section. Details about how to use the middleware are provided in Section 3.

CHOReOS

FP7-257178 3

Figure 2.1: The CHOReOS middleware overall architecture

C
H

O
R

e
O

S

F
P

7
-2

5
7

1
7

8
4

Core Contributions The eXecutable Service Composition (XSC) component provides facilities for

the composition of both services and things. Services are composed by devising and deploying appro-

priate Coordination Delegate (CD) within the component-CD container. Basically, the component-CD

container provides the communication primitives (e.g., UPDATE STATE(), WAIT(), NOTIFY()) that are

used by the coordination algorithm (detailed in deliverable D2.3 [15]) to exchange what we have called

additional communication (i.e., coordination information). That is, CDs mediate (in a distributed way)

the business-level interaction protocols of the participant services according to the coordination logic

extracted from BPMN2 choreography diagrams by the synthesis processor (also detailed in deliverable

D2.3 [15]). Things are composed by employing semantic composition specifications modeled as math-

ematical formulas: complex physical properties are derived from simpler ones provided by thing-based

services. The XSC further comprises the abstraction-oriented service substitution facility, which allows

to substitute services that provide similar functional properties. To this end, the services must be rep-

resented by the same abstraction [11] that provides the necessary mappings between the interfaces of

the services.

The eXtensible Service Access (XSA) component provides facilities for interconnecting heteroge-

neous services and things. More specifically, the eXtended Service Bus (XSB) component enables

interconnecting services that employ heterogeneous interaction paradigms, namely, the client-server

(CS), publish-subscribe (PS) or tuple space (TS) paradigms. This is based on appropriate formal mod-

eling and abstraction of each service middleware protocol into a connector representing the corre-

sponding paradigm. Then, the CS, PS and TS connectors are further abstracted into a single higher-

layer connector, the generic application (GA) connector, which unifies their features and enables their

cross-connection. This formal approach is realized into the XSB service bus. XSB is implemented

on top of the EasyESB component, which is a flexible, dynamic-topology enterprise service bus, also

implemented within CHOReOS. XSB principles have also been applied to the Light Service Bus (LSB)

component, which is a lightweight interconnection solution applying to things. LSB additionally supports

data streaming protocols, which are particularly important in IoT.

The eXtensible Service Discovery (XSD) component provides facilities for the organization and the

discovery of available services. To deal with scalability issues that concern the increasing amount of

available services, the XSD employs the abstraction-oriented organization and discovery mechanisms

(i.e., the mechanisms that constitute the AoSBM component) developed in WP2 [7]. Moreover, the XSD

comprises a specialized Things Discovery protocol that leverages the concept of semantic abstractions

for the organization of Thing-based services and offers facilities for the probabilistic registration and

discovery of these services.

The Cloud & Grid Middleware provides a collection of Java classes and web services that make

the process of deploying complex, large-scale choreographies composed of hundreds to thousands

of services very easy. It also provides elasticity features to manage the number of replicas of specific

services based on the workload (e.g., amount of user requests), resource utilization (e.g., usage of CPU

or memory), and of QoS attributes (e.g., response time). To achieve that, it interacts with the CHOReOS

Monitoring service [16] to detect when relevant events that should trigger dynamic reconfiguration occur.

We continue by describing in more detail the internal architecture of each of these middleware com-

ponents.

2.1. eXecutable Service Composition

The eXecutable Service Composition (XSC) supports the composition of large number of services into

business choreographies and large populations of things in response to user queries. Additionally,

XSC supports service substitution for reconfiguration within choreographies. The following sections

provide an overview of the corresponding XSC components, namely, Composition and Estimation (Sec-

tion 2.1.1), and Reconfiguration Management for Service Substitution (Section 2.1.2).

CHOReOS

FP7-257178 5

2.1.1. Things Composition and Estimation C&E

The C&E component enables the composition of thing-based services. We exploit semantic technolo-

gies for the composition specifications. Given that thing-based services are sensing/actuating services

in most cases, we model our compositions as mathematical formulas. For instance, wind chill can be es-

timated from temperature and wind speed measurements. Consequently, the composition specification

is:

WC = (10
√
V − V + 10.5) · (33− T) (2.1)

WC is the symbol for Windchill, V is the symbol of Windspeed, T is the symbol for Temperature. This

information along with the mathematical formula are modeled in the IoT ontology. Concepts such as

Temperature and Windspeed are referred to as expansion concepts.

Application developers can use this component to extract expansion concepts (e.g., Temperature and

Windspeed), or compute the formulas to have an estimation of the initial concept value (e.g., Windchill).

More precisely, the component extracts the expansion concepts and the formulas through SPARQL

queries as strings. They are then parsed, automatically, into Java mathematical functions using the

exp4j1 jar. The component expects that services measuring the expansion concepts will be accessed

for their measurements (using the QueryManager) and the formulas can then be computed using the

acquired measurements as input. The details on the methods and the use of the component are

presented in Section 3.3.

In our current implementation, the component is internally used by the QueryManager, to seamlessly

execute compositions. However, we also provide it as a stand alone component in case the user wishes

to exploit its functionalities separately.

2.1.2. AoSBM Service Substitution

Hereafter, we use the term AoSBM service substitution to refer to the realization of the Reconfiguration

Management for Service Substitution component (Figure 2.1). The idea of service abstractions [9] has

been further exploited to facilitate service substitution. The overall design of the abstraction-oriented

service substitution approach has been specified in D3.2.2 [11], while the prototype implementation of

the service substitution facility has been developed during the last year of the project. Conceptually the

service substitution approach belongs to XSC. However, the implementation of the approach is coupled

with the AoSBM facilities that extract service abstractions. Hence, the implementation of the approach is

physically packaged in the AoSBM package (Section 2.3.1). The main concepts of the AoSBM service

substitution approach are functional abstraction services and impact analyzers.

In particular, service substitution is performed between services that are represented by the same

functional abstraction [9, 7]. Given a functional abstraction we generate a functional abstraction service

that realizes the abstract interface, specified by the given functional abstraction [11]. The functional

abstraction service is configured to delegate invocations, made to the abstract interface, to invocations

on the interface of a concrete service that is hidden behind the functional abstraction service. To realize

this delegation process, the functional abstraction service employs the mapping between the abstract

interface and the interface of the hidden service instance, which is provided in the specification of the

functional abstraction that represents the hidden service instance. The core of the delegation mecha-

nism is a data translation module that transforms the inputs of the abstract invocation into corresponding

inputs for the concrete invocation. Moreover, the data translation module transforms the outputs of the

concrete invocation into corresponding outputs of the abstract invocation. The data translation module

adapts the approach for the translation of XML documents, proposed in [24], to the case of Java objects.

In particular, our approach assumes that the inputs/outputs are typical Java objects that conform to the

JAX-WS2 standard for XML-based Web services. The translation of a given Java object takes place in

1http://www.objecthunter.net/exp4j/
2http://jcp.org/aboutJava/communityprocess/mrel/jsr224/index3.html

CHOReOS

FP7-257178 6

three phases3:

• First, the structure of the source object is recursively traversed using Java Reflection and the

contents of the source object are transformed to a unified data representation that is employed by

the translation mechanism. The unified representation is basically a relation that consists of a set

of tuples.

• Second, the structure of the target object is recursively traversed using Java Reflection, and the

unified data representation of the source object (produced in the first phase) is transformed ac-

cording to the structure of the target object.

• Third, the target object is created using Java Reflection and it is filled with the contents of the

source object that have been transformed according to the structure of the target object.

Substituting the hidden service instance with another service instance that is represented by the

same functional abstraction amounts to change the mapping that is employed by the functional abstrac-

tion service for the delegation of the invocations. During the substitution, the service instances that

depend on the substituted service instance are notified about the change. This notification is the main

responsibility of the impact analyzer that is associated with the functional abstraction service. Upon

the reception of such a notification, the dependent service instances are responsible for managing their

local consistency.

2.2. eXtensible Service Access

The eXtensible Service Access (XSA) represents the main runtime infrastructure for accessing both

services and things. In this section, we present the eXtensible Service Bus (XSB) as well as its specific

paradigms. We dedicate Section 2.2.1 to recall the main concepts of the XSB. Then in Section 2.2.2,

we briefly describe EasyESB, which offers the baseline middleware for the XSA framework. Moreover, it

provides a suitable and scalable environment for business services to get involved into large choreogra-

phies. Finally, we describe in Section 2.2.3 the Light Service Bus (LSB). It is dedicated to Things-based

services and addresses Internet of Things challenges. The several components of the XSA middleware

are fully integrated in the CHOReOS IDRE.

2.2.1. XSB

The eXtensible Service Bus (XSB) provides support for seamless integration of heterogeneous inter-

action paradigms. With regard to middleware-supported interaction, the client-service (CS), publish-

subscribe (PS), and tuple space (TS) paradigms are among the most widely employed ones, with nu-

merous related middleware platforms, such as SOAP, REST, and Java RMI for client-server; JMS and

SIENA for publish-subscribe; and JavaSpaces and LIME for Tuple space. Services relying on differ-

ent interaction paradigms can be plugged into the CHOREOS XSB by employing binding components

(BCs) that adapt between their native middleware and the common bus protocol. This adaptation is

based on the abstractions, and in particular on the conversion between the native middleware, the cor-

responding CS/PS/TS abstraction, and the Generic Application (GA) abstraction, as depicted in Figure

2.2.

eXtensible Service Bus binding components (XSB BCs) are designed to be easily extensible to sup-

port new middleware platforms or new interaction paradigms. Hence, each subcomponent of an XSB

BC is designed with 3 levels, the higher one being the most generic and that can be further refined into

the two lower layers:

3We use the term source object to refer to the object that is transformed by the data translation module; we use the term

target object to refer to the result of the transformation

CHOReOS

FP7-257178 7

Figure 2.2: The CHOReOS eXtensible Service Bus

• The generic level provides APIs and functionalities that are shared among supporting implemen-

tations of all interaction paradigms.

• The interaction paradigm level specializes the APIs and functionalities of the previous level for the

CS, PS and TS interaction paradigms.

• The middleware platform level specializes the APIs and functionalities of the previous level for a

concrete middleware.

Besides a connector’s API, we introduce an abstract interface description language (IDL) for spec-

ifying the open interfaces of systems that rely on middleware represented by the specific connector.

Our IDLs are largely inspired from WSDL. We specify the IDLs conceptually, while we have also imple-

mented each one of them as an XML schema document. Based on the flexibility of XML schema, an

IDL can be easily refined in order to enable the description of a concrete system that is based on the

connector, e.g., we can refine the abstract XML elements into the precise data structures and types of

the specific middleware and system.

The architecture of an XSB Binding Component as provided by our architectural framework is de-

picted in Figure 2.3, where the main components are the xDL Processor, Core Engine, and Envelope

for Substrate Bus.

xDL Processor

The xDL processor processes the descriptions of the services deployed on the XSB. It performs both

parsing of paradigm DL descriptions (CSDL, PSDL, TSDL) and mapping of them to Generic Applica-

tion descriptions (GADL), where the latter relies on XSLT-based transformations. At the generic and

interaction paradigm level, these functions apply to abstract descriptions, while they become concrete

at the middleware platform level. We use the XML schema extensibility mechanisms to specialize these

functions from one architectural level to another. In particular, mapping paradigm DL to GADL descrip-

tions further requires information about the semantic mapping between the constituent services that

are integrated into the global application.

CHOReOS

FP7-257178 8

Figure 2.3: Binding component architecture

Core Engine

The Core Engine provides all the mechanisms to:

1) transform service data to paradigm XML data, then map them to GA data, and vice versa

2) transform service primitives to paradigm primitives, then map them to GA primitives, and vice

versa

3) manage the connections to the service deployed on the bus.

The above mechanisms cooperate with each other, as well as with xDL processor for retrieving informa-

tion about the service. The interaction paradigm level customizes Core Engine APIs and functionalities

to the CS, PS and TS paradigms and maps them to GA APIs and functionalities. At the middleware

platform level, the Core Engine performs the real interactions with the concrete middleware to establish

connections, as well as to send and receive data. Same as for DL descriptions, mapping paradigm data

to GA data further requires information about the semantic mapping between the constituent services

that form the global application.

Envelope for Substrate Bus

The Envelope for Substrate Bus makes the binding components (BCs) deployable on top of different

communication substrates. It provides the mechanisms to:

1) extract/encapsulate GA primitives from/into bus connections, before/after passing/getting them

to/from the Core Engine

2) transform service primitives to paradigm primitives, then map them to GA primitives, and vice

versa

3) manage the lifecycle of a service deployed on XSB, after retrieving information about this service

from the xDL processor.

These mechanisms are refined to support a new communication bus.

2.2.2. EasyESB

The extensible Service Access (XSA) middleware relies on the EasyESB Enterprise Service Bus

(ESB) for integrating business services. EasyESB is an open source project licensed under the

CHOReOS

FP7-257178 9

LGPL. EasyESB adopts the Model-Driven Architecture (MDA) philosophy and is available for down-

load at http://research.petalslink.org/display/easyesb/EASYESB+-+Open+source+

Lightweight+Services+Bus. It is built on top of a modular and flexible topology that eases the

creation of new bus nodes, their update, and removal. This ability makes possible the deployment of

the bus nodes on the cloud infrastructure and their adaptation in case the cloud changes, e.g., when a

new physical machine is added and, thus, a new EasyESB node is created and automatically linked to

the previous nodes. The creation of new nodes allows the knowledge of all the services deployed on the

neighboring nodes. Within the CHOReOS project, we benefit from this capability to deploy the EasyESB

nodes on top of the Cloud infrastructure described in Section 2.4. EasyESB provides the backbone

environment for the XSC middleware, the component-CD, by offering the needed multi-paradigm com-

munication mechanisms. Finally, EasyESB eases the monitoring tasks implemented within WP4 by

providing interceptors for the services bound to the bus. We implement an event-based mechanism in

order to receive information captured by the interceptors. The generated information reports relevant

data about the behavior of the services such as the response time, the payload, etc.

During the CHOReOS project, we have been improving EasyESB by several implementations in order

to make it cope with the raised challenging objectives. For instance, we benefit from the cloud-aware

infrastructure described in Section 2.4 and leverage the capabilities of the bus to be deployed on a

scalable infrastructure. Joining both technologies represents a major step forward to the project as it

enables accessing, integrating, choreographing and monitoring services from all over the world.

2.2.3. LSB

The goal of the CHOReOS Light Service Bus (LSB) is to enable access to data sensed by smart things

using thing-based services. LSB comprises the Sensor Access Middleware, Phone Services Proxy and

LSB Binding Components, which are described in the following.

Sensor Access Middleware

The Sensor Access Middleware is deployed on thing devices, in particular smartphones, and enables

exposing their data (e.g., coming from the device sensors) as thing services. Figure 2.4 depicts the

overall architecture of the Sensor Access Middleware, where the two main subcomponents are the

Thing Mediator and the Sensor Driver. At the level of individual devices, a thing-based service using

local sensors can utilize the Thing Mediator [8] for abstracting access to different sensors attached to

the device. Individual vendors can contribute Sensor Drivers to their sensors that transparently bind

with this mediator and provide access to sensed data through thing-based services. The Sensor Driver

and Thing Mediator are described in more detail bellow:

Sensor Driver The Sensor Driver defines the API that should be implemented by the sensor driver

developer. It consists of two main subcomponents: the Sensor, an Interface (API) for sensor drivers,

which are the objects that hold the actual logic behind each sensor’s operation and the SensorInfo,

which contains metadata about a sensor.

Specifically, the functionalities that need to be implemented by each Sensor component are:

• exposure of its meta-description, including the name of the interface it implements and its unique

(manufacturer-specific) device type

• configuration of the sensor parameters (setting and getting)

• access to the sensed data. This can be (i) instantaneous, when the query requests the latest

sensing value of a Thing, (ii) periodic, which asynchronously returns at a constant rate (until

canceled); and (iii) event-based, where a sensor replies whenever new data are available.

The functionalities that need to be implemented by each SensorInfo component include:

CHOReOS

FP7-257178 10

http://research.petalslink.org/display/easyesb/EASYESB+-+Open+source+Lightweight+Services+Bus
http://research.petalslink.org/display/easyesb/EASYESB+-+Open+source+Lightweight+Services+Bus

• providing the display name, description, and the name used for semantic matching of the sensor

• providing an instance of the sensor itself, thus acting as an instance of the Factory design pattern.

Thing Mediator The Thing Mediator component is meant to be accessed by the application develop-

ers and it consists of two subcomponents: the (i) Mediator and the (ii) MediatorListener.

The Mediator class provides the following functionality that can be used directly:

• discover all the sensors available on the device

• discover the instance of a specific sensor, specified by its interface

• trigger an immediate sensing by all sensors, where possible

Through the Mediator, the application can perform basic discovery and sensing actions with a sin-

gle method call, abstracting away all the logical details such as creating separate processes in the

OS, executing inter-process communication calls, synchronization, etc. All of these lower-level issues

are all handled by the Mediator and the Daemon in an OS-independent manner. In addition, all sen-

sors are treated homogeneously under a common API, whether they are microphones, thermometers,

accelerometers, or cameras.

The MediatorListener is the abstract class that contains the functionalities to be implemented by

the application developer to be able to retrieve the data from the sensors on the device. Specifically, the

functionalities that the application developer should implement are:

• hooks to get notified when there is a change in the state of the mediator itself, or of the sensors

attached to it

• hooks to get notified whenever there is new data available from one or more of the sensors.

Phone Services Proxy

In order to complete the LSB vision and enable access to thing-based services hosted by smart de-

vices, the Phone Services Proxy component was introduced in the M24 release of the CHOReOS

middleware as a solution to deal with a number of issues related to mobile communication, such as

the use of NAT, transient IP addresses, enforcement of asymmetrical communication, and temporary

disconnections. Clients (such as the Things Query Manager) that wish to communicate with thing-

based services residing on mobile devices, send their requests and receive the corresponding results

via the Phone Services Proxy (henceforth referred to as proxy), rather than directly to/from the

devices themselves. Mobile devices retrieve, in a pull-based fashion, client requests that have been

issued towards them via the proxy and, in turn, send replies to these requests in order for them to be

forwarded to the respective clients. The introduced proxy mechanism as described here, constitutes

one of the main building blocks towards the realization of the Light Service Bus (LSB), by providing a

universal access solution to sensor data provided at the Things level.

Clients and mobile devices communicate with the proxy using RESTful interfaces, which are de-

scribed in more detailed in Section 3.2.3.2. Service requests expire after a given time period (TTL) and,

in case a timeout occurs, an appropriate error message is returned to the affected client. Moreover,

each mobile device has a globally unique device ID that is used to address the specific device and,

ultimately, its hosted services via the proxy. When mobile devices register their hosted services to the

Things Registry Manager, they also provide a unique address for each of these services. This

unique address includes (a) the address of the proxy associated with the specific mobile device (b)

the unique deviceID, and (c) an identifier for the service registered.

CHOReOS

FP7-257178 11

Figure 2.4: Sensor access middleware architecture

LSB Binding Components

As discussed in former CHOReOS deliverables, the major issue for service access towards dealing

with the FI requirements is to be able to cope with the diversity of interaction protocols involved in

IoBS and IoTS and, specifically, the integration and the pair-wide adaptation of these protocols. While

the XSB, described in 2.2.1, addresses effectively heterogeneity and interoperability topics in the IoBS

domain, a concrete access solution is required targeted particularly to the IoTS specifics, such as dy-

namic environments, resource constraints, data orientation, etc. Towards this, we introduce the binding

components for LSB, being a lightweight version of the XSB for the IoTS domain. Like XSB, the LSB

component is based on the CHOReOS connectors [9], which abstract the middleware-layer interaction

protocols enabling Future Internet services to interact.

The design process of the LSB involved the identification of the interaction paradigms that are com-

mon in the IoT domain. Towards this end, an extensive survey was conducted on the state-of-the-

art protocols being used in IoT-oriented solutions. The outcomes of this study confirmed the impor-

tance and wide use of the interaction paradigms already identified on XSB namely (i) Client-Server,

(ii) Publish-Subscribe, and (iii) Tuple space, but also underline the existence of an additional paradigm

focused on continuous interaction known as (iv) Streaming. However, Streaming can be considered as

an extension to any of the interaction paradigms since, from a conceptual perspective, all of them must

support both discrete and continuous protocols.

LSB binding components are implemented from scratch and are designed with focus on high-

performance, small code footprint, compliance with all prominent IoT protocols, and easy-to-use and

extend nature. Key point to the overall architectural design, as depicted in Figure 2.5, is the use of

CHOReOS

FP7-257178 12

REST as the common bus that handles the interactions between the several binding components and

services. The REST approach provides the common integration infrastructure where all diverse inter-

action solutions can be plugged.

REST was selected among other WS-* solutions because of its simple architecture, lightweight na-

ture, high performance in terms of message transmission speed and bandwidth consumption, and

reliability, since it is based on HTTP. We chose the REST solution against DPWS, which was its main

competitor, because REST provides uniform interfaces that makes its usage and debugging straightfor-

ward, a fact that made REST dominate the IoT market.

Figure 2.5: LSB – overall architecture

Figure 2.6: LSB – binding component architecture

A binding component of LSB consists of four layers/parts that are responsible for the transformation

of the messages that run through the lightweight bus. These transformations are necessary to provide

a cross-paradigm and cross-protocol communication solution. As it is depicted in Figure 2.6, the first

CHOReOS

FP7-257178 13

layer represents the middleware connector of the service that initiates the interaction with the binding

component and is responsible for maintaining contact with the service at any moment. The second

layer involves the abstraction of the middleware-specific messages to the respective abstract primitives

defined for each interaction paradigm, as described in D1.4 [9]. At the third layer of the architecture

lies the GA adapter, a component that transforms the paradigm-based primitives to a more abstract

type, that of GA. The GA’s primitives are abstract enough to describe any type of message belonging

to any of the interaction paradigms supported. The last layer of the binding component involves the

mapping of a GA primitive to a specific call of the common bus, in this case, a REST call. All layers of

the binding component support as well the inverse procedure of transformation e.g. from a REST call

coming through the common bus to a GA primitive and finally to a middleware-specific call.

2.3. eXtensible Service Discovery

The eXtensible Service Discovery (XSD) supports the organization and discovery of both services

and things among the vast corresponding populations available on the Future Internet. To this end,

it includes a solution to service discovery based on service abstractions (Section 2.3.1), a solution

to probabilistic things discovery (Section 2.3.2), and a plugin-based framework providing extensible

support for any current or future discovery solution (Section 2.3.3).

2.3.1. AoSBM Discovery

The goal of the AoSBM component is to enable service lookup for business services in the context of

the FI. To this end, we employ the concept of service abstractions, introduced in D1.3 [6] and refined in

D1.4 [9]. The modus operandi of the main facilities of the AoSBM have been specified in D2.1 [7], D2.2

[10], and D2.3 [15], while the design of the AoSBM software itself was provided in D3.1 [8] and D3.2.2

[11]. Intuitively, a functional abstraction represents a group of services that offer similar functional

properties; it is characterized by an abstract interface and a mapping between the abstract interface

and the interfaces of the represented services. A non-functional abstraction represents a group of

services that offer similar non-functional properties; it is characterized by an abstract non-functional

description that consists of a set of layman’s terms, one for each non-functional property of interest

(e.g., response-time, availability) and a mapping between these terms to ranges of concrete values for

each non-functional property of interest.

In the AoSBM approach, we exploit service abstractions as a means for organizing service descrip-

tions in a registry and answering lookup queries for services. A lookup query is matched against service

abstractions, instead of being matched against service descriptions of concrete services. Therefore, the

query execution time scales up with the number of service abstractions, instead of scaling up with the

number of available service descriptions. The service organization facility of the AoSBM accepts as

input service descriptions that can be gathered from multiple sources (e.g., public registries, service

portals) and produces hierarchically structured abstractions.

To enable the execution of lookup queries over abstraction-oriented organizations of service descrip-

tions, we provide the Web Service Base Query Language (WSBQL). WSBQL is tailored to the concept

of service abstractions and its syntax resembles the W3C XQuery standard. The WSBQL language

comes along with a corresponding query engine which translates WSBQL queries to conventional SQL

queries, which are issued to the AoSBM relational store 4. Access to the query engine is provided via

a dedicated REST API that has been developed during the last year of the project [15].

4More details concerning the WSBQL syntax and the query engine can be found at http://www.choreos.eu/bin/

Documentation/Abstraction_Oriented_Service_Base_Management

CHOReOS

FP7-257178 14

http://www.choreos.eu/bin/Documentation/Abstraction_Oriented_Service_Base_Management
http://www.choreos.eu/bin/Documentation/Abstraction_Oriented_Service_Base_Management

2.3.2. Things Discovery

The Things Discovery component is aimed at handling the ultra-large scale of mobile things able to pro-

vide sensing/actuating tasks, mostly mobile phones. The thing-discovery protocol relies on probabilistic

computations to control the participation of mobile things as needed.

In the registration phase, things hosting sensors/actuators should register their services through the

executeRegistrationQuery() API. The discovery component then executes a set of probabilis-

tic computations to determine whether or not the services are needed. The decision is based on

the percentage of the area sensed by the already registered devices in the Registry Manager com-

ponent. If the percentage is below an acceptable threshold then the new device should register its

services and vice versa. The thresholds should be specified in the IoT ontologies we provide. Sim-

ilarly, In the look-up phase, applications wishing to search for services need to access the methods

that implement one of the three following APIs: findServices(), findSubsetofServices(),

findSubsetofServicesBasedOnCoverage() . The first API allows the discovery component to

return the complete set of devices that host services matching the request. The second and third APIs

trigger the discovery component to perform probabilistic computations to determine a suitable subset of

devices to access for the sensing/actuating services. More details on the use of the APIs are provided

in Section 3.3

2.3.3. Plugin Manager

As specified in D3.1 [8], XSD relies on a plug-in based architecture, which enables incorporating sup-

port for any current or future service discovery solution applying to Business and Thing-based services.

By this release, we are delivering the Plugin Manager component, the associated REST interfaces and

the source code of abstract classes needed for plugin development. The Plugin Manager provides

unified access to service discovery protocols present in the CHOReOS environment and essentially

acts as an intermediate layer between them and the Abstraction-oriented Service Base. Via the Plu-

gin Manager, the AoSBM gets populated with services discovered by these heterogeneous service

discovery protocols. The Plugin Manager interfaces with these protocols via the appropriate plugins.

Individual discovery protocols can be integrated in the XSD runtime system by extending the abstract

AbstractPlugin class. Currently, the Java Reflection API is used for dynamic plugin loading. The Plugin

Manager architecture was based on previous work by Inria (CONNECT Discovery Enabler [18]) and

was extended by VTrip.

2.4. Cloud and Grid Middleware

The Cloud and Grid middleware addresses the scalability and distribution requirements identified in the

CHOReOS project by offering three components:

• The Storage Service

• The Grid Service

• The Enactment Engine

The Storage Service simply automates the deployment of a database server on the cloud, providing

its client with the credentials to access it. The current implementation deploys a traditional RDBMS,

MySQL, but it is possible to extend it to handle other kinds of databases, including noSQL databases

over a set of machines for load distribution. The Storage Service is actually an extension to the Enact-

ment Engine, since most of it is implemented by using Enactment Engine components.

The Grid service is tailored at Grid Computing, which is offered as a service to developers needing to

perform high-performance computing (HPC) for their applications. In other words, CHOReOS provides

CHOReOS

FP7-257178 15

Grid Computing as a Service, for applications with intensive computational requirements that could be

not efficiently handled by a single machine hosting the service, such as a service that needs to process

millions of images per day. According to our experience in the CHOReOS project within the past years,

we anticipate that the Cloud Computing support offered by the CHOReOS middleware will be extremely

useful for a wide variety of applications in multiple contexts. The Grid support, on the other hand,

is a much more specialized service that would bring benefits to a more specific set of applications,

e.g. that require Big Data Analytics. Specifically in the CHOReOS project, the three final use cases

demonstrated interested in using the Cloud middleware, but not the Grid middleware5. Thus, although

we provide a working implementation of both approaches, our major focus during the evaluation and

assessment was on the Cloud part, which has a greater potential for adoption and dissemination.

The Enactment Engine is the main component of the Cloud and Grid Middleware and the focus of

this section. It provides a powerful and elastic platform of hardware resources for the deployment of

(1) the CHOReOS middleware, (2) business services, and (3) coordination delegates. New virtual

machines are created on-the-fly as needed for the enactment of choreographies, and additional virtual

machines may be created or removed during run-time according to demand or more sophisticated QoS

constraints, avoiding extensive upfront investments on hardware for organizations participating in the

choreography. It enables a fully-automated process for choreography deployment, which is a key feature

to support Future Internet scale systems, since manually deploying large-scale choreographies is not

feasible. Instances of Cloud components deployed on different organizations are able to collaborate

among them to make a distributed choreography deployment across these organizations.

The Cloud and Grid components export a set of easy-to-use RESTful services. The choice of REST

as communication protocol and interface style is in line with the current move on the Web services

world, where the large majority of new services are based on REST and not on SOAP. This is due

mainly to the better performance, less overhead, more flexibility, and ease of use provided by RESTful

services in contexts such as the services provided by the Cloud and Grid components.

2.4.1. The CHOReOS Enactment Engine

The Enactment Engine deals with heterogeneity by using extensibility: although the current version can

deploy only SOAP services packaged as JAR or WAR files, Enactment Engine users may extend it

by writing a few new classes and configuration files to support new types of services. The Enactment

Engine has also an extension point to allow the creation of new node allocation policies. Regarding

the extensibility to support new Cloud IaaS providers (currently only Amazon EC2 and OpenStack are

supported), all the developer must do is to write a Java class implementing the CloudProvider interface

from our framework. The implementations of this interface for OpenStack and Amazon EC2 have around

200 lines of code; the size tends to be similar for other IaaS implementations.

Enactment Engine expects and handles faults of third-party components, which is important in large-

scale distributed systems. An example of a typical failure in a cloud environment involves the virtual

machine provisioning. When a new node is requested to the infrastructure provider, there is a chance

that provisioning will fail. Moreover, some nodes may take much longer than average to be ready.

In experiments conducted by us using the Amazon EC2 service, we verified that failures and long

provisioning times affected up to 7% of the requests. Enactment Engine has a particular strategy to

handle failures when invoking the IaaS provider (asking for VMs creation), that is called the reserve of

idle nodes. When a request arrives, the Enactment Engine tries to create a new node. If the creation

fails, or takes too long, an already created node is retrieved from a reserve of idle nodes. It avoids

waiting again for another node creation. The reserve size is defined by configuration and it is refilled

every time a reserve node is requested. The reserve approach has the extra cost to keep some nodes

running in an idle state. However, only a small amount of extra nodes is necessary, since they will be

used only when there is some failure on the cloud provider.

5In the beginning of the CHOReOS project, one of the use cases, Citizen journalism, planned to use the support from the

Grid middleware, but the use case was dropped from the project and replaced by a new one.

CHOReOS

FP7-257178 16

Figure 2.7 illustrates the components that are necessary to enact a choreography. The Cloud Gate-

way and the Chef Solo are third-party software used by the Enactment Engine, whereas the Deployment

Manager and the Choreography Deployer are components provided by the Enactment Engine.

e.mdzip Mi

«component»

Choreography

Deployer

«component»

Deployment

Manager

«component»

Chef-solo

«component»

Cloud

Gateway

AWS, OpenStack, etc.

1..* 11

1..*

1

1..*

Figure 2.7: Enactment Engine components

Cloud Gateway creates and destroys virtual machines (also called nodes) in a cloud computing envi-

ronment. This component is used by the Deployment Manager, which decides when to create or

destroy the nodes. Currently, Amazon EC2 and OpenStack are supported as cloud gateways, but

the Deployment Manager can be easily extended to support other platforms.

Chef Solo is a configuration agent installed in each node. It runs scripts for the installation of services

and required middleware components. Such scripts are also called Chef recipes and are written

in a Ruby-based domain-specific language.

Deployment Manager deploys services in a cloud environment. Through its services API, the De-

ployment Manager receives a declarative service specification and selects the node onto which

the service will be deployed, possibly considering non-functional requirements of the service. The

Deployment Manager converts the received specification to a script that implements the service

preparation and launching processes. Using the nodes API provided by the Deployment Manager,

one can request the upgrade of a node, which consists of running specific Chef Solo recipes on

the specified node, and thus deploying services on the node.

Choreography Deployer exposes the choreographies API to provide support for the automated de-

ployment of service choreographies or orchestrations (for our purposes, an orchestration here

can be seen as equivalent to a simplified choreography in which coordination is centralized). The

Choreography Deployer client must provide the choreography declarative specification, which con-

tains the choreography architectural description and the locations of service packages. Based on

this specification, the Choreography Deployer coordinates invocations to the multiple Deployment

Managers belonging to the different participant organizations. When services are already running,

the Choreography Deployer invokes consumer services, injecting on them the addresses of their

dependencies.

In the next chapter, we describe in more detail how the various components of the CHOReOS mid-

dleware can be used by choreography developers to facilitate the coding and enactment of complex

web service compositions.

CHOReOS

FP7-257178 17

CHOReOS

FP7-257178 18

3 How to Use the CHOReOS Middleware

The major goal of the CHOReOS middleware is to act as a choreography runtime. As a middleware,

it acts as a software layer that sits between the underlying system (composed of OS, cloud, network,

things, etc.) and the user-level application (e.g., a choreography). It raises the abstraction level pro-

vided to developers so that they can design, implement, and execute complex, large-scale service

compositions with ease.

A developer may opt to use all of the CHOReOS middleware components as an integrated middle-

ware infrastructure to support the system that he/she desires to build. Alternatively, he/she may pick

and choose only the middleware components that provide the required services for a specific targeted

application development. Table 3.1 lists the CHOReOS middleware components together with the re-

quirements that they help to fulfill.

Middleware Component Fulfilled requirement

Things C&E Need for things composition, e.g., deriving complex physical properties

from simpler ones provided by thing-based services

Service Substitution Need for adaptation of the services used in a particular context

XSB Need for seamless integration of heterogeneous interaction paradigms

(client-service, publish-subscribe, and tuple space)

EasyESB Need for integrating heterogeneous services

Need for a runtime context enabling advanced SOA abilities

such as composition monitoring, and governance

LSB Need for accessing heterogeneous Things as services

Service Discovery Sustain information about an ultra large amount of

available services and facilitate efficient service lookup

Things Discovery Need for efficiently handling the ultra-large population

of mobile things able to provide a sought service

Grid as a Service Need for high-performance computing, e.g.,

computationally-intensive algorithms or big-data applications

Enactment Engine Need to deploy and reconfigure tens to thousands of services

with geographically dispersed users, systems, and services

while offering primitives for QoS management

Table 3.1: CHOReOS middleware components and associated requirements fulfilled

After deciding which CHOReOS middleware components to use, the development team will need

to study the programmatic interfaces of each of the components and develop software that meets

their specifications. A working installation of the CHOReOS middleware is also required; so, ei-

ther the developer must have access to a previously configured CHOReOS installation (e.g., each

company could maintain a CHOReOS installation that is shared among several projects) or they will

need to download, build, and deploy the desired middleware components. Detailed development

and installation guides for the middleware can be found at http://www.choreos.eu/bin/view/

Documentation/WebHome. In the following sections of this chapter, we present an overview of how

CHOReOS

FP7-257178 19

http://www.choreos.eu/bin/view/Documentation/WebHome
http://www.choreos.eu/bin/view/Documentation/WebHome

to use each of the major components.

The intended audience for this chapter are developers wishing to use the CHOReOS middleware to

build their systems and applications, therefore, the remaining of this chapter contains low-level details

of the installation and use of the middleware. Readers that are not interested in these specific details,

may skip to Chapter 4 where the evaluation of the middleware is presented.

3.1. XSC – How to Use

3.1.1. Composition and Estimation – How to Use

The Composition and Estimation component is part of the XSC. It is specific to the thing-

based service compositions. The source code of the project is available at (root)/trunk/

executable-service-composition/. Developers wishing to use this component should down-

load the source code and run the following command: mvn clean install. The command down-

loads the project’s dependencies and use the resulting jar as a library in their code. Information on the

technical requirements are provided in the install files available with the source code.

All compositions are specified semantically as mathematical formulas in the IoT ontologies, which are

also available with the source code. This stems from the fact that all compositions are over sensing/ac-

tuating services that are tightly related to the real world and rules of mathematics and physics.

Developers are provided with two public APIs that allow them to request the alternatives to a missing

service and compute the extracted formulas based on the measurements acquired from the alternative

services. The APIs are presented below:

• expandConcept(): The method requires no input as it extracts the requested attribute from

the request query. Using SPARQL queries the method extract the alternative concepts from the

composition formulas and returns them to the user. Those concepts will them be send to the

look-up component to find the service instances that measure the new concepts.

• computeQueryConcept(): The method requires no input as it uses the already extracted for-

mulas from the call above. It acquires the measurements of the accessed services and sends

them as input to the formulas. The result is then sent, internally to a fusion class for processing.

The appropriate fusion/aggregation functions are specified in the IoT ontologies. The final result

is returned to the user as a SensorData object that can be parsed into a double.

3.1.2. AoSBM Service Substitution – How to Use

The AoSBM service substitution facility can be used to generate automatically a functional abstraction

service that realizes the abstract interface, specified by a given functional abstraction. This task is

performed via the AoSBM GUI (Figure 3.1). Specifically, the AoSBM curator must create a functional

abstraction that represents a set of similar services, using the AoSBM abstraction-oriented organiza-

tion facility [15]. After this step, the generation of the functional abstraction service can take place. The

generation process takes, as input, the AoSBM representation of the abstract interface that is specified

by the functional abstraction and produces a JAX-WS-compliant Java interface that provides the oper-

ations, specified in the abstract interface. Listing 3.1 gives an example of the JAX-WS-compliant Java

interface that is automatically generated for a functional abstraction that represents weather forecast

services (more details regarding this example can be found in [11]).

1 package org.ow2.choreos.abstractionGenerator.abstractionImpl.weatherforecastservice;
2 import org.ow2.choreos.abstractionGenerator.InputOutputDataTranslator;
3 import javax.jws.WebMethod;
4 import org.ow2.choreos.abstractionGenerator.Serialiazer;
5 import javax.jws.WebService;
6 import org.ow2.choreos.serviceRepresentation.functional.ServiceInterface;
7 import org.ow2.choreos.abstractionGenerator.BaseAbstractionImplService;
8 import org.ow2.choreos.abstractionGenerator.MappingsManipulation;
9 import org.ow2.choreos.abstractionGenerator.ClassCreation;

10

CHOReOS

FP7-257178 20

(root)/trunk/executable-service-composition/.
(root)/trunk/executable-service-composition/.

Figure 3.1: AoSBM graphical user interface

11 @WebService
12 public interface WeatherForecastServiceInterface{
13
14 @WebMethod public GetDailyWeatherForecastResponseOut getDailyWeatherForecast(GetDailyWeatherForecastIn input);
15
16 @WebMethod public GetDailyWeatherForecastOnUpdateResponseOut getDailyWeatherForecastOnUpdate (GetDailyWeatherForecastOnUpdateIn input);
17
18 }

Listing 3.1: JAX-WS-compliant Java interface for a functional abstraction that represents

weather forecast services

The AoSBM service substitution facility further generates the Java implementation of the JAX-WS-

compliant Java interface. As shown in Listing 3.2, the Java implementation of the JAX-WS-compliant

Java interface provides the implementation for each operation, specified in the abstract interface. The

interface implementation extends the BaseAbstractionImplService class, which declares certain

attributes that are used for the delegation of invocations that are made to the functional abstraction

service to the concrete service that is hidden behind the functional abstraction service. Specifically,

these attributes include the endpoint address of the hidden concrete service, and the mapping from the

interface of the functional abstraction service to the interface of the hidden concrete service.
1 package org.ow2.choreos.abstractionGenerator.abstractionImpl.weatherforecastservice;
2 import org.ow2.choreos.abstractionGenerator.InputOutputDataTranslator;
3 import javax.jws.WebMethod;
4 import org.ow2.choreos.abstractionGenerator.Serialiazer;
5 import javax.jws.WebService;
6 import org.ow2.choreos.serviceRepresentation.functional.ServiceInterface;
7 import org.ow2.choreos.abstractionGenerator.BaseAbstractionImplService;
8 import org.ow2.choreos.abstractionGenerator.MappingsManipulation;
9 import org.ow2.choreos.abstractionGenerator.ClassCreation;

10
11 @WebService()
12 public class WeatherForecastServiceImpl extends BaseAbstractionImplService implements WeatherForecastServiceInterface{
13
14 public WeatherForecastServiceImpl (){
15 super(”WeatherForecastService”);
16 }
17
18 public GetDailyWeatherForecastResponseOut getDailyWeatherForecast(GetDailyWeatherForecastIn input){
19
20 GetDailyWeatherForecastResponseOut result = new GetDailyWeatherForecastResponseOut();
21
22 LoadVariables();
23
24 ServiceInterface abstractionServiceInterface = interfaceMapping.getServiceInterface(abstractionName);
25
26 Object output = invokeConcreteService(input,”getDailyWeatherForecast”, abstractionServiceInterface);

CHOReOS

FP7-257178 21

27
28 setOutPut (output, abstractionServiceInterface, ”getDailyWeatherForecast” , result);
29
30 return result;
31
32 }
33
34 public GetDailyWeatherForecastOnUpdateResponseOut getDailyWeatherForecastOnUpdate(GetDailyWeatherForecastOnUpdateIn input){
35
36 GetDailyWeatherForecastOnUpdateResponseOut result = new GetDailyWeatherForecastOnUpdateResponseOut();
37
38 LoadVariables();
39
40 ServiceInterface abstractionServiceInterface = interfaceMapping.getServiceInterface(abstractionName);
41
42 Object output = invokeConcreteService(input,”getDailyWeatherForecastOnUpdate”, abstractionServiceInterface);
43
44 setOutPut (output, abstractionServiceInterface, ”getDailyWeatherForecastOnUpdate” , result);
45
46 return result;
47
48 }
49 }

Listing 3.2: Implementation of the JAX-WS-compliant Java interface

The implementation of each operation follows the same pattern:

• It has, as a parameter, an input object that encapsulates the input data for the operation, as speci-

fied by the given functional abstraction, and returns, as a result, an output object that encapsulates

the input data, as specified by the given functional abstraction.

• The operation loads the values of the attributes that are used for the delegation of invo-

cations, from disk, by calling the LoadVariables() method, which is inherited from the

BaseAbstractionImplService class; the values are stored in the form of a .ser file.

• Then, the operation of the concrete service is invoked, by calling invokeConcreteService().

This method is also inherited from the BaseAbstractionImplService class; its major respon-

sibilities are (1) to translate the data of the input object to the input parameters that are actually

used for the call to the concrete service and (2) to perform the actual call.

• Finally, the data that are returned from the call to the concrete service are translated, to produce

the output object of the operation. This is done by calling the setOutput() method.

• As discussed in Section 2.1.2, the input/output data translation process is based on the mapping

information that is specified by the given functional abstraction and it is done using the Java

reflection framework.

To substitute the concrete service that is hidden behind the functional abstraction service, the en-

tity that is in charge of the substitution must call the adapt() operation that is inherited from the

BaseAbstractionImplService class. The adapt() operation sets the interface name and the

endpoint address of the service that is going to substitute the hidden concrete service. Moreover, it

notifies the impact analyzers that have previously registered to the functional abstraction service [11].

A simpler alternative that does not involve the notification of impact analyzers amounts to calling the

setServiceInterface() and the setServiceInstance() operations, which set, respectively,

the name and the the endpoint address of the service that is going to substitute the hidden concrete

service.

The generation of functional abstraction services makes use of the JAX-WS wsimport tool. Specif-

ically, the tool is used for the creation of the JAX-WS stub classes, needed for the invocation of the

concrete service that is hidden behind the functional abstraction service.

Detailed examples of functional abstraction services can be found in the CHOReOS AoSBM dis-

tribution ((root)/trunk/extensible-service-discovery/AoSBM/src/main/resources/

generatedAbstractionImplementations/).

CHOReOS

FP7-257178 22

(root)/trunk/extensible-service-discovery/AoSBM/src/main/resources/generatedAbstractionImplementations/
(root)/trunk/extensible-service-discovery/AoSBM/src/main/resources/generatedAbstractionImplementations/

Moreover, examples of clients that use and adapt the generated functional abstraction ser-

vices can be found in ((root)/trunk/extensible-service-discovery/AoSBM/src/main/

resources/clientForInvokingGeneratedAbstractions/).

3.2. XSA – How to Use

3.2.1. XSB – How to Use

This section provides detailed instructions on setting-up and using the eXtensible Service Bus. Addi-

tional information are provided on-line available on: http://choreos.eu/bin/Documentation/

Extensible_Service_Bus and in deliverable [14].

Technical Requirements To execute the XSB Binding Components with EasyESB the main require-

ments are:

1) Download Java JDK 1.6

2) Download maven 2.2.1

3) Download and unzip the Rio (http://www.rio-project.org) tarball

Setting-up the Development Environment The setup of the XSB Binding Components on a develop-

ment environment like Eclipse, requires some steps. For example, the XSB DPWS Binding Component

requires the following:

1) Download the sources of the corresponding B.C.:

connectors/clientServer/WebServices/DPWSBindingComponent/easyesbjmeds

2) Add this repository to your settings.xml file. (Table 3.2):

<repository>

<id>choreos-petalsLink</id>

<name>choreos maven repository</name>

<url>http://maven.petalslink.com/repo</url>

</repository>

Table 3.2: Choreos maven repository

3) Execute mvn install to obtain the binding, or mvn install -Pdistrib to obtain a

easyESB distribution with the DPWS Binding Component.

4) Run target/easyesbjmeds/bin/startup.bat to start the easyESB distribution with the

DPWS Binding Component.

Using the Application You can verify the binding component by running two scenarios. In the first

scenario, two DPWS applications have a one-way exchange through the XSB Binding Components.

The first application sends a notification that is received by the second application as a one-way invo-

cation. You can run the above scenario by following the following steps:

1) Start the application that receive the one-way invocation:

java -jar Easyesbjmeds-1.0-SNAPSHOT-OneWaySystem.jar

CHOReOS

FP7-257178 23

(root)/trunk/extensible-service-discovery/AoSBM/src/main/resources/clientForInvokingGeneratedAbstractions/
(root)/trunk/extensible-service-discovery/AoSBM/src/main/resources/clientForInvokingGeneratedAbstractions/
http://choreos.eu/bin/Documentation/Extensible_Service_Bus
http://choreos.eu/bin/Documentation/Extensible_Service_Bus

2) In the menu, choose option 1 to start the system.

3) Start an easy ESB node with the DPWS Binding Component.

4) Deploy the corresponding service unit:

src/test/resources/oneWay/UnitOneWay.xml

5) Start a second easy ESB node with a DPWS Binding Component.

6) Deploy the service unit of the system that sends the notification:

src/test/resources/notification/UnitNotification.xml

7) Start the application that sends the notification:

java -jar Easyesbjmeds-1.0-SNAPSHOT-NotificationSystem.jar

3.2.2. EasyESB – How to Use

The EasyESB user manual is fully described in the deliverable D5.3.2 [14]. Additional relevant

user guides and requirements of the EasyESB Bus are provided at http://choreos.eu/bin/

Documentation/easyesb. The bus is open source, both source code and binaries are available.

Both Linux and Windows distributions are provided. A list of specific user guides about administrating

the bus, connecting it to new nodes, etc., is available at https://research.petalslink.org/

display/easyesb/Specific+How-tos.

3.2.3. LSB – How to Use

Sensor Access Middleware – How to Use

This section describes the requirements of the Sensor Access Middleware component and provides de-

tailed instructions on setting-up and using the project. Additional information are provided online and is

available at http://choreos.eu/bin/view/Documentation/Sensor_Access_Middleware.

Technical Requirements The Sensor Access Middleware component is written in Java and imple-

mented as an Android application. The Android operating system is chosen among others for its open-

source nature and the flexibility it provides as a development platform. For running the application on a

mobile device, the lowest supported Android version is the 2.3 Gingerbread. According to Google, over

97.6% of the enabled Android devices use an Android version higher than 2.3.

Setting-up the Development Environment The set-up of the application project in a development

environment does not require any special procedure. The project just needs be imported to the active

workspace, for Eclipse use File → Import → Existing Projects into Workspace. A JDK 1.6 or higher and

the Android SDK are required to achieve a successful set-up.

Using the Application To run the application, a compatible Android device or an emulator is needed.

However, since the Android emulator introduces some issues regarding sensors, the use of a real device

is encouraged. Prior to starting the Things services on the Phone, the remote addresses (URLs) of the

Phone Services Proxy and the Registry Manager should be configured through the settings

window in the application. Communication with the proxy is required to guarantee the access to the

Things services as discussed in Section 2.2.3.2. The Registry Manager is contacted by the application

to execute the registering and un-registering procedures.

After starting the Things services (by clicking the enable button in the app), the onboard REST server

starts automatically and exposes the defined API. This API is summarized on Table 3.3, where the IP

address and port are the ones assigned to the device when connected to a local network:

CHOReOS

FP7-257178 24

http://choreos.eu/bin/Documentation/easyesb
http://choreos.eu/bin/Documentation/easyesb
https://research.petalslink.org/display/easyesb/Specific+How-tos
https://research.petalslink.org/display/easyesb/Specific+How-tos
http://choreos.eu/bin/view/Documentation/Sensor_Access_Middleware

URI Method Parameters

http://128.0.0.192:8080/_servicename_ GET getnoiselevel,

getlocation,

gettemperature,

etc.

Table 3.3: Sensor access middleware REST API

Responses to sensing requests are sent back to requesters as JSON messages. Each response

message contains (i) a timestamp defining the time of the sensing, (ii) the sensing data type, e.g., the

CHOReOS custom datatype of noise level, and (iii) the value itself. An example response is shown in

Table 3.4.

Response JSON message
{

"sensorDataResponse":{

"timestamp":1378975233604,

"value":"75.878",

"dataType":"org.ow2.choreos.sensordata.double.noiselevel"

}

}

Table 3.4: Response containing the sensing value

Phone Services Proxy – How to Use

As described in Section 2.2.3.2, the Phone Services Proxy is designed to provide a robust and

complete access solution to remote Thing services. Therefore, by definition, it acts as an intermediate

between the devices providing the services and the requesters, being clients or applications. To guar-

antee the flexibility and interoperability of these communications the proxy is based on a defined REST

API. Additional information are provided online and is available at http://choreos.eu/bin/view/

Documentation/Phone_Services_Proxy.

Technical Requirements The Phone Services Proxy is a Web application project written in Java. It

is packaged as a war file and can be deployed on a Tomcat server (version 6 or higher).

Setting-up the Development Environment The proxy server is developed based on the Maven

project management tool. Hence, the setup of the web application on a development environment

like Eclipse, requires a working installation of Maven (version 2 or higher). After the typical importing

procedure to the workspace of the environment, the execution of the mvn clean install command

is required for the download of the dependencies and the building of the project.

Using the Proxy After the deployment of the Proxy server, it is ready to start serving requests for

Things services access. A requester uses the corresponding URI defined in the API (Table 3.5) to

issue a request. Included in this request are the device’s unique ID and the name of the service (e.g.,

getnoiselevel). A pending requests data structure inside the proxy is used for keeping the requests for

all devices and their services.

Each device that supports the Proxy contacts it periodically and checks if any new requests are avail-

able concerning any of the Thing services offered. This is done with the use of the pendingrequest

CHOReOS

FP7-257178 25

http://128.0.0.192:8080/_servicename_
http://choreos.eu/bin/view/Documentation/Phone_Services_Proxy
http://choreos.eu/bin/view/Documentation/Phone_Services_Proxy

URI Method

http://things.inria.fr/proxy/_deviceID_/_servicename_ GET

http://things.inria.fr/proxy/pendingrequests/_deviceID_ GET

http://things.inria.fr/proxy/sendresponse/_deviceID_/_servicename_ POST

Table 3.5: Phone services proxy REST API

method of the proxy’s defined API. When the pendingrequests call is received on the proxy, the re-

spective data structure is checked and, if any requested services are found for this device, a response is

constructed containing a JSON message that includes them. An example of such a response is shown

in Table 3.6.

Response for pending requests
{

"pendingRequests":[

{

"serviceName":"getnoiselevel"

}

]

}

Table 3.6: Response for pending requests

In the case that any services are requested from a device, a sensing session starts in order to

gather new data from the sensors. When ready, the data are sent back to the proxy using a POST call

(sendresponse). The body of an example call of this type is shown in Table 3.4. The newly received

data are forwarded back to the requester as a response to the initial request. If the service requested

is unavailable or takes too long to respond, a timeout occurs on the requester.

LSB Binding Components – How to Use

An LSB binding component (BC) acts as an intermediate between the service it is binded to and the

outside world. Any outgoing calls from the service will go through the binding component and the

same occurs for incoming connections. By doing so, the messages are abstracted from the specific

protocol and interaction paradigm to the generic type and then transmitted using a common bus, in this

case REST. A BC can be attached to a service just by changing the addresses of the calls. The initial

step is to configure the destination address on the service that initiates the call (e.g. Application A in

Figure 2.5) and then the BC itself should be configured to include the final destination address of the

messages. Additional information are provided online and is available at http://choreos.eu/bin/

view/Documentation/Binding_Components_LSB.

Technical Requirements A binding component reserves two TCP ports (8090, 8092), used for re-

ceiving the incoming requests from the common bus and the service it is attached to.

Setting-up the Development Environment The project does not require special configuration in any

development environment. After the typical import, the command mvn clean install should be

executed to download the external libraries required. The binding components for LSB are written in

Java, thus a working JVM is needed for the execution.

Extending the Binding Components As described in section 2.2.3.3 the first layer of a binding com-

ponent for LSB is the middleware connector, which is responsible for handling the communication with

CHOReOS

FP7-257178 26

http://things.inria.fr/proxy/_deviceID_/_servicename_
http://things.inria.fr/proxy/pendingrequests/_deviceID_
http://things.inria.fr/proxy/sendresponse/_deviceID_/_servicename_
http://choreos.eu/bin/view/Documentation/Binding_Components_LSB
http://choreos.eu/bin/view/Documentation/Binding_Components_LSB

the service connected. In its current implementation the binding components support some of the dom-

inant protocols in the IoT domain, which are used to provide the proof of concept. However, a developer

could easily extend the support of any type of service to the binding components. This can be done

by configuring the middleware connector so as to map the outgoing requests and the incoming calls

between the specific protocol of the service and the paradigm adapter layer. The rest of the procedure

is handled automatically by LSB.

3.3. XSD – How to Use

3.3.1. AoSBM – How to Use

At a glance, the usage of the AoSBM concerns two key actors: (1) the AoSBM curator, who is respon-

sible for the registration of information about available services and the organization of the services

with respect to abstractions and (2) the AoSBM user, who uses the AoSBM to perform service lookup

queries.

In the first place, the AoSBM curator is supposed to install and configure the AoSBM in one or

more nodes. This task is fairly easy; detailed instructions can be found in the CHOReOS instal-

lation and user guides [14], in the CHOReOS courseware [17], and at the CHOReOS documenta-

tion Web site (http://choreos.eu/bin/Documentation/Abstraction_Oriented_Service_

Base_Management). Following, the AoSBM curator must populate the AoSBM with information about

available service descriptions and organize this information with respect to abstractions. The ser-

vice registration and organization tasks can be performed via the AoSBM GUI; again detailed instruc-

tions concerning these tasks can be found in the CHOReOS installation and user guides [14], in the

CHOReOS courseware [17], and at the CHOReOS documentation Web site.

Once the AoSBM is setup, there are two main usage options for the AoSBM users who wish to

execute service lookup queries. The first option is to write down a WSBQL query, load the query via

the AoSBM GUI and execute it. As before, these tasks are demonstrated in detail in the CHOReOS

installation and user guides [14] and in the CHOReOS courseware [17]. Moreover, a document that

refers to the syntax and semantics of WSBQL is available at the CHOReOS documentation Web site.

The second option for using the AoSBM query facilities is via the QueryEngineService REST API

that we developed for this specific purpose. The modus operandi of the API is explained in depth in [15].

Moreover, a Java doc that explains the functionalities that are provided can be found in the CHOReOS

AoSBM distribution ((root)/trunk/extensible-service-discovery/AoSBM/doc/).

3.3.2. Things Discovery – How to Use

The Things Discovery component enables the registration and look up for thing-based services, mostly

sensors/actuators services. The component is to be used by developers wishing to advertise thing-

based services to the Registry Manager and developers wishing to provide applications that consume

the registered services.

Users are required to integrate the TD components, namely the RegistrationManager and the

QueryManager with their application’s code. The source code is available at the following address:

(root)/trunk/extensible-service-discovery/. For each of the projects, developers should

run a mvn clean install to acquire all the project’s dependencies. Developers can then add the

resulting jar files as libraries in their code (More information is provided in the install files provided with

the source code of the RegistrationManager and QueryManager). Finally, the address of the

RegistryManager should be provided by the user.

Users who wish to advertise their services can do so through the executeRegistrationQuery()

method by providing the following: the deviceId, the name of the service, the type of the service, the

type of the sensor/actuator, the concept it measures/acts on, the type of the data the service produces,

the current location of the device, its expected mobility path and the unit of the provided measurement.

CHOReOS

FP7-257178 27

http://choreos.eu/bin/Documentation/Abstraction_Oriented_Service_Base_Management
http://choreos.eu/bin/Documentation/Abstraction_Oriented_Service_Base_Management
(root)/trunk/extensible-service-discovery/AoSBM/doc/
(root)/trunk/extensible-service-discovery/

We are currently working on decreasing the set of parameters by extracting some of them directly from

the IoT ontologies. It is possible that the component declines the developer’s request to register its

services for a duration of time. This is due to our probabilistic computations that allow service instances

to register if needed only. The decision is valid for the request time and location only. As such, the

developer can retry at later periods. The method returns true if registration was successful and false

otherwise.

Users developing applications that consume registered services have three alternatives to discover-

ing those services:

• findServices() method. The method takes the attribute to measure/act upon and the location

of interest as input. It returns the addresses of all services the satisfy the request.

• findSubsetOfServices() method. The method takes, as input, the attribute to measure/act

upon, the location of interest and the desired spatial probability distribution of devices hosting the

services and the number n of the required services. It returns the addresses of n services that

satisfy the request. For the current version of the work, we support two distribution types: Normal

distribution if the location of interest is a point in space (e.g., an intersection on the road), Uniform

distribution if the location of interest is an area (e.g., Paris city).

• findSubsetOfServicesBasedOnCoverage() method. The method takes the attribute to

measure/act upon, the location of interest and the spatial probabilisty distribution of devices host-

ing the services and the minimum required coverage percentage, i.e., the minimum acceptable

percentage of the area to be covered/sensed by the selected services. It returns the addresses

of a number of services, unknown a priori, that satisfy the request.

The Registry Manager is a Web Service that developers should deploy in order to be able to reg-

ister their sensing/actuating services. To deploy and run the Registry Manager, users need to down-

load the source code available at (root)/trunk/extensible-service-discovery/registry_

manager/ and run the mvn clean install command. This will generate a war file that should be

deployed in a Tomcat server.

3.3.3. Plugin Manager and Plugins – How to Use

Plugins enable access to diverse service discovery protocols. All plugins must extend the AbstractPlu-

gin class, thus defining a new plugin type. The Plugin Manager can create multiple instances of the

same plugin type. For example, for N UDDI registries the Plugin Manager would create N instances of

the ”UDDI” plugin type. Each plugin instance has the responsibility to deliver service-related information

from the underlying service registry to the Plugin Manager. Based on how the communication between

the plugin and the service registry takes place, the plugins can be categorized by their supported dis-

covery mode: Active, Passive, or both.

Plugins that operate in ”passive discovery mode” are passive receivers of messages from the under-

lying service registry. These messages indicate that a service has been added/removed/updated in the

registry. As soon as a registry message is received, it is up to the plugin to inform the Plugin Manager

accordingly. In the event of a service addition or update, the plugin must also provide the respective

service description in a unified format. This ”unified format” is currently being defined.

On the other hand, plugins that operate in ”active discovery mode” must explicitly request service

descriptions from the underlying registry. This mode is needed for registries that do not provide an

eventing mechanism. Plugins that support this mode implement the retrieveServices() method,

which is invoked by the Plugin Manager. The retrieveServices()method call results in the (indirect

and asynchronous) retrieval of all services that match a specific ”ServiceFilter”, which is passed as a

parameter. The exact format of the ”ServiceFilter” has yet to be formally defined and will probably

take into account numerous parameters like service semantics, underlying transport protocol, request

timeout, upper/lower limit to the number of services returned etc.

CHOReOS

FP7-257178 28

(root)/trunk/extensible-service-discovery/registry_manager/
(root)/trunk/extensible-service-discovery/registry_manager/

In addition, a plugin could support both modes (e.g. DPWS/WS-Discovery)

Finally, in order to evaluate the current Plugin Manager API, a plugin for a ”dummy” registry was

developed. This ”dummy” registry acts as a daemon that reads service descriptions from a specific

folder and informs its clients for new, updated and deleted services. Hence, the associated plugin

operates in passive-discovery mode.

3.4. Cloud and Grid – How to Use

In this section, we focus on describing briefly the required steps to use the CHOReOS Cloud Enact-

ment Engine to deploy a web service choreography. The use of the Grid middleware, as explained in

Section 2.4, was not the focus of the last year of the CHOReOS project; readers interested in its details

can refer to deliverable D3.2.1 and the online documentation at http://choreos.eu/bin/view/

Documentation/grid_doc.

This section is not aimed to make a developer fully capable of using the Enactment Engine, but rather

to provide an overall idea about the technical work necessary to setup and use the Enactment Engine.

Detailed and comprehensive instructions are provided by the Enactment Engine User Guide, avail-

able at http://choreos.eu/bin/Documentation/enactment_engine_doc; for the interested

reader, we highly recommend downloading the User Guide from this page.

In the current document, we call deployer the Enactment Engine user, i.e., the one who wants to

deploy a choreography, and the target environment the machines where services are deployed. Such

terminology is in accordance to the OMG’s component-based systems deployment standard [26]. Note

that if you use CHOReOS full capabilities, the deployer may be the CHOReOS system itself.

After downloading and compiling the Enactment Engine source code, it is necessary to configure

the Enactment Engine, providing it some information about the node allocation policy (how services

must be distributed among different nodes) and the used cloud gateway. A cloud gateway here is just

any service capable of providing new virtual machines on demand. In this step, one can enable or

not some extra features of the Enactment Engine, such as automatically destroying inactive nodes,

monitoring nodes with Ganglia, monitoring services with the EasyESB, linking an EasierBSM instance

to the EasyESB nodes to be created, and so on. All of this configuration is performed by editing text

properties files.

Once the Enactment Engine is running, the deployer must prepare the Enactment Engine input. Such

input describes all the necessary information for choreography deployment, and it encompass mainly:

in which kind of package each service is distributed (JAR, WAR, etc.), the package URL, which services

depend on which services within the choreography, and in which cloud each service must be deployed.

This description must adhere to the choreography specification data model defined by the Enactment

Engine (Figure 3.2); it can be eother provided in XML format through the Enactment Engine REST API,

or one can invoke the Enactment Engine using the Java API and build the choreography specification

using Java objects.

After the choreography specification is ready, the deployer must invoke the Enactment Engine by

using the REST API or the Java API1. The Enactment Engine will then deploy the services on the target

environment and bind the services, so they can call each other. Service binding is performed by invoking

the setInvocationAddress operation provide by services. After the deployment is completed, the

Enactment Engine returns a choreography description (Figure 3.2), which specifies in which node each

service was deployed and how one can access each one of the deployed services. This response is

also returned in the XML format or as Java objects, depending on the deployer’s choice.

While the deployed choreography is active, it is possible to perform modifications to it. For instance,

one may decide to switch from using a service offered by one provider to a compatible service by a

different provider, or to increase/decrease the number of deployed replicas of a given service in order

1The Java API actually uses the REST API under the hood.

CHOReOS

FP7-257178 29

http://choreos.eu/bin/view/Documentation/grid_doc
http://choreos.eu/bin/view/Documentation/grid_doc
http://choreos.eu/bin/Documentation/enactment_engine_doc

ctmentEng

-instanceId : String

-nativeUri : String

-easyEsbNodeAdminEndpoint : String

ServiceInstance

-packageUri : String

-packageType : PackageType

-endpointName : String

-port : Integer

-owner : String

-group : String

-numberOfInstances : Integer

-version : String

-resourceImpact

DeployableServiceSpec

-name : String

-serviceType : ServiceType

-roles : String

ServiceSpec

-serviceSpecName : String

-serviceSpecRole : String

ServiceDependency

-serviceType : ServiceType

-uri : String

BusUri

-URIs : String

LegacyServiceSpec

ChoreographySpec

DeployableService

-URIs : String

LegacyService

-id : String

Choreography

-nodeId : String

-ip : String

-hostname : String

CloudNode

COMMAND_LINE

EASY_ESB

TOMCAT

PackageType

«enumeration»

SOAP

REST

«enumeration»

ServiceType

-uuid : String

Service

1

1

0..*

0..*

0..*

selected nodes

0..*

0..*

0..*

0..*

0..*

1

1

Figure 3.2: The Enactment Engine data model for choreography specification

to adapt to fluctuations in usage load. The deployer simply uses the API again to submit an updated

version of the choreography specification to the Enactment Engine and requests the reenactment of the

choreography. The Enactment Engine, in turn, detects the modifications made to the choreography and

performs the requested modifications, by deploying new versions of services, removing service replicas

etc.

This capability, together with the flexibility offered by the CHOReOS monitoring subsystem, presents

the user with the framework necessary to adjust the run-time environment of the choreography accord-

ing to QoS parameters and constraints, such as response time or cost. The monitoring subsystem is

able to collect low-level data from virtual machines, such as disk and network bandwidth utilization or

memory and cpu consumption, as well as higher-level data from the EasyESB bus, specifically several

aspects related to service response time. This collected data is forwarded to the Glimpse Complex

Event Processor [12, 13] for further processing. The CEP is a rule-based system which allows the user

to define, at run-time, the event detection rules he is interested in together with the action to be taken

whenever one such rule is triggered. These rules not only are able to identify QoS violations but also

may correlate them with the collected low-level data, empowering the user to create different specific

actions to be taken according to the context of each QoS violation. Such actions tipically consist of

requests for the Enactment Engine to modify the running choreography (add or remove service repli-

cas, migrate a service to a more or less powerful virtual node, etc.) to maintain the required QoS. An

example is discussed in the already mentioned Enactment Engine User Guide.

CHOReOS

FP7-257178 30

For each kind of service package, there are some rules to be followed. For example, JAR files

must be runnable JARs, WAR files providing SOAP services must contain the sun-jaxws.xml file, and

so on. Service implementation should also adhere to some minor requirements, such as logging on

files, rather than on console, not relying on absolute paths of resources, not depending on run-time

objects living on other services, and so on. Moreover, each service must properly implement the

setInvocationAddress operation, so it can receive the addresses of its dependencies, that are

other services within the choreography. The complete set of requirements and guidelines for using

the Enactment Engine are available at http://choreos.eu/bin/Documentation/enactment_

engine_doc.

CHOReOS

FP7-257178 31

http://choreos.eu/bin/Documentation/enactment_engine_doc
http://choreos.eu/bin/Documentation/enactment_engine_doc

CHOReOS

FP7-257178 32

4 Evaluation

The evaluation of middleware components was based not only on use cases, but also on experiments

and simulations. Note that when using the middleware components in the use cases, but also for

experimental evaluation purposes, certain components are employed together as a group across the

major modules (XSC, XSA, XSD, Cloud & Grid) of the CHOReOS middleware architecture. Thus, in

the following sections: AoSBM Discovery and AoSBM Service Substitution are evaluated together;

Things Composition & Estimation, Things Discovery, and LSB constitute the IoTS middleware, and are

assessed as a whole; XSB and EasyESB are evaluated independently, but also, for part of its evaluation,

XSB executes on top of EasyESB.

Hence, we describe, next, AoSBM, Cloud Enactment Engine, IoTS middleware, XSB, and EasyESB

evaluations, beginning with use-case-based ones and finally presenting experiment-based evaluations.

4.1. Use-Case-Based Evaluation

The three CHOReOS use cases served as a test-bed to demonstrate the use of the CHOReOS mid-

dleware. Table 4.1 shows the use cases in which each middleware component or group of components

was validated.

Middleware UC-WP6 UC-WP7 UC-WP8

Component Airport ACRB DynaRoute

AoSBM Service Discovery × ×
AoSBM Service Substitution ×
Cloud Enactment Engine × × ×
IoTS middleware × × ×
XSB × ×
EasyESB × × ×

Table 4.1: Use of the middleware components by the use cases

4.1.1. IoTS Middleware Use-Case-Based Evaluation

The IoTS Middleware, including the Things Composition & estimation, Things Discovery and LSB, has

been widely used by the three CHOReOS use-cases (UC-WP6, UC-WP7, UC-WP8) to facilitate the

discovery and access of the Things-based services that take place in the defined scenarios. This

qualitative assessment targets to underline the contribution of the IoTS middleware in real-world envi-

ronments that are exposed through the use-cases.

The UC-WP6 Passenger Friendly Airport use-case concentrates to services provided to air trans-

portation customers. It describes the collection and exploitation of information that appear in an airport

environment towards adapting the services offered to travelers and hence, offering a better quality on

traveling. The IoTS Middleware is used in this use-case to enable access of sensors appearing both

in the environment and the travelers’ devices. For example, sound level sensors are used to indicate

CHOReOS

FP7-257178 33

the noise level at any time in the airport. That supports the automatic adjustment of the sound level

during the security announcements at the airport (e.g. louder announcements when the airport is very

crowded). Furthermore, location services that are deployed on the passengers’ devices are used by

the airport authorities to provide directional information, making this way the navigation in the airport

spaces more convenient.

The UC-WP7 use-case, named Adaptive Customer Relationship Booster (ACRB), addresses market-

ing by leveraging the CHOReOS technologies. The IoTS Middleware was integrated to this use-case

targeted to provide contextual information of the users (potential customers) to the marketing applica-

tions. Specifically, the applications developed in the context of ACRB can use the IoTS Middleware to

discover mobile devices of users appearing close to points of interest e.g., a store, and then request

information from or take actions on them e.g., send promotional material. Example Things services that

are supported are the location and the message delivery service. The first of them is used to expose the

current location of the mobile devices and the latter is used by the marketing applications for delivering

promotional material to users that might be interested.

The UC-WP8 DynaRoute use-case targets on assisting citizens in the transportation domain. Thing-

based services are used in this context to provide contextual information about the stakeholders that

take part in the scenario, such as the taxis, the taxi companies and the citizens. Specifically, location

services are deployed on the taxi fleet to expose at any time the current location of the taxis to the taxi

company and the users. By doing so, the citizens can discover close-by taxis and furthermore, this

way the taxi company can manage the fleet more effectively. Additionally, in the same context of use,

DynaRoute supports social interactions among users. Location services are deployed on users’ mobile

devices enabling the DynaRoute application to identify physical proximity between friends.

The flexibility of the IoTS middleware facilitated the discovery and access of the Things services in

the aforementioned implementations with minimal effort.Its lightweight nature managed the resource

constraints implicated by the mobile devices, which have a significant role in the use-cases, while keep-

ing the performance at a high level. More details on the IoTS Middleware integration in the CHOReOS

use-cases can be found in the deliverables related to them, namely, D6.5, D7.5 and D8.5

Despite the fact that the defined use-cases offer a large number of services that could be the required

context to perform a quantitative assessment, we concluded that an ultra-large-scale (ULS) evaluation

based on simulation, would provide better insights on the performance and scalability of the IoTS Mid-

dleware. The procedure taken and the results of this ULS evaluation are presented in Section 4.2.1.

4.1.2. XSB Use-Case-Based Evaluation

The eXtended Service Bus (XSB) has been assessed as part of the CHOReOS runtime environment in

supporting the development of the use cases UC-WP6 and UC-WP8. This is a qualitative evaluation and

shows the capacity of XSB in enabling the interconnection of heterogeneous services, namely, services

that employ middleware platforms which apply different interaction paradigms among the widely used

client-server, publish-subscribe and tuple space.

In particular in the UC-WP6 Passenger Friendly Airport use case, XSB is used for including, into the

designed choreography of – in their majority – Web services following the client-server paradigm, ser-

vices following other paradigms. More concretely, an air traffic management notification service using

JMS publish-subscribe middleware for signaling a non-anticipated landing of a flight is interconnected

with the airport local management Web service. Additionally, an amenities (specifically, in terms of ho-

tel accommodation) reservation service employing a JavaSpaces tuple space middleware for managing

accommodation resources is interconnected with the airport local arrangements Web service, which

books accommodation for the incoming passengers that have to spend the night.

In the UC-WP8 DynaRoute use case, XSB is used for cross-connecting an airline flight delay noti-

fication service, which again employs a JMS publish-subscribe middleware, with the rest of the Web

services choreography.

The above implementations were facilitated by the high extensibility of the XSB framework, which

CHOReOS

FP7-257178 34

enabled developing binding components for all the interconnected services and their heterogeneous

middleware platforms with minimal effort. Additionally, putting in place all the necessary adaptations at

the business interface and data level of the interconnected services was significantly facilitated by the

application development support offered by the XSB framework, which again reduces considerably the

developer’s effort. Finally, the good performance of the XSB running on top of the EasyESB allowed

executing the global choreographies with low latencies that are compatible with the overall system

requirements and the user’s perception of interactivity whenever the user is involved.

More details about how XSB was used in each of the two use cases can be found in the CHOReOS

deliverables related to the final evaluation of the use-cases, namely, D6.5 and D8.5. Moreover, we

have carried out a precise quantitative evaluation of XSB in terms of application development support,

extensibility, and performance (including testing under stress conditions). The details concerning this

evaluation and our results are given in Section 4.2.2.

4.1.3. EasyESB Evaluation

EasyESB is the cornerstone component of the CHOReOS Middleware, consisting in the elementary

brick deployed by the Enactment Engine. It is the basis of the EasyESB and XSB distributions and is

fully integrated with the Cloud and Grid Middleware. More precisely, EasyESB provides a suitable sub-

strate for the Interaction Binding Components of the XSB middleware. The EasyESB architecture has

been refined in order to support the building of Interaction Binding Components atop of it. Furthermore,

we have provided interaction paradigms at the levels for Client Service, Publish Subscribe and Tuple

Space. Finally, the interaction within Interaction Binding is supported by Generic Application on top of

the EasyESB bus protocol.

Consequently, evaluating both components on top of use case and simulation-based conditions in-

volves evaluating EasyESB as well. Thus, we refer to sections4.2.2 and 4.2.6 for a general understand-

ing of the evaluation test bed. Further to these, we have set the following tests based on both use case

(WP7) and simulation evaluations. The following Table 4.2 shows the tests, the hardware conditions,

and the behavior of EasyESB in such environments. The tests illustrate EasyESB’ capabilities at de-

ployment time, and its capacity to scale up in hosting a large number of services on top of each single

node. Consequently, connected EasyESB nodes are able to support an ultra large scale number of

services without saturating the underlying hardware infrastructure.

Topology Tests on a single pc including: EasyESB, the services,

the GUI and the Profiler.

Initial CPU CPU (Intel U7300 @ 1.30GHz)

Used CPU CPU after all the services has been proxified 60% (30% per core)

Initial RAM 4GB RAM, 3GB available for applications, 1 used by the OS+Desktop

Used RAM 376M when started, 1625M after wrapping all the services

Deployment Parameters ESB launched with params ”-Xmx2048M -Xss128K”.

Use Case-based Simulation 60 services for Choreography 7 and 16 services for Choreography 4

(near 80 services).

Simulation-based test 1100 services deployed on a single EasyESB node.

Table 4.2: EasyESB evaluation

We note also that EasyESB is a standalone bus that does not require the installation of further soft-

ware such as for IBM and Oracle Solutions. Furthermore, EasyESB nodes can be deployed indepen-

dently and at different times, forming a dynamic distributed topology. New nodes can join the current

topology and nodes can be removed at runtime. By calling the function addNeighborNode(), nodes be-

come aware of each other and can update their list of known services deployed on neighboring nodes.

In Table 4.3 we list the memory usage of several ESBs for the storage and when started with a minimal

configuration. The table shows that EasyESB has a small footprint that enables its deployment on top

CHOReOS

FP7-257178 35

of restricted hardware devices. The modularity of the architecture of EasyESB confers a lightweight

footprint that further allows holding only the needed functionalities in a specific distribution. In terms

of memory usage, EasyESB can be stored in 50 MB of memory, in comparison with existing solutions,

such as Mule ESB with 75 MB, IBM Websphere with 550-600 MB, and 1.1 GB for Oracle Service Bus.

When started in its minimal version, EasyESB uses 300 MB, while Mule ESB consumes 768 MB, IBM

Websphere uses 1GB to 2GB, and Oracle recommends 4GB.

EasyESB Mule ESB IBM Websphere Oracle Service Bus

Memory Usage 50MB 75MB 550-600MB 1.1GB

Runtime Memory Usage

(minimal configuration) 300MB 768MB 1to 2 GB 4GB

Table 4.3: EasyESB footprint

4.1.4. AoSBM Discovery and Service Substitution Use-Case-Based Evaluation

The abstraction-oriented service organization and discovery facilities of the AoSBM have been as-

sessed as part of the overall CHOReOS development process to facilitate the development of UC-WP6

and UC-WP7. The way that it has been used is discussed in D2.3 [15]. Briefly, descriptions of services

that have been developed in the context of UC-WP6 and UC-WP7 have been registered in the AoSBM.

The service descriptions have been organized with respect to abstractions, using the AoSBM clustering

facilities. The AoSBM querying facilities have been used in the synthesis process to retrieve information

about available services that correspond to the participant roles of the choreographies involved in the

use cases. As detailed in [15], the experience from the use of AoSBM in UC-WP6 and UC-WP7 further

allowed to assess the AoSBM from a qualitative perspective. In particular, the precision and recall of

the AoSBM facilities have been evaluated. Overall, the results showed that the AoSBM is able to mine

abstractions that are relevant to the different participant roles, specified in UC-WP6 and UC-WP7, and

that the mined abstractions can be used for the discovery of concrete services that are relevant to the

different participant roles. The starting point for the assessment of the AoSBM service substitution sup-

port was services developed in the context of UC-WP6. We have worked with functional abstraction

services, inspired by roles specified in the Passenger Friendly Airport use case. The details concerning

this study and our findings are given in Section 4.2.5.

4.1.5. Cloud Enactment Engine Use-Case-Based Evaluation

The Enactment Engine has been used, at least partially, by all three CHOReOS use cases. This usage

has substantially helped in improving it, since this actual use aided us in finding bugs, in improving

documentation (consolidated on the Enactment Engine User Guide available at the CHOReOS web

site), and in prioritizing features to be developed, such as, for instance, the automatic proxification

of legacy services through the EasyESB bus, which is an ongoing implementation project to satisfy

DynaRoute demands.

The use case with more concrete results up until now in using the Enactment Engine is the Airport use

case. The Enactment Engine has enabled the deployment of airport services on the Amazon cloud in

an automated way. The Java code produced to enable the enactment of this choreography, by invoking

Enactment Engine, encompasses both the choreography specification and the enactment launch. The

choreography specification (Appendix, Listing A.1) is assembled with POJOs that follow the Enactment

Engine data model, and it has 254 lines describing the choreography, which corresponds to 15 services.

If we remove empty lines and method declarations (they exist just to better organize the specification

code) we will have in average 11 lines per service. The enactment launch (Appendix, Listing A.2) uses

the Java API to invoke the corresponding Enactment Engine operation and is pretty straightforward,

counting only around 30 lines.

CHOReOS

FP7-257178 36

The very reduced amount of code lines necessary to automate the deployment of each choreogra-

phy gives an idea of how much work by the deployment team can be saved. Although some work is

necessary to properly set up the Enactment Engine, this needs to be done just once; after this step,

several choreographies may be deployed taking advantage of the Enactment Engine instance already

configured. The Enactment Engine itself may also be configured by third parties and delivered as a

service.

4.2. Experiment-Based Evaluation

In addition to the evaluation based on the use cases mentioned above, some key middleware compo-

nents were also validated based on stress testing and on simulations. These studies are described in

the following subsections.

4.2.1. ULS Evaluation of IoTS Middleware

The technical evaluation of the Internet of Things Services (IoTS) middleware proves to be challenging

since it is necessary to find an environment which is able to provide the tools for evaluating the scala-

bility, heterogeneity, and mobility support aspects of the middleware. Specifically, it is imperative to find

an evaluation environment that is able to fulfill the following requirements:

• Ultra-Large scale: The environment must provide the means for deploying the IoTS middleware

in at least 10.000 real or simulated things.

• Realistic deployment conditions: The environment must provide the means to deploy the mid-

dleware components such as the Registry Manager under realistic conditions.

• Time constraints: Ultra-Large Scale evaluations must be completed within reasonable time

frames, ranging from a few hours up to a few days.

• Mobility: The environment must provide mobility, or the means to simulate mobility accurately

(e.g. Using mobility traces as input).

In the following, we present the efforts towards the technical assessment of the Internet of Things

Services (IoTS) middleware. The remainder of this section is structured as follows. In Section 4.2.1.1

we present a summary of the current assessment methodologies for technical assessment, as well as

a short discussion on their applicability to the technical assessment of CHOReOS’ IoTS middleware.

Section 4.2.1.2 provides a detail description of the chosen assessment strategy and its individual com-

ponents, before presenting our evaluation results in Section 4.2.1.3, and our conclusions in Section 5.

Background

Traditionally, two main methodologies can be used to perform a thorough technical assessment of a

solution: Testbed-based evaluation and Simulation-based evaluation. In the following we detail the

strengths and drawbacks of both methods, before presenting a short discussion on their application for

the technical assessment of the CHOReOS IoTS middleware.

Testbed-Based Evaluation Over the years, testbed-based evaluation has proven to be a powerful

tool for assessment in different domains. Perhaps its main advantage is that it provides the means for

performing tests in real-time. In the particular field of IoT, it also enables an easy evaluation of mobility

and heterogeneity aspects. On the other hand, when owned, testbeds are expensive to build in both

time and money. Moreover, because of these characteristics, scalability is limited.

CHOReOS

FP7-257178 37

However, because of the growing number of worldwide research projects oriented towards building

the Future Internet, there are a number of publicly accessible testbeds. The largest one deployed so far

is SmartSantander [27], which provides a city-scale testbed, currently composed of around 2000 ZigBee

sensor nodes. Other large scale deployments include SensLAB [19] with around 1024 sensor nodes,

both wired and wireless, across 4 different sites; KanseiGenie [30] with around 700 wired and wireless

sensor nodes; and WISEBED [5] with 500 wireless and wired sensor across 5 federated testbeds. Even

though some of these projects already provide large-scale numbers, they are still far from the minimum

objective of 10,000 nodes.

Other research efforts attempt at lowering the deployment costs by involving both government and

industrial partners. Such is the case of PhoneLab at the University of Buffalo [25], where 200 Smart-

phones where handed to students, staff, and faculty with the support of the NSF and Sprint. A different

strategy is adopted by LifeMap at Yonsei University [31], where researchers made available a mobility

monitoring application on the Android Market in an attempt to obtain crowdsourced mobility data. Even

though this projects propose some interesting ideas for achieving ultra-large scales, they can only do

so in the longterm.

Simulation-Based Evaluation Often neglected in the Computer Science field, simulation-based eval-

uation is a flexible tool that allows faster modeling and validation at lower costs. Moreover, it provides

good scalability depending on the simulation tool and the CPU resources of the hardware it is deployed

on. However, the main challenge is to find both tools and models that yield sufficiently realistic results.

Throughout the years, the Networking community has developed different tools to provide realistic

evaluation through simulation. Perhaps the most well-known is ns-2 [23], which is a discrete event sim-

ulator aimed at networking research. Written in OTcl and C++, it is a widely used tool in the networking

community with a great number of modules available for it. Another well-known discrete event simulator

is OMNeT++ [33], which is entirely C++ based and also provides a large number of modules, with some

good wireless sensor network simulators built on top of it. Nevertheless, these two tools are unfit for

evaluating Inria’s IoTS middleware, since they only allow the deployment of applications written in C++.

A less well-known tool is JiST (Java in Simulation Time) [1], developed at Cornell University. It was

specifically designed for running unmodified Java network applications, and for providing a scalable

simulation environment able to run on commodity hardware. Furthermore, as part of the same project,

SWANS, a wireless ad-hoc network simulator was built on top of it.

These simulation frameworks include basic mobility models, such as Random Waypoint [3], for allow-

ing users validate their solutions in dynamic environments. They also allow the use of mobility datasets

as input. Unfortunately, publicly available large-scale mobility datasets are scarce, even in well-known

dataset sources such as CRAWDAD [29]. Because of the limitations of these simple models, and

the limited availability of large-scale mobility traces, some research efforts from the Traffic engineering

and vehicular communications communities point towards developing tools for simulating macroscopic

and microscopic mobility in both urban and rural areas. Such is the case of SUMO [2] and VanetMo-

biSim [22], which not only allow the simulation of moving vehicles, but also pedestrians. Moreover,

they allow importing actual maps for easily building large-scale mobility scenarios in real urban areas.

Furthermore, the output of these simulations may be used as input for the simulators described above.

Discussion As discussed in Page 37, testbed-only evaluations are not inline with CHOReOS’ needs,

because of scale or time limitations. On the other hand, scalable simulation environments such as JiST,

are good candidates for the ULS evaluation of CHOReOS IoTS middleware. In such an environment,

the middleware could be evaluated in networks with millions of communicating devices. However, the

ULS aspect of the evaluation does not only concern simulating large numbers of smart things, but also

the scalability of crucial components such as the Registry Manager. Along those lines, question on

whether or not the simulator can “fairly” simulate these components appears naturally. Inside a sim-

ulation environment, there is no actual way of ensuring resource allocation to simulated entities as it

would be in the real world, where the Registry Manager would be a powerful machine with dedicated

CHOReOS

FP7-257178 38

Figure 4.1: Global IoTS evaluation environment architecture

resources. Moreover, a “hybrid” approach where simulating entities residing inside the simulation en-

vironment communicate with a real-life entity, is not possible since simulated entities would be running

in “simulated time”, whereas real-life entities would be running in “real time”. In other words, time will

be “slower” for simulated entities than for real-life entities, thus providing incoherent results. Therefore,

simulation-only evaluations are not fit either for the assessment of the IoTS middleware.

Assessment Strategy

To tackle the issues raised by testbed-only and simulation-only evaluation approaches, we propose an

assessment strategy in which we combine offline mobility simulation and network traffic generation with

online real-time testbed evaluation. We propose the use of synthetic or real mobility traces to obtain

mobility data and generate network traffic. This information is then used to create emulated devices

that will interact in real-time with other middleware components deployed on a testbed. In the following,

we first present the overall description of such an environment. The details of each component follow

thereafter.

Global System Architecture The global architecture of the proposed evaluation environment is de-

picted in Figure 4.1. There are five main elements composing the system that can be divided into two

categories: Assessment Harness Elements, and CHOReOS IoTS middleware elements.

• Assessment Harness Elements:

• TrafficGenerator: It’s the main element of the Assessment Harness. It generates network

traffic based on data from a mobility trace, and it calculates the mobility of each device,

represented by the path (list of times and coordinates) the device will follow over time. It

generates a Launch Trace to be used by the NodeLauncher, as well as Query Trace to be

used by the QueryLauncher.

• NodeLauncher: Creates, launches, and stops instances of IoTNodes based on the Launch

Trace generated by the TrafficGenerator.

• QueryLauncher: Generates lookup and access queries based on the Query Trace gen-

erated by the TrafficGenerator. It is able to launch queries concurrently using the Query

Manager component and measure their response time.

CHOReOS

FP7-257178 39

Figure 4.2: Example deployment of the device registry

• CHOReOS IoTS Middleware Elements:

• Device Registry: Deploys the Registry Manager component under realistic conditions. It

stores information on the services provided by the devices, including a network address for

each service and relevant metadata. It is also able to provide service metadata on-demand.

• IoTNodes: These elements emulate devices running the Registration Manager component.

They are created by the NodeLauncher. Each device performs a service registration query

and measures its response time. Moreover, each registered device will execute a service

corresponding to the one it has registered.

In our assessment environment, each element runs as an independent process. This allows distribut-

ing the elements in a computer cluster, thus yielding its large computing resources, and enables our

environment to perform ultra-large scale evaluations. The execution of the environment is controlled by

different shell scripts that allow launching and stopping the different elements, and fine tuning system

parameters, such as the memory used by the processes. In the following, we describe in detail each

element composing our assessment environment.

Device Registry: Storing Service Information One of the primary concerns raised by a simulation-

only evaluation approach, is its ability to provide a fair evaluation of the Registry Manager, a component

which, under real life deployment conditions, would be allocated to dedicated computing resources.

Therefore, the first step we undertook was to deploy the component as it would be deployed in a

production system, thus ensuring adequate resource provisioning.

To closely resemble production systems, the Device Registry is setup as a three-tier architecture

such as the one depicted in Figure 4.2. In this setup, incoming requests are received by an HTTP

web server (e.g. Apache HTTP) that performs simple load balancing through Round Robin Scheduling,

and forwarded to a cluster of application servers (e.g. Apache Tomcat) hosting the Registry Manager.

Once the registration request is processed, the registration information and metadata are stored in a

networked database (e.g. Apache Derby).

TrafficGenerator: Mobility and Network Traffic Generation The TrafficGenerator is the main ele-

ment of the assessment harness. It obtains mobility information from either synthetic or real mobility

CHOReOS

FP7-257178 40

Figure 4.3: Internal operations of the NodeLauncher

traces, and it generates network traffic. In order to be used by our system, input mobility traces are

required to have the following format:

Timestamp,Device ID,Longitude,Latitude

Usually, mobility traces only contain the positions of a set of IDs over time. Therefore, no information

on network traffic that can be obtained directly from them. Thus, to generate traffic, the TrafficGenerator

parses the mobility trace to obtain a time map, where, for each timestamp on the trace, there is a list of

device IDs and their coordinates. Based on information from this map, the TrafficGenerator will analyze

the trace in order to find the time(s) in the trace at which a user-inputed traffic rate (lambda) is satisfied.

Based on this information, the TrafficGenerator calculates a Poisson arrival process to simulate Internet

session traffic [4]. At each Poisson arrival, represented by a timestamp, the TrafficGenerator will look in

the map for devices with a matching timestamp, and their coordinates at the time. If the coordinates of

a node at a particular timestamp are not available, the TrafficGenerator will look for the latest timestamp

at which the node’s coordinates where known, and calculate the position of the node at the desired

timestamp. Then, for each device, a list of subsequent timestamps and coordinates is obtained. by

linear interpolation. This list represents the path the device will follow. The length of this list is defined

by the user at the start of the evaluation. Finally the arrival and path information is placed in a Launch

Trace file that is used by the NodeLauncher to create each individual device, and which has the following

format:

Timestamp,Device ID,Longitude,Latitude,Path

The TrafficGenerator also provides the input for the QueryLauncher. Based on the generated Launch

Trace, particularly in the number of individual Device IDs in it, and the lowest and highest timestamps,

the TrafficGenerator will generate a Query Trace that will serve as an input for the QueryLauncher.

As for the Launch Trace, the Query Trace follows a Poisson process, and is written with the following

format:

Timestamp,Concept,Location

Both of these procedures are depicted in Figure 4.3. Once the TrafficGenerator provides its output

traces, both devices and queries will be launched by the control scripts.

NodeLauncher and IoTNodes: Service Registration Once the mobility and network traffic is gener-

ated, devices are created. In our environment, each device is an independent lightweight process that

we call an IoTNode. This allows distributing the execution of a large number of devices across multiple

CHOReOS

FP7-257178 41

machines, thus facilitating the scalability of the simulations. Each IoTNode process is launched by the

NodeLauncher based on the Launch Trace generated by the TrafficGenerator.

When the IoTNode is launched, it will attempt to register its service(s) via the instance of the Regis-

tration Manager component deployed on it. To this end, it will use the information on the type of sensor

it possesses, its current coordinates, the path it will follow, and a coverage threshold defined at the start

of the simulation. The Registration Manager will decide whether the emulated device should register

or not based on the coverage threshold, and the macroscopic mobility model defined in the IoTS Mid-

dleware (e.g. Truncated Levy Walk). If the registration decision is positive, the Registration Manager

will register the device for a duration calculated using the device’s path, and the IoTNode sets up a

REST server to handle requests for accessing its service(s). The address of each service is made up

by the address of the host machine, a port number assigned by the NodeLauncher, and the name of

the service. Once the REST server is setup, the IoTNode will calculate its lifetime based on its path. At

the end of its lifetime the IoTNode will stop its REST server and the lightweight process will stop. Each

generated device will generate as output several different CSV formatted files:

• A main file containing its Device ID, the result from the registration query, a timestamp for when the

registration request was made, and a timestamp for when the registration response was received.

• A find file containing its Device ID, and the timestamps at which the device contacts the registry

to find out how many devices are already registered.

• A calculation file containing its Device ID, and the timestamps at which the registration decision

calculations.

• A registration file containing its Device ID, and the timestamps at which the device contacts the

register in order to register itself.

At the end of the simulation, each group of files will be merged into a single one according to their

type for facilitating their analysis.

QueryLauncher: Service Lookup and Access The final element in our environment is the Query-

Launcher. This element will generate sensing queries to obtain information of a particular physical

concept on a desired geographical location. As in the case of device generation, sensing queries follow

a Poisson arrival process, which is provided as input in the form of a Query Trace.

At each arrival extracted from the Query Trace, the QueryLauncher will create a thread. In each

thread, a query is generated with the concept and location information from the trace, for then being

passed to the Query Manager component. Creating threads allows the QueryLauncher to perform

concurrent queries. The Query Manager component will then look in the Device Registry for devices

hosting the requested service, and access them to obtain a numerical answer to the query. Each Query

thread will generate as output several different CSV formatted files:

• A main file containing the requested physical concept, the number of services to access, two

timestamps when the query is launched and a response is received, and the result from the

query.

• A lookup file containing a thread number, and the timestamps at which the thread contacts the

registry to find out the information of the services providing the requested concept.

• An access file containing a thread number, and the timestamps at which the thread attempts to

access each IoTNode to retrieve data.

At the end of the simulation, each group of files will be merged into a single one according to their

type for facilitating their analysis.

CHOReOS

FP7-257178 42

Figure 4.4: Deployment used for performing ULS evaluations

Known Limitations The current version of our evaluation environment presents a number of limita-

tions introduced by the hardware and operating system on top of which the evaluation is performed.

The main limitation introduced by the hardware that supports the evaluation environment is memory

availability. The memory available in the machine will limit the number of IoTNode processes that can

run concurrently. Similarly, the configuration of the OS on which the evaluations are run may impose

limits on the number of concurrent processes a user might run.

A different limitation comes from the maximum number of TCP ports available at an IP address. Even

if the machine the evaluations are run on had unlimited memory resources, and the OS was configured

to support unlimited processes for a user, each IoTNode needs to bind to a TCP port to provide access

to its service. Therefore, the maximum number of available TCP ports imposes a limit on the number of

IoTNodes that can be run concurrently on a single machine.

Evaluation Results

This section presents the evaluation results obtained by our evaluation environment. The main objective

of our evaluations is assessing the ability of the system of handling large loads of registration and

lookup, and access queries. To this end we measure the response times of both types of queries

for both deterministic and probabilistic registration, and deterministic and probabilistic lookup. We

performed these evaluations using a synthetic mobility trace generated with SUMO [2], which uses real

mobility data for generating the individual mobility of over 120.000 vehicles during a period of two hours

in the city of Cologne [32]. To our knowledge, this is the largest realistic mobility trace freely available

at the time of writing. We deployed our system in Inria’s computer cluster. The system’s elements were

distributed inside the cluster to maximize resource utilization. The deployed architecture is depicted in

Figure 4.4.

For our experiments we conducted two sets of results. The first set aims at comparing the perfor-

mances of a system using deterministic registration only, with a system where the CHOReOS IoTS

middleware is deployed, and therefore probabilistic methods are used for smartly reducing the number

of devices to handle. For this set of results, we varied the input rate to the system from 100 requests

per second up to 1000 requests per second. The results show averages from 20 runs and we have

calculated the 95% confidence intervals. As input, we used our trace analysis tool to generate traffic

CHOReOS

FP7-257178 43

200 400 600 800 1000

0
10

00
30

00
50

00

Deterministic
Probabilistic

Input (req/s)

T
im

e
(m

s)

Figure 4.5: Comparison of registration re-

sponse times for different input rates

100 300 500 700 900

0
10

00
20

00
30

00
40

00
50

00

Find
Calculation
Registration

Input (req/s)

R
es

po
ns

e
T

im
e

(m
s)

Figure 4.6: Time analysis of probabilistic reg-

istration for different input rates

200 400 600 800 1000

0
10

00
30

00
50

00

Deterministic
Probabilistic

Input (req/s)

R
es

po
ns

e
T

im
e

(m
s)

Figure 4.7: Comparison of query response times for different input rates

from most populated sections of the original Cologne trace [32].

We first measured the response times using both deterministic registration and Probabilistic registra-

tion with a coverage threshold of 80%. Figure 4.5 presents these results. Clearly, when the system uses

deterministic registration, response times are lower than when using probabilistic registration since no

calculations for reaching a registration decision are involved. Nevertheless, probabilistic registration still

delivers reasonably fast response times.

In order to better understand the impact of the operations involved in probabilistic registration on the

total response time, we calculated the response time of each one of the operations. These are the

Find operation, which retrieves the number of already devices offering the same service that a device is

attempting to register; the Calculation operation, which conducts the necessary calculations to generate

a registration decision; and the Registration operation, which effectively attempts to register a device

that has reached a positive registration decision. The results are depicted in Figure 4.6. As seen in

the figure, the response time of both Calculation and Registration operations, is somewhat stable with

respect to the input rate, taking around 200 ms in both cases. Nevertheless, the response time of the

Find operation grows as the input grows. This behavior is due mainly due to two different reasons. First,

as the input grows, the number of devices concurrently accessing the Device Registry grows as well,

thus having a negative impact on the response times. Second, as the number of already registered

devices grows, the time needed for retrieving this information from the Device Registry database is

larger. However, this delay is dependent solely on the search algorithms implemented on the database.

We next proceeded to measure the response times using both deterministic Lookup and Access and

Probabilistic Lookup and Access with a coverage threshold of 80%. Figure 4.7 clearly shows the impact

of the smart probabilistic methods employed by the CHOReOS IoTS middleware on query response

CHOReOS

FP7-257178 44

100 300 500 700 900

0
10

00
20

00
30

00
40

00
50

00

Lookup
Access

Input (req/s)

R
es

po
ns

e
T

im
e

(m
s)

(a) Query response times using Deterministic Lookup

and Access

100 300 500 700 900

0
10

00
20

00
30

00
40

00
50

00

Lookup
Access

Input (req/s)

R
es

po
ns

e
T

im
e

(m
s)

(b) Query response times using Probabilistic Lookup and

Access

Figure 4.8: Time analysis of query response times for different input rates

Registration Lookup+Access

0
10

20
30

40

Deterministic
Prob. Registration + Det. Access
Probabilistic

R
es

po
ns

e
T

im
e

(s
)

Figure 4.9: Comparison of registration and query response times for ∼15000 nodes at an input

rate of 1000 requests per second

times. When using deterministic lookup and access, the system retrieves the full set of registered

devices at each query request and attempts to access them all in order to provide a result. Therefore,

response times grow larger as the number of registered devices, and the number of query request

increases. On the other hand, the benefits of using probabilistic methodologies is clearly shown. In this

case, response times are lower and are kept rather stable with respect to number of registered devices

and the number of query requests, since the system retrieves only a small subset of registered devices

based on the desired coverage threshold.

This is further confirmed by studying the individual behaviors of Lookup and Access for both the

deterministic and probabilistic methods, as depicted in Figure 4.8. In both cases, the Lookup response

time is very low, and is rather stable for all input rates. In the case of deterministic Lookup and Access,

the Access response times grows as the number of registered devices grows, as the system attempts

to access the full set of registered devices. In contrast, by using probabilistic Lookup and Access, the

Access response times are stable, and are lower than the results of deterministic Lookup and Access

specially for high input rates, when a higher number of devices is registered. Note that, the registration

strategy has an impact on query response times, since it will indirectly determine the number of devices

the query must look for and access.

The second set of results aims at measuring the performance of a the system under ULS traffic for a

longer period of time. To this end, our trace analysis tool generated traffic at a rate of 1000 requests per

second during 15 seconds based on the information from the Cologne mobility trace [32]. For this set of

results, we evaluated a system using only deterministic registration, lookup and access, a system using

CHOReOS

FP7-257178 45

probabilistic registration and deterministic lookup and access, and a system using the full CHOReOS

solution (probabilistic registration, lookup and access).

In Figure 4.9, the response times of both registration and service query operations for the three

described systems are shown. In the case of registration, as expected the response times of a full

deterministic strategy are lower than the systems using probabilistic registration only. Moreover, the

additional overhead introduced by the operations involved in probabilistic registration is clearly shown.

In the case of Lookup and Access, as expected, the response times of the systems using deterministic

access is higher than the system using probabilistic only. Furthermore, the impact of the registration

strategy on service query response times is shown, as the system using probabilistic registration and

deterministic access presents a lower response time than the system using deterministic registration

only.

CONCLUSION: Overall, these results show the ability of our proposed assessment strategy to deploy

the IoTS middleware under realistic conditions, and its capacity to provide meaningful results for the

assessment of the solution. Moreover, the obtained results show the ability of the IoTS middleware to

smartly tackle the ULS challenge.

4.2.2. XSB Evaluation

We evaluate the eXtended Service Bus (XSB) framework and runtime with respect to two criteria: First,

the support that the XSB framework offers to developers – both application developers and middleware

developers – when developing a new complex application that is composed as a choreography of a

set of heterogeneous services, or when deploying a service, which requires development of an appro-

priate binding component for the middleware technology that the service is based upon. Second, the

performance of the XSB runtime in terms of latency and throughput, under both low traffic and stress

conditions. For our evaluations, we rely upon the Search and Rescue scenario that we quote below from

[21]. This scenario prescribes interconnections between all three interaction paradigms of interest, i.e.,

client-service (CS), publish-subscribe (PS) and tuple space (TS), within a service choreography that

precisely follows CHOReOS principles.

Search and Rescue (S&R) operations after a disaster, such as a flood or earthquake, are

carried out in hazardous environments and require personnel from multiple agencies (e.g.,

fire-fighters, police) to coordinate. To detect survivors, sensors are installed at various

places of the hazardous area. Such sensors communicate their location. S&R personnel

also notify at short intervals of their current positions via their PDAs. Upon sensing some life

sign, sensor nodes send out notifications. At the same time, nearby light-emitting actuators

start lighting the place to facilitate the rescuing effort. Sensors, PDAs, and actuators interact

among them and with external actors via a tuple space. Tuple space location and life sign

data are sent via client-service invocations to a planning service that recommends at real

time the optimal deployment of rescue forces. This output is notified via a publish-subscribe

system to the coordinator of the operation on her smartphone and also to a number of con-

trol/monitoring centers. The coordinator may approve and command S&R personnel via the

publish-subscribe system and the tuple space system to rush into the spot.

We have implemented the S&R scenario on top of the XSB framework. Our scenario implementation

integrates: (1) sensors, actuators and personnel equipment communicating over a Jini JavaSpaces

TS1; (2) the planning service implemented as a JMEDS DPWS Web Service2; and (3) a JMS PS system

based on Apache ActiveMQ3 that the coordinator of the operation uses to receive recommendations

1http://www.jini.org/wiki/JavaSpaces Specification
2http://ws4d.e-technik.uni-rostock.de/jmeds/
3http://activemq.apache.org/

CHOReOS

FP7-257178 46

and to send commands. We provide support for the three mentioned middleware platforms by producing

appropriate binding components. Based on this implementation, we evaluate the XSB with respect to

the two criteria introduced above. We present our evaluation results in the following.

Support to Developers

The XSB framework can be used by both application and middleware developers. We evaluate first the

effort for the application developer and accordingly the provided support by our solution for developing

complex applications from the integration of services that employ heterogeneous interaction paradigms.

Second, given that we have designed our architectural framework with particular consideration for its

extensibility, we evaluate the easiness for the middleware developer in integrating new middleware

platforms, in particular with regard to building related binding components (BCs).

Application Developer – Effort for Application Design Table 4.4 summarizes our measurements

of the development effort required for the S&R scenario. Essentially, this effort includes writing an xDL

description for each constituent service, and providing mapping directives between the data exchanged

among the services. GA-IDL service descriptions are then generated automatically by using the tools

provided by our platform. We see that application development effort is considerably low, since our

platform takes care of resolving the interaction paradigm and middleware heterogeneity among the

constituent services.

xDL description Generated desc. Mapping directives

(XML lines) (XML lines) (XML lines)

Java Spaces system 148 98 72

DPWS system 50 61 76

JMS system 209 90 78

Total 407 249 226

Table 4.4: Development effort for the application developer

Middleware Developer – Extensibility Referring to the architectural framework of Figure 2.3, we

measure the effort for building a BC for the JMS Apache ActiveMQ middleware platform. Table 4.5

summarizes this effort, in terms of implemented numbers of: (1) Lines of code, (2) XML schema lines

regarding the xDL descriptions, and (3) XML lines of configuration files for the architectural framework.

We have performed our measurements with the Metrics 1.3.6 Eclipse plugin4. We provide measure-

ments for each one of the three components of the framework, as well as the ratio of the effort specific

to the JMS platform (refinement of subcomponents) over the total effort (i.e., including the generic code

written once and reusable each time). We see that considerably small effort, no more than 6% of the

total effort, is required for the integration of a new middleware platform. This points out the significant

support offered, resulting in considerable easiness for integrating new middleware platforms and related

high extensibility of our approach.

Performance

The XSB runtime introduces a number of extensions to the typical ESB infrastructure, such as transfer of

GA primitives as payload of substrate bus (EasyESB) communication primitives, and, more importantly,

runtime model transformations inside the BC; these enable cross-connection and adaptation among

heterogeneous interaction paradigms. Hence, we need to evaluate the performance of our solution and

the time overhead introduced.

4http://metrics.sourceforge.net

CHOReOS

FP7-257178 47

Lines of code XML schema Configuration

(lines) (XML lines)

xDL Processor 7520 2617 111

Core Engine 9993 219 137

Envelope for Substrate Bus 508 0 0

Total 18021 2836 248

Written by the developer 1162 191 12

Effort 6% 6% 4%

Table 4.5: Development effort for the JMS binding component

We evaluate the performance of the XSB runtime with two experimental setups. In the first one, we

employ the XSB with a mock substrate bus, which enables us to assess the pure XSB functionality and

to test the XSB under stress conditions without having to internally tune at the same time the EasyESB

configuration. We interconnect services employing the same or different interaction paradigms, and

measure end-to-end latency and throughput, under both low traffic and stress conditions. In the second

experiment, we employ the XSB on top of the EasyESB and evaluate the latency overhead introduced

by the EasyESB and by the XSB for various combinations of interconnected interaction paradigms,

under low traffic conditions.

End-to-End Performance under Stress Testing We evaluate the performance of the XSB Bind-

ing Components under stress conditions relying on [28] and [20]. Our approach enables setting a

lightweight testing environment around the XSB with practical hardware resources and making sure

that the XSB employs its maximum capacity. In particular, to evaluate the performance capacity of

an XSB, the ESB has to be under high load, i.e., we have to saturate the ESB system to determine its

maximum performance. To this end, service requestors and service providers need to send and receive

high request rate through the ESB.

Test Scenario: We set up our XSB Binding Components with a mock substrate bus and mock services

(requestors, providers). In order to test the connectivity of heterogeneous services under stress condi-

tions, we utilize the imported middleware services of the XSB Framework (DPWS, JMS and JavaSpaces

services). We make sure to remove any potential bottlenecks from the services (clients/providers) and

we create a bottleneck at the service bus; our purpose is to measure throughput and one-way end-to-

end latency. More specifically, we use middleware clients (DPWS or JMS) and threads to create many

mock service clients. Then, the mock substrate bus that we configure for the evaluation can handle their

service requests as messages. We also need to have a service provider that can receive thousands of

messages per second in order to overload the XSB. The CPU usage of the machine hosting the XSB

should be close to 100% to reach the maximum performance of the XSB. In addition, it is important that

both the service clients and providers are not highly loaded.

Test Setup: We used the following software and hardware for our experiments. The setup consisted

of four machines, connected via Inria’s 100 Mb/s Ethernet network. The first and second machine

(M1, M2) have each an Intel core i5-2540M x 2.6 GHz (6 GB RAM), the third (M3) has an Intel Xeon

W3550e 3.08 GHz x 4 (7.8 RAM), and the last machine (M4) has an Intel core T7200 2.00 GHz x 2

(2.0 GB RAM). Running tests on powerful machines allows simulating a large number of clients more

accurately, as opposed to simple core machines.

We provide four test scenarios:

1) C - S: Using the DPWS middleware, we create service mock clients and a mock web service

running on M1 and M3, correspondingly.

2) P - b - Sb: Using the JMS middleware, we create mock publishers, a broker, and a mock subscriber

running on M1, M2 and M3, correspondingly.

CHOReOS

FP7-257178 48

3) C - XSB - S: Using the DPWS middleware and the XSB over the mock substrate bus, we cre-

ate service mock clients, an XSB service bus, and a Web service running on M1, M2 and M3,

correspondingly.

4) P - b - XSB - S: Using the DPWS and JMS middleware, as well as the XSB over the mock substrate

bus, we create mock publishers, a broker, an XSB service bus, and a web service running on M1,

M4, M2 and M3, correspondingly.

The first scenario doesn’t have any service bus, service clients are simply forwarding messages to

the web service. The second scenario uses the XSB, and messages pass through it performing a

transformation from CS to GA and back to CS primitives. The third scenario doesn’t have any service

bus, publishers are simply forwarding messages to the broker, and the broker to the subscriber. Finally,

the forth scenario uses the XSB and messages are passed through it performing a transformation from

CS to GA and from GA to PS primitives (Figure 4.10). Note that, in all four cases, clients make requests

every second. In our measurements, we discard the first 4000 messages allowing machines to reach

a steady state. Services generally don’t exchange very large quantities of data, so messages usually

tend to be of average size. Hence, we set the size of messages to 1 KB.

Figure 4.10: Components of mock environment for XSB capacity testing

Results: Table 4.6 presents some detailed data for a test run with 50 concurrent clients. Showing

data for each performed test run in this table would be impractical, as it would require several pages.

Scenario Latency Throughput Avg. Clients

(ms.) (req./s.)

C-S 2,13 62,78 50

P-b-Sb 1,16 49,92 50

C-XSB-S 17,85 53,9 50

P-b-XSB-S 16,52 56,04 50

Table 4.6: Results for one-way interaction in all four scenarios with 50 concurrent clients

Figure 4.11 shows the measured throughput when sending one-way messages to the services, in

function of the number of concurrent clients for each of the above scenarios. The procedure we ap-

plied to execute this experiment is the following: i) In all four cases, after the XSB reaches the steady

state, service providers are counting incoming messages for a duration of time, and ii) we repeat the

same experiment by increasing the service clients. Thus, JMS and DPWS service providers receive

CHOReOS

FP7-257178 49

an increasing number of messages according to the concurrent clients. We observed that the number

of messages passing via the XSB per second (throughput) remains unchanged after 90 concurrent

clients. We verified at the same time that the CPU usage of the machine hosting the XSB had reached

its maximum, while the CPU for clients/providers is about 15% - 20%. In scenario 1 using the DPWS

middleware, the maximum throughput is 220,89 requests per second, while in scenario 2 using the JMS

middleware, the maximum throughput is 243,47 requests per second. For communication through the

XSB, in scenario 3 the maximum throughput is 82,29 requests per second, while in scenario 4 it is 90.8

requests/sec.

0 50 100 150 200 250
0

50

100

150

200

250

Throughput

Simultaneous clients

re
qu

es
ts

/s
ec

C − XSB − S P − b − XSB − S P − b − Sb C − S

Figure 4.11: Throughput for one-way interaction of DPWS and JMS services with or without XSB

in scenarios 1, 2, 3 and 4

Figures 4.12 and 4.13 show the measured one-way latency when making calls on the services, in

function of the number of concurrent clients for each of the above scenarios. The procedure we applied

to execute this experiment is the following: i) In all four cases, after the XSB reaches the steady state,

service clients are sending requests continuously for a duration of time, ii) service providers are active

to receive all messages, and iii) we repeat the same experiment by increasing the service clients. We

observed that messages passing via the XSB have high latency after 50 concurrent clients. When

using the DPWS middleware, the latency is 3 milliseconds, while, when using the JMS middleware, it

is 1,8 milliseconds, both for 240 simultaneous clients and without passing messages through the XSB,

as shown in Figure 4.12. On the other hand, for communication through the XSB, the latency reaches

quite high values (Figure 4.13).

In Figure 4.13, latency values for a low numbers of clients are not clear due to the scale used, thus

we depict in Figure 4.14 the measured latency for up to 50 clients. The latency for 50 clients is 17,85

milliseconds when using the DPWS middleware and 16,2 milliseconds when using the JMS middleware.

Considering the fact that the CPU usage of the XSB reached its maximum in both experiments,

results show that after 90 concurrent clients, the XSB cannot manage the reached number of clients.

In our future work, we intend to optimize the XSB for improving its throughput and latency values in the

case of many concurrent clients.

Latency Overhead on the Bus We measure execution times for a number of layouts: (i) one-way and

two-way interaction inside our implemented CS system; (ii) end-to-end interaction between a publisher

and a subscriber inside our implemented PS system; (iii) end-to-end interaction between a writer and a

reader inside our implemented TS system; (iv) one-way and two-way interaction between two CS peers

via EasyESB; and (v) interaction between all pair combinations of CS, PS and TS peers via XSB. We

repeat each measurement a 100 times and calculate mean values. Based on these experiments, we

CHOReOS

FP7-257178 50

0 50 100 150 200 250
1

1.5

2

2.5

3

3.5

4
One−way Latency

Simultaneous clients

m
s

C − S P − b − Sb

Figure 4.12: Latency for one-way interaction of DPWS and JMS services without XSB in scenar-

ios 1 and 2

evaluate the latency overhead introduced by the EasyESB for an one-way CS-CS communication, and

the latency overhead introduced by the XSB for an one-way CS-CS as well as all other pair combina-

tions of communication. Our results are summarized in Table 4.7. We see that the latency overhead

introduced by the XSB for a CS-CS interconnection is only 1% greater than the latency overhead in-

troduced by the EasyESB itself. When conversion between heterogeneous interaction paradigms is

involved, the XSB latency overhead ranges from 7% to 15,5%, where we note that we always compare

with the EasyESB CS-CS homogeneous interconnection, since EasyESB support for other interac-

tion paradigms is not available. We see that the performance cost introduced by the XSB remains at

reasonable levels.

Interconnection Latency (ms)

one-way CS - CS via EasyESB 258

one-way CS - CS via XSB 261,5

CS - PS via XSB 283

CS - TS via XSB 276

PS - TS via XSB 298

Table 4.7: Interaction latency on the bus for each interconnection

CONCLUSION: Our evaluation of the XSB framework and runtime showed quite good results in terms

of both developer support and performance. We note that our software engineering support evaluation

is based only on counting lines of code for a single developer. A more comprehensive empirical evalua-

tion would require as well a subjective evaluation of the framework facilities by a number of developers.

We also point out that stress testing requires very well-thought experimental setups when such a big

number of factors intervene, both in hardware and in software in which there are many indirection layers

and dependencies on external components.

4.2.3. EasyESB Evaluation

Please refer to section 4.1.3.

CHOReOS

FP7-257178 51

0 50 100 150 200 250
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2
x 10

4

Simultaneous clients

m
s

C − XSB − S P − b − XSB − S

Figure 4.13: Latency for one-way interaction of DPWS and JMS services with XSB in scenarios

3 and 4

5 10 15 20 25 30 35 40 45 50
12

13

14

15

16

17

18

19
One−way Latency

Simultaneous clients

m
s

C − XSB − S P − b − XSB − S

Figure 4.14: Latency for one-way interaction of DPWS and JMS services with XSB in scenarios

3 and 4 for up to 50 concurrent clients

4.2.4. AoSBM Discovery Evaluation

In the CHOReOS deliverable D2.3, we provided a qualitative assessment of the usefulness of AoSBM in

the CHOReOS use cases. Here, we provide a quantitative assessment that focuses on the performance

of AoSBM in a ULS setting.

Overall, AoSBM is driven by the hypothesis that service abstractions allow for efficient execution

of service lookup queries in the context of the Future Internet, where the amount of available service

descriptions is expected to dramatically grow. Therefore, the AoSBM evaluation focuses on the following

research question:

• Is querying based on abstractions faster than conventional querying, based on concrete service

descriptions?

CHOReOS

FP7-257178 52

Experimental Setup

To address this question, we compared the time it takes to execute WSBQL queries for weather forecast

services (Table 4.8) over service abstractions, stored in the AoSBM relational store, with the time it takes

to execute corresponding SQL queries, over concrete service descriptions, which were also stored in

the AoSBM relational store.

Table 4.8: WSBQL Query

let $aosbm = db(‘‘localhost/mySB’’)

for $c in $aosbm/servicecollections

for $sa in $c/hierarchies/abstractions

for $if in $sa/representativeinterfaces

for $o1 in $if/representativeoperations

for $o2 in $if/representativeoperations

for $m1 in $o1/representativemessages

for $m2 in $o2/representativemessages

for $p1 in $m1/representativemessagetypes

for $p2 in $m1/representativemessagetypes

for $p3 in $m2/representativemessagetypes

where

$if/rsi name like %Weather% and

$op1/rop name like %Temperature% and

$p1/rmt name like %Location% and

$p1/rmt type = ‘String’ and

$p2/rmt name like %Date% and

$p2/rmt type = ‘String’ and

$p3/rmt name like %UnitSystem%

return

Abstractions.fullObject

Our WSBQL queries consist of three main parts:

• The first part consists of variable definitions. The variables define constraints that should be

satisfied by retrieved abstractions. In particular, we have the following variables: $sa stands for

a service abstraction; $if corresponds to the abstract interface of $sa; $o1 and $o2 represent

two operations that should be provided by the required abstract interface; finally, $p1 and $p2 are

two parameters of $o1, while $p3 is a parameter of $o2.

• The constraints that should be met by the retrieved service abstractions are specified in the where

part of the query. Specifically, for operation $o1, we have the following constraints: the name of

$o1 should include the term Temperature; the name of parameter $p1 should include the term

Location and the type of $p1 should be String; the name of parameter $p2 should include the

term Date and the type of $p2 should also be String. For the operation $o2, there is only one

constraint that concerns the name of parameter $p3, which should include the term UnitSystem.

• The return part of the query dictates the information that should be included in the result: with

the fullObject option, the result contains full information about the retrieved service abstrac-

tions and the represented services.

The queries were executed over various AoSBM instances, populated with different synthetic data.

More specifically, we organized our experiments in two sets (Table 4.9). In the first set of experiments,

we varied the number of abstractions from 5 ∗ 103 to 106 and the number of service descriptions from

5 ∗ 104 to 107; hence, each abstraction represented 10 services. In the second set of experiments, the

CHOReOS

FP7-257178 53

Table 4.9: Experimental Setup

data set properties AoSBM instances

service abstractions 5 ∗ 103 104 5 ∗ 104 105 5 ∗ 105 106

concrete services 5 ∗ 104 105 5 ∗ 105 106 5 ∗ 106 107

represented services per abstraction 10

operations per service 3

in parameters per operation 2

out parameters per operation 2

overall disk space (MB) 159 325 1700 3451 17920 37478
(a) 1st set of experiments

data set properties AoSBM instances

service abstractions 104

concrete services 5 ∗ 104 105 5 ∗ 105 106 5 ∗ 106 107

represented services per abstraction 5 10 50 100 500 1000
operations per service 3

in parameters per operation 2

out parameters per operation 2

overall disk space (MB) 171 325 1587 3205 16486 33382
(a) 2nd set of experiments

number of stored abstractions was 104, while the number of service descriptions ranged from 5 ∗ 104

to 107; thus, the number of represented services per abstraction varied from 5 to 1000. Further details

concerning the experiment setup for each set of experiments (operations per service, in/out parameters

per operation, required disk space) are given in Table 4.9. We executed our experiments on a typical

Intel Core 2, 2.2GHz, 3GB RAM; for the AoSBM relational store we employed MySQL server 5.5. We

performed each experiment 10 times.

Results & Findings

Figures 4.15 and 4.16 gives the results that we obtained; the reported numbers are the average values.

Figure 4.15: Querying service abstractions vs. concrete service descriptions – 1st set

CHOReOS

FP7-257178 54

Figure 4.16: Querying service abstractions vs. concrete service descriptions – 2nd set

Our findings are summarized in the following points:

• In both sets of experiments (Figure 4.15 and 4.16), we observe that the SQL query execution time

increases with the number of concrete service descriptions stored in the AoSBM relational store.

• Concerning the WSBQL query, in the first set of experiments, the execution time increases with

the number of stored service abstractions. On the other hand, in the second set of experiments,

the WSBQL query execution time increases with the size of the result; the number of represented

services for the service abstractions that are returned by the query varies from 5 to 1000.

• In the first set of experiments, querying over service abstractions is 88% to 99% faster than

querying over concrete service descriptions. Similarly, in the second set of experiments querying

over service abstractions is 90% to 99% faster than querying over concrete service descriptions.

CONCLUSION: To summarize, the main take-away message from the AoSBM evaluation is that

querying over service abstractions is much faster than querying over concrete service descriptions;

while conventional querying increases the number of available service descriptions, abstractions-

oriented querying increases with the number of available abstractions.

4.2.5. AoSBM Service Substitution Evaluation

We have experimentally assessed our AoSBM service substitution approach with different web services

and configurations of their invocation. Our evaluation concerns two main aspects. The first aspect is

the time overhead that is introduced by the AoSBM service substitution approach for the translation

of invocations made on a functional abstraction service, to invocations on the concrete services that

are hidden behind the functional abstraction service (Section 2.1.2) [11]. The second aspect is the

time overhead that is introduced by the approach for the actual substitution of one concrete service

with another (Section 2.1.2) [11]. Regarding these two aspects, we focus on the following research

questions:

RQ1: What is the time breakdown for the translation of an abstract invocation to a concrete invocation,

with respect to the three different phases of the functional abstraction service delegation mecha-

nism? What is the effect of the input/output size to the translation time?

CHOReOS

FP7-257178 55

RQ2: What is the time breakdown for service substitution? How much time is spent to notify the services

that use the substituted service about the beginning/end of the substitution and how much time is

required to perform the change of the mapping that is used by the functional abstraction service?

In the rest of this subsection we shed some light to the above questions. Before proceeding, however,

we detail our experimental setup.

Experimental Setup

RQ1 - Assessing the Delegation Overhead To evaluate the delegation overhead introduced by our

approach, we have worked with 6 functional abstraction services, inspired by roles performed within the

WP6 Passenger Friendly Airport use case:

• AbstractWeatherForecastService: serves for the substitution of weather forecasting ser-

vice instances.

• AbstractHotel: deals with the substitution of hotel service instances.

• AbstractSecurityCompany: allows the substitution of security company service instances.

• AbstractAirplane: serves for the substitution of airplane service instances.

• AbstractDisplaysManagement: enables the substitution of airport notification service in-

stances.

• AbstractAirportBusCompany: deals with the substitution of services for the transport of pas-

sengers within the airport.

The assessment of the delegation overhead is performed by invoking each functional abstraction

service both as a Web service and as a simple Java class. We investigate the delegation overhead and

its breakdown in the three different parts of our method for the transformation of abstract to concrete

invocations. In the case of the AbstractWeatherForecastService, we vary the size of the input

(and accordingly, the output) to see its effect over the different parts of the execution. In particular,

the input (respectively, the output) parameter is a list and we consider invocations for which the size of

the list is 100, 500, 1000, 1500, 2000, 2500, 3000, 3500, 4000, 4500, 5000 elements. The rest of the

functional abstraction services do not offer us the luxury of modifying their input size (and accordingly,

their output). Therefore, in these cases we simply measure the delegation overhead, without assessing

the input/output size effect on this overhead. For each measurement, we execute it 10 times and

take the average execution time. The deployment for the experimental assessment is as follows: the

concrete service instances as well as the functional abstraction services are deployed on a server

workstation and the client that invokes the services is located in another PC.

RQ2 - Assessing the Substitution Overhead For the assessment of the substitution overhead,

without loss of generality, we focus on the case of the AbstractWeatherForecastService.

To study the time breakdown for substituting the concrete service instance that is hidden be-

hind AbstractWeatherForecastService, with another one we consider different configura-

tions, where the number of services that use the hidden substituted service instance, via

AbstractWeatherForecastService, varies from 100 to 1000. Therefore, the number of services

that are notified, also varies from 100 to 1000.

CHOReOS

FP7-257178 56

Results & Findings

RQ1 - Assessing the Delegation Overhead Figure 4.17, gives the delegation overhead break-

down for the AbstractWeatherForecastService, when invoked as a simple Java class, while

Figure 4.18 gives the delegation overhead breakdown for the AbstractWeatherForecastService,

when invoked as a Web service. Figure 4.19, gives the overall invocation time in the aforementioned

two cases. The results are relatively similar and we can summarize our findings as follows.

• As the size of the input increases (respectively, the output), the total time for the completion of a

invocation increases, too.

• When the functional abstraction service is invoked as a Web Service, there is an extra cost in-

curred compared to its invocation as a Java API, due to the extra dereference level that the Web

service incurs.

• The execution time of the two first phases of the translation of abstract to concrete invocations, that

require a conversion to the unified intermediate representation and a customization towards the

particularities of the actually invoked concrete service, are affected by the size of the input/output

data that are translated. The larger the lists we have to manage, the more time we spend for their

management and manipulation.

• The second phase of the data translation, both concerning the input and the output takes the lion’s

share in the delegation overhead breakdown, been found several orders of magnitude higher than

any phase of the translation process. This is due to the fact that (a) our mechanism traverses the

input or output object using the Java reflection mechanism and (b) it searches in the mappings that

have been created with the use of lists, iterating over all the objects in the list until the appropriate

object is found, suffering thus from the necessary time penalty that the iteration over large lists

incurs.

• The time needed to initialize the input or output objects increases as the input or output object

increases.

Figure 4.20 gives the delegation overhead breakdown for AbstractHotel,

AbstractSecurityCompany, AbstractAirplane,AbstractDisplaysManagement, and

AbstractAirportBusCompany, when invoked as a simple Java classes, while Figure 4.21 gives

the delegation overhead breakdown, when invoked as a Web services. Figure 4.22 gives the overall

invocation time in the aforementioned two cases.

The results are relatively similar and we can summarize our findings as follows.

• Once again, we pay a small extra price for the invocation of a functional abstraction service as a

Web service, as compared to its invocation via a Java API.

• The second phase of the input data translation is typically (but not always) slower than the rest

of the data translation steps. The output restructuring behaves similarly. However, we do not

observe differences that are orders of magnitude higher, although there are three out of six times

where some restructuring is three times higher than the rest of the parts. Clearly, the size and

simplicity of the input and output objects are the responsible reasons for this behavior.

RQ2 - Assessing the Substitution Overhead Figure 4.23, gives the results of the experimental

assessment of the substitution overhead. Our observations are summarized below:

• The number of the services that use the substituted service, affects the time needed for their

notification from the impact analyzer that the substitution starts. Naturally, this is due to the fact

that an increased number of such services requires more invocations, for the commencement of

the substitution process.

CHOReOS

FP7-257178 57

Figure 4.17: Time breakdown for the delegation overhead of the

AbstractWeatherForecastService, when called as a Java API (numbers indicate the

different phases of the translation of abstract to concrete invocations)

Figure 4.18: Time breakdown for the delegation overhead of the

AbstractWeatherForecastService, when called as a Web Service (numbers indicate

the different phases of the translation of abstract to concrete invocations)

CHOReOS

FP7-257178 58

Figure 4.19: Total execution time for the invocation of the AbstractWeatherForecastService

Figure 4.20: Delegation overhead breakdown for AbstractHotel, AbstractSecurityCompany,

AbstractAirplane,AbstractDisplaysManagement, and AbstractAirportBusCompany,

when called as Java APIs (numbers indicate the different phases of the translation of abstract

to concrete invocations)

• The time needed for the notification of the services that use the substituted service for the comple-

tion of the substitution process, increases with the number of these services, for reasons similar

to the above observation.

• The time needed for changing the mapping that is used by the functional abstraction service is

independent of the number of services that use the substituted service.

• The total time needed for the service substitution increases in accordance with the number of

services that use the substituted service. This is due to the two notification phases, as already

explained.

CONCLUSION: To sum up, there are two main take-away messages from the experimental evaluation

of the abstraction-oriented service substitution: (1) service substitution introduces an execution over-

head that is proportional to the amount of data that is transferred via functional abstraction services; (2)

supporting consistent substitution by notifying affected services further introduces an execution over-

head that is proportional to the number of affected services. Overall, as anticipated extensibility and

adaptability have a negative effect on performance. The use of middleware that allows to achieve these

properties should be conservative, i.e., it should be used if these properties are really necessary.

CHOReOS

FP7-257178 59

Figure 4.21: Delegation overhead breakdown for AbstractHotel, AbstractSecurityCompany,

AbstractAirplane,AbstractDisplaysManagement, and AbstractAirportBusCompany,

when called as Web services (numbers indicate the different phases of the translation of

abstract to concrete invocations)

Figure 4.22: Total execution time for AbstractHotel, AbstractSecurityCompany,

AbstractAirplane,AbstractDisplaysManagement, and AbstractAirportBusCompany

4.2.6. Cloud Enactment Engine Evaluation

Experimental Setup

We conducted experiments to evaluate the performance and scalability of the proposed Enactment

Engine in terms of its capability to deploy a significant number of compositions onto a real-world cloud

computing platform.

Our experiments use a synthetic choreography workload modeled as shown in Figure 4.24. The

arrow direction is from the requester to the requested service. Although replies are not drawn for

simplicity reasons, they are always sent back in a synchronous manner. This topology was chosen

because (1) it contains most types of configurations found in choreographies, including branches and

subsequent joints and (2) it follows a repetitive pattern that can be used to smoothly increase the size

of the composition to analyze how the performance of the Enactment Engine behaves as its workload

increases.

Initially, we conducted a multi-variable analysis of Enactment Engine by deploying service composi-

tions in the following scenarios: 1) a small set of small compositions; 2) a small set of large composi-

tions; 3) a large set of small compositions; 4) a larger ratio of services per node. Table 4.10 quantifies

these scenarios.

In our experiments, the node allocation policy was the “limited round robin”, in which services are

distributed across the available nodes, and the quantity of nodes is configured before each experiment.

If the amount of services is not divisible by the number of nodes, some of the nodes will host one ad-

CHOReOS

FP7-257178 60

Figure 4.23: Time breakdown for the substituion overhead as a function of the number of ser-

vices that use the substituted service

Table 4.10: Enactment Engine deployment scenarios

Scenario # of Size of each # of Cloud # of Services

Compositions Composition Nodes per Node

1 10 10 9 11 or 12

2 10 100 90 11 or 12

3 100 10 90 11 or 12

4 10 10 5 20

CHOReOS

FP7-257178 61

Figure 4.24: Choreography synthetic topology

Table 4.11: Choreography enactment time

Scenario Deployment Successful Successful

time (s) Compositions Services

1 467.9 ± 34.8 10.0 (100%) ± 0 100.0 (100%) ± 0

2 1477.1 ± 130.0 9.3 (93%) ± 0.3 999.3 (99.9%) ± 0.4

3 1455.2 ± 159.1 98.9 (98.9%) ± 0.8 998.5 (99.8%) ± 1.3

4 585.2 ± 38.1 10.0 (100%) ± 0.1 100.0 (100%) ± 0.1

ditional service. The idle nodes reserve size was five and the node creation timeout was 300 seconds.

We used Amazon EC2 as the cloud computing service and the virtual machines were EC2 small in-

stances, each one with 1.7 GiB of RAM, one vCPU with processing power equivalent to 1.0–1.2 GHz,

and Ubuntu GNU/Linux 12.04. The Enactment Engine was executed on a machine with 8 GB of RAM,

an Intel Core i7 CPU with 2.7 GHz and GNU/Linux kernel 3.6.7.

Each scenario was executed 30 times and all the values in Table 4.11 presents the average execution

time with a confidence interval of 95%. It presents, for each scenario, the time necessary to deploy all

the compositions plus the time to invoke them. It also shows how many compositions, as well as

services, were successfully deployed for each scenario, for all executions.

We have also conducted a scalability experiment by varying in 4 steps the deployed choreography

size and the amount of nodes available on the cloud environment, whereas keeping constant the num-

ber of deployed choreographies (only one) and the ratio of 10 deployed services per virtual machine.

Each one of the 4 steps were executed 5 times. The environment used to run the Enactment Engine

was a virtual machine (8GB RAM and 4 VCPU) running on top of a Open Stack installation. As in the

previous experiments, the created nodes were Amazon EC2 instances. The results of this experiment

are shown on Table 4.12, where for each scenario we have the average deployment time and the aver-

age number of successfully deployed services, both followed by theirs respective standard deviations.

Results & Findings

The results on Table 4.11 show that the Enactment Engine scales well in terms of the number of services

being deployed. Although the number of services was multiplied by 10, the deployed time increased

approximately only 3 times in scenarios 2 and 3. This time increment was caused mainly because the

higher the number of services, the higher the likelihood of a fault that triggers the Enactment Engine

fault-recovery mechanism, causing the re-execution of one or more tasks.

The results also show that when the number of services per node was doubled (scenario 4), the

deployment time increased nearly 25%. Part of this overhead was caused by the increase on the

CHOReOS

FP7-257178 62

Table 4.12: Enactment Engine scalability analysis

Size of each Number of Deployment Successful

composition available nodes time (s) Services

200 10 623 ± 92 199.8 (99.9%) ± 0.4

600 30 1170 ± 260 599.2 (99.9%) ± 0.8

1000 50 1467 ± 140 998.4 (99.8%) ± 1.1

1400 70 1910 ± 374 1390.6 (99.3%)± 11.5

number of Chef scripts that must be executed (sequentially) on the nodes to reconfigure them.

During our experiments, we observed that the amount of failures was low: all the services were

successfully deployed in more than 75% of the executions. By one failure, we mean that one service

was not properly deployed due to problems discussed in section 2.4. Considering all the 30 executions,

we got no failures in scenario 1, whereas we had only one failure in scenario 4. In scenario 2, the worst

execution had 3 of 1,000 services not successfully deployed. In scenario 3, we got an execution with

20 failures, but it was an exceptional event, since the second worst situation had only 3 failures.

Regarding the reserve of idle nodes, as explained in section 2.4, we observed that 80% of the exe-

cutions did not use it. When the node reserve was used, there was a maximum of six requests, but in

most of the time there was only one. We also observed that the deployment time was not significantly

affected when the (relatively frequent) failures on the cloud environment occurred, because new nodes

were immediately retrieved from the reserve.

The results on Table 4.12 also show a good scalability in terms of deployed services. Increasing

the number of deployed services in 5 times, the deployment time nearly increases 2.4 times, whereas

increasing the number of deployed services in 7 times, the deployment time nearly increases 3.1 times.

In absolute numbers, each increase in 200 deployed services was responsible for increasing the de-

ployment time from 300 to 550 seconds.

CONCLUSION: The Enactment Engine scales well for different cases of choreography deployment,

behaving well both with a large number of small choreographies and with a small number of large

choreographies. In all cases, most of the time is spent by the underlying Cloud infrastructure to provide

the nodes to host the services. The failures of the Amazon EC2 infrastructure are frequent and a special

mechanism was inserted into the Enactment Engine to cope with them in a transparent way to the user.

The concurrent deployment of a large number of large choreographies (e.g., simultaneously deploying

100 choreographies of 100 services each) is not advisable because it would take too long to complete

(possibly over an hour). Thus, choreography-based systems and applications should be designed with

the idea that large choreographies are deployed not very often, but then used for a long time, e.g., a

choreography may be executing for months.

We also consider that even the most higher deployed time (about 30 minutes for 1400 services) may

be considered low if considering the long period a choreography should run and even considering the

frequency of updates in choreographies, since both are much larger then 30 minutes.

CHOReOS

FP7-257178 63

CHOReOS

FP7-257178 64

5 Conclusion

The implementation of the CHOReOS Middleware has achieved a good level of maturity for an open

source project and it is ready to be used in real-world, complex, distributed applications. Table 5.1

presents achievements, deficiencies, and needed enhancements of middleware components regarding

Future Internet challenges. We hope the middleware components will continue to be developed after the

end of the CHOReOS project and that further refinements, improvements, as well as new functionalities

will be added.

The use of the middleware by the sub-teams working on the CHOReOS use-cases provided valu-

able feedback for the middleware development teams that were able to improve the implementation.

The synthetic experiments and simulations performed help to give an idea of the current state of the

implementation and provide hints on where the next optimization and enhancements should be made.

In the near future, the challenge will be to attract a community of developers and users to further

continue the development of the system, which, we believe, can be very valuable for the next generation

of computer systems for the Future Internet.

In the table below, we summarize the major benefits (Pros), limitations (Cons), and possibilities for

future enhancements for each middleware component.

Middleware

Component

Pros Cons Future Enhancements

Things C&E Semantics-based automated

service composition: Com-

plex physical properties are

derived from simpler ones.

Returns all possible

compositions, which

might be too many.

Optimizations to return the

best set of services to be

composed for a given re-

quest.

Service

Substitution

Enables service substitution

addressing the FI adaptation

issue

FI adaptation further

involves issues like

recomposition, com-

pensation, and re-

negotiation.

Reducing the overhead of

the substitution mechanism,

along with combining the pro-

posed approach with scal-

able recomposition, compen-

sation, and re-negotiation.

XSB Interconnection of services

employing heterogeneous in-

teraction paradigms; deploy-

able on top of different com-

munication substrates; exten-

sibility to support new service

middleware or new interac-

tion paradigms.

In current proto-

type, throughput

and latency values

are satisfactory for

relatively low num-

bers of concurrent

service clients.

Optimizations for improving

throughput and latency val-

ues in the case of many con-

current service clients; empir-

ical evaluation of the frame-

work facilities by different de-

velopers; extend with support

for data streaming protocols.

CHOReOS

FP7-257178 65

Middleware

Component

Pros Cons Future Enhancements

EasyESB Efficient integration of multi-

protocol technologies; com-

pliance with cloud infrastruc-

tures and ability for a dis-

tributed deployment; efficient

support for the coordination

delegates for enacting the

choreographies; ability of pro-

filing EasyESB into a moni-

toring infrastructure for con-

trolling services widely dis-

tributed.

EasyESB is a re-

search prototype

and thus needs

maintenance and

debugging.

Optimizations in resource us-

age; extending the cloud ap-

pliance to other solutions and

improving the nodes auto-

matic deployment.

LSB Universal access to hetero-

geneous things-based ser-

vices.

Dependence on

proxy for 3G access

may lead to issues

at ultra large scale.

Investigate proxy-less solu-

tions to access of thing-based

services.

Service Dis-

covery

Enables efficient service

lookup over service abstrac-

tions, addressing the FI scale

issue.

Service registration

becomes more com-

plex due to the ex-

traction of service

abstractions.

Selecting a small number of

“important” service abstrac-

tions and making the extrac-

tion of abstractions semantic-

aware and more interactive,

without compromising perfor-

mance.

Things Dis-

covery

Scalable discovery thanks to

the use of probabilistic ap-

proaches.

Fine-grained loca-

tion data of services

stored in registry,

thus possibly lead-

ing to privacy issues.

Use only coarse-grained lo-

cation data during registra-

tion, and fine-grained loca-

tion data of services only dur-

ing the lookup and access

phases.

Grid as a

Service

Better performance for CPU-

and data-intensive tasks.

Requires a working

grid installation.

Automate Grid installation

writing Chef cookbooks

for the Enactment Engine

Middleware component.

Enactment

Engine

Helps choreography devel-

opers in tackling scalability

by enabling a fully auto-

mated deployment process;

copes with technological

heterogeneity by exten-

sion mechanisms; provides

some mechanisms to en-

able cross-organizational

choreographies; copes with

adaptability by deploying

monitoring infrastructure

and providing means to ser-

vice replication and service

migration.

Does not tackle se-

curity issues; im-

poses some restric-

tions and obligations

on services develop-

ers (although most

of them may be also

handled by EE ex-

tension).

Improving support to cross-

organizational choreogra-

phies by federating different

EE instances; better in-

tegrating the monitoring

infrastructure with services

scale up/down mechanisms;

support to more technologies

and cloud infrastructures.

Table 5.1: CHOReOS middleware components summary of achievements

CHOReOS

FP7-257178 66

Bibliography

[1] Rimon Barr, Zygmunt J. Haas, and Robbert van Renesse. Jist: an efficient approach to simulation

using virtual machines: Research articles. Softw. Pract. Exper., 35(6):539–576, May 2005.

[2] M. Behrisch, L. Bieker, J. Erdmann, and D. Krajzewicz. Sumo - simulation of urban mobility: An

overview. In SIMUL 2011, The Third International Conference on Advances in System Simulation,

Barcelona, Spain, 2011.

[3] C. Bettstetter, G. Resta, and P. Santi. The node distribution of the random waypoint mobility model

for wireless ad hoc networks. IEEE Transactions on Mobile Computing, 2(3):257 – 269, july-sept.

2003.

[4] Thomas Bonald and James W. Roberts. Internet and the erlang formula. SIGCOMM Comput.

Commun. Rev., 42(1):23–30, January 2012.

[5] Ioannis Chatzigiannakis, Christos Koninis, Georgios Mylonas, Stefan Fischer, and Dennis Pfis-

terer. WISEBED: an open large-scale wireless sensor network testbed. In Proceedings of the

1st International Conference on Sensor Networks Applications, Experimentation and Logistics,

September 2009.

[6] CHOReOS Project Team. D1.3: Choreos architectural style. Technical report, April 2011. www.

choreos.eu.

[7] CHOReOS Project Team. D2.1: Choreos dynamic development model definition. Technical report,

April 2011. www.choreos.eu.

[8] CHOReOS Project Team. D3.1: Choreos middleware specification. Technical report, April 2011.

www.choreos.eu.

[9] CHOReOS Project Team. D1.4: Description of the choreos conceptual model and architectural

style and their relation with the choreos development process and related methods, tools and

middleware. Technical report, April 2012. www.choreos.eu.

[10] CHOReOS Project Team. D2.2: Definition of the dynamic development process for adaptable

qos-aware uls choreographies. Technical report, April 2012. www.choreos.eu.

[11] CHOReOS Project Team. D3.2.2: Choreos middleware implementation. Technical report, October

2012. www.choreos.eu.

[12] CHOReOS Project Team. D4.2.1: Governance and v&v framework. Technical report, July 2012.

www.choreos.eu.

[13] CHOReOS Project Team. D4.2.2: Governance and v&v framework. Technical report, October

2012. www.choreos.eu.

[14] CHOReOS Project Team. D5.3.2: Choreos idre and user manual revised version. Technical report,

October 2012. www.choreos.eu.

CHOReOS

FP7-257178 67

www.choreos.eu
www.choreos.eu
www.choreos.eu
www.choreos.eu
www.choreos.eu
www.choreos.eu
www.choreos.eu
www.choreos.eu
www.choreos.eu
www.choreos.eu

[15] CHOReOS Project Team. D2.3: Choreos dynamic development process: methods and tools.

Technical report, Octomber 2013. www.choreos.eu.

[16] CHOReOS Project Team. D4.3: Final release of the v&v tools and infrastructure. Technical report,

April 2013. www.choreos.eu.

[17] CHOReOS Project Team. D9.6.2: Choreos courseware. Technical report, October 2013. www.

choreos.eu.

[18] CONNECT Project Team. D1.2: Intermediate connect architecture. Technical report, February

2011. CONNECT ICT FET IP Project, http://connect-forever.eu.

[19] Clément Burin des Roziers, Guillaume Chelius, Tony Ducrocq, Eric Fleury, Antoine Fraboulet,

Antoine Gallais, Nathalie Mitton, Thomas Noël, and Julien Vandaele. Using senslab as a first

class scientific tool for large scale wireless sensor network experiments. In Proceedings of the

10th international IFIP TC 6 conference on Networking - Volume Part I, NETWORKING’11, pages

147–159, Berlin, Heidelberg, 2011. Springer-Verlag.

[20] Stein Desmet, Bruno Volckaert, Steven Van Assche, Bart Dhoedt, Filip De Turck, et al. Throughput

evaluation of different enterprise service bus approaches. 2007.

[21] Nikolaos Georgantas, Georgios Bouloukakis, Sandrine Beauche, and Valérie Issarny. Service-

oriented Distributed Applications in the Future Internet: The Case for Interaction Paradigm Inter-

operability. In Springer, editor, ESOCC 2013 - European Conference on Service-Oriented and

Cloud Computing, Malaga, Spain, July 2013.

[22] J. Härri, F. Filali, C. Bonnet, and Marco Fiore. Vanetmobisim: generating realistic mobility patterns

for vanets. In Proceedings of the 3rd international workshop on Vehicular ad hoc networks, VANET

’06, pages 96–97, New York, NY, USA, 2006. ACM.

[23] Information Sciences Institute. The Network Simulator - ns-2. http://www.isi.edu/nsnam/

ns/.

[24] Haifeng Jiang, Howard Ho, Lucian Popa, and Wook-Shin Han. Mapping-driven xml transformation.

In Proceedings of the 16th international conference on World Wide Web, WWW ’07, pages 1063–

1072, 2007.

[25] State University of New York at Buffalo. PhoneLab. http://www.phone-lab.org.

[26] OMG. Deployment and configuration of component-based distributed applications (DEPL), April

2006. http://www.omg.org/spec/DEPL/.

[27] L. Sanchez, J.A. Galache, V. Gutierrez, J.M. Hernandez, J. Bernat, A. Gluhak, and T. Garcia.

Smartsantander: The meeting point between future internet research and experimentation and

the smart cities. In Future Network Mobile Summit (FutureNetw), 2011, pages 1–8, 2011.

[28] Ken Ueno and Michiaki Tatsubori. Early capacity testing of an enterprise service bus. In Web Ser-

vices, 2006. ICWS’06. International Conference on Web Services, pages 709–716. IEEE, 2006.

[29] Darthmouth University. CRAWDAD. http://crawdad.cs.dartmouth.edu.

[30] Ohio State University. KanseiGenie. http://kansei.cse.ohio-state.edu/

KanseiGenie/.

[31] Yonsei University. LifeMap. http://lifemap.yonsei.ac.kr.

[32] Sandesh Uppoor, Oscar Trullols-Cruces, Marco Fiore, and Jose M. Barcelo-Ordinas. Genera-

tion and analysis of a large-scale urban vehicular mobility dataset. IEEE Transactions on Mobile

Computing, 99(PrePrints):1, 2013.

CHOReOS

FP7-257178 68

www.choreos.eu
www.choreos.eu
www.choreos.eu
www.choreos.eu
http://connect-forever.eu
http://www.isi.edu/nsnam/ns/
http://www.isi.edu/nsnam/ns/
http://www.phone-lab.org
http://crawdad.cs.dartmouth.edu
http://kansei.cse.ohio-state.edu/KanseiGenie/
http://kansei.cse.ohio-state.edu/KanseiGenie/
http://lifemap.yonsei.ac.kr

[33] Andras Varga. The OMNeT++ Discrete Event Simulation System. In European Simulation Multi-

conference, pages 319–324, Prague, Czech Republic, June 2001.

CHOReOS

FP7-257178 69

CHOReOS

FP7-257178 70

A Enactment Engine Listings

The listings cited on Section 4.1.5, Cloud Enactment Engine Use-Case-Based Evaluation, are the fol-

lowing.

1 package org.ow2.choreos;
2
3 import java.util.Collections;
4
5 import org.ow2.choreos.chors.datamodel.ChoreographySpec;
6 import org.ow2.choreos.nodes.datamodel.ResourceImpact;
7 import org.ow2.choreos.services.datamodel.DeployableServiceSpec;
8 import org.ow2.choreos.services.datamodel.PackageType;
9 import org.ow2.choreos.services.datamodel.ServiceDependency;

10 import org.ow2.choreos.services.datamodel.ServiceType;
11
12 public class ThalesSpecs {
13
14 public static final String AIRPORT = ”airport”;
15 public static final String AIRPORT BUS COMPANY = ”airportbuscompany”;
16 public static final String AIRPORT DISPLAY ACTUATORS AGGREGATOR = ”airportdisplayactuatorsaggregator”;
17 public static final String AIRPORT INFRARED SENSORS AGGREGATOR = ”airportinfraredsensorsaggregator”;
18 public static final String AIRPORT NOISE SENSORS AGGREGATOR = ”aiportnoisesensorsaggregator”;
19 public static final String AIRPORT PRESSURE SENSORS AGGREGATOR = ”aiportpressuresensorsaggregator”;
20 public static final String AIRPORT SIGN ACTUATORS AGGREGATOR = ”airportsignactuatorsaggregator”;
21 public static final String AIRPORT SPEAKER ACTUATORS AGGREGATOR = ”airportspeakeractuatorsaggregator”;
22 public static final String BOOKABLE AMENITY = ”bookableamenity”;
23 public static final String LUGGAGE HANDLING COMPANY = ”luggagehandlingcompany”;
24 public static final String MID DISPLAY ACTUATORS AGGREGATOR = ”middisplayactuatorsaggregator”;
25 public static final String MID LOCATION SENSORS AGGREGATOR = ”midlocationsensorsaggregator”;
26 public static final String MID MICROPHONE SENSORS AGGREGATOR = ”midmicrophonesensorsaggregator”;
27 public static final String SECURITY COMPANY = ”securitycompany”;
28 public static final String STAND AND GATE MANAGEMENT = ”standandgatemanagement”;
29
30 public static final String AIRPORT JAR = ”http://sd−49168.dedibox.fr/DeployableServices/airport−service.jar”;
31 public static final String AIRPORT BUS COMPANY JAR = ”http://sd−49168.dedibox.fr/DeployableServices/airportbuscompany−service.jar”;
32 public static final String AIRPORT DISPLAY ACTUATORS AGGREGATOR JAR = ”http://sd−49168.dedibox.fr/DeployableServices/airportdisplayactuatorsaggregator−

service.jar”;
33 public static final String AIRPORT INFRARED SENSORS AGGREGATOR JAR = ”http://sd−49168.dedibox.fr/DeployableServices/airportinfraredsensorsaggregator−

service.jar”;
34 public static final String AIRPORT NOISE SENSORS AGGREGATOR JAR = ”http://sd−49168.dedibox.fr/DeployableServices/airportnoisesensorsaggregator−service.jar”;
35 public static final String AIRPORT PRESSURE SENSORS AGGREGATOR JAR = ”http://sd−49168.dedibox.fr/DeployableServices/airportpressuresensorsaggregator−

service.jar”;
36 public static final String AIRPORT SIGN ACTUATORS AGGREGATOR JAR = ”http://sd−49168.dedibox.fr/DeployableServices/airportsignactuatorsaggregator−service.jar”;
37 public static final String AIRPORT SPEAKER ACTUATORS AGGREGATOR JAR = ”http://sd−49168.dedibox.fr/DeployableServices/airportspeakeractuatorsaggregator−

service.jar”;
38 public static final String BOOKABLE AMENITY JAR = ”http://sd−49168.dedibox.fr/DeployableServices/bookableamenity−service.jar”;
39 public static final String LUGGAGE HANDLING COMPANY JAR = ”http://sd−49168.dedibox.fr/DeployableServices/luggagehandlingcompany−service.jar”;
40 public static final String MID DISPLAY ACTUATORS AGGREGATOR JAR = ”http://sd−49168.dedibox.fr/DeployableServices/middisplayactuatorsaggregator−service.jar”;
41 public static final String MID LOCATION SENSORS AGGREGATOR JAR = ”http://sd−49168.dedibox.fr/DeployableServices/midlocationsensorsaggregator−service.jar”;
42 public static final String MID MICROPHONE SENSORS AGGREGATOR JAR = ”http://sd−49168.dedibox.fr/DeployableServices/midmicrophonesensorsaggregator−service

.jar”;
43 public static final String SECURITY COMPANY JAR = ”http://sd−49168.dedibox.fr/DeployableServices/securitycompany−service.jar”;
44 public static final String STAND AND GATE MANAGEMENT JAR = ”http://sd−49168.dedibox.fr/DeployableServices/standandgatemanagement−service.jar”;
45
46 public static final int AIRPORT PORT = 8004;
47 public static final int AIRPORT BUS COMPANY PORT = 8023;
48 public static final int AIRPORT DISPLAY ACTUATORS AGGREGATOR PORT = 8006;
49 public static final int AIRPORT INFRARED SENSORS AGGREGATOR PORT = 8007;
50 public static final int AIRPORT NOISE SENSORS AGGREGATOR PORT = 8008;
51 public static final int AIRPORT PRESSURE SENSORS AGGREGATOR PORT = 8024;
52 public static final int AIRPORT SIGN ACTUATORS AGGREGATOR PORT = 8010;
53 public static final int AIRPORT SPEAKER ACTUATORS AGGREGATOR PORT = 8011;
54 public static final int BOOKABLE AMENITY PORT = 8013;
55 public static final int LUGGAGE HANDLING COMPANY PORT = 8017;
56 public static final int MID DISPLAY ACTUATORS AGGREGATOR PORT = 8018;
57 public static final int MID LOCATION SENSORS AGGREGATOR PORT = 8019;
58 public static final int MID MICROPHONE SENSORS AGGREGATOR PORT = 8020;
59 public static final int SECURITY COMPANY PORT = 8021;
60 public static final int STAND AND GATE MANAGEMENT PORT = 8022;
61
62 private final ResourceImpact resourceImpact = new ResourceImpact();
63
64 private final String serviceVersion = ”0.1”;
65
66 private ChoreographySpec chorSpec;
67
68 private DeployableServiceSpec airportSpec;
69 private DeployableServiceSpec airportBusCompanySpec;
70 private DeployableServiceSpec airportDisplayActuatorsAggregatorSpec;
71 private DeployableServiceSpec airportInfraredSensorsAggregatorSpec;
72 private DeployableServiceSpec airportNoiseSensorsAggregatorSpec;

CHOReOS

FP7-257178 71

73 private DeployableServiceSpec airportPressureSensorsAggregatorSpec;
74 private DeployableServiceSpec airportSignActuatorsAggregatorSpec;
75 private DeployableServiceSpec airportSpeakerActuatorsAggregatorSpec;
76 private DeployableServiceSpec bookableAmenitySpec;
77 private DeployableServiceSpec luggageHandlingCompanySpec;
78 private DeployableServiceSpec midDisplayActuatorsAggregatorSpec;
79 private DeployableServiceSpec midLocationSensorsAggregatorSpec;
80 private DeployableServiceSpec midMicrophoneSensorsAggregatorSpec;
81 private DeployableServiceSpec securityCompanySpec;
82 private DeployableServiceSpec standAndGateManagementSpec;
83
84 public ThalesSpecs() {
85 initAirportSpecs();
86 initAirportBusCompanySpecs();
87 initAirportDisplayActuatorsAggregatorSpecs();
88 initAirportInfraredSensorsAggregatorSpecs();
89 initAirportNoiseSensorsAggregatorSpecs();
90 initAirportPressureSensorsAggregatorSpecs();
91 initAirportSignActuatorsAggregatorSpecs();
92 initAirportSpeakerActuatorsAggregatorSpecs();
93 initBookableAmenitySpecs();
94 initLuggageHandlingCompanySpecs();
95 initMIDDisplayActuatorsAggregatorSpecs();
96 initMIDLocationSensorsAggregatorSpecs();
97 initMIDMicrophoneSensorsAggregatorSpecs();
98 initsecurityCompanySpecs();
99 initStandAndGateManagementSpecs();

100 createChorSpec();
101 }
102
103 private void createChorSpec() {
104 this.chorSpec = new ChoreographySpec(this.airportSpec, this.airportBusCompanySpec,
105 this.airportDisplayActuatorsAggregatorSpec, this.airportInfraredSensorsAggregatorSpec,
106 this.airportNoiseSensorsAggregatorSpec, this.airportPressureSensorsAggregatorSpec,
107 this.airportSignActuatorsAggregatorSpec, this.airportSpeakerActuatorsAggregatorSpec,
108 this.bookableAmenitySpec, this.luggageHandlingCompanySpec, this.midDisplayActuatorsAggregatorSpec,
109 this.midLocationSensorsAggregatorSpec, this.midMicrophoneSensorsAggregatorSpec,
110 this.securityCompanySpec, this.standAndGateManagementSpec);
111 }
112
113 private void initStandAndGateManagementSpecs() {
114 standAndGateManagementSpec = new DeployableServiceSpec(STAND AND GATE MANAGEMENT, ServiceType.SOAP,
115 PackageType.COMMAND LINE, resourceImpact, serviceVersion, STAND AND GATE MANAGEMENT JAR,
116 STAND AND GATE MANAGEMENT PORT, STAND AND GATE MANAGEMENT, 1);
117 standAndGateManagementSpec.setRoles(Collections.singletonList(STAND AND GATE MANAGEMENT));
118 standAndGateManagementSpec.addDependency(new ServiceDependency(AIRPORT, AIRPORT));
119 }
120
121 private void initsecurityCompanySpecs() {
122 securityCompanySpec = new DeployableServiceSpec(SECURITY COMPANY, ServiceType.SOAP, PackageType.COMMAND LINE,
123 resourceImpact, serviceVersion, SECURITY COMPANY JAR, SECURITY COMPANY PORT, SECURITY COMPANY, 1);
124 securityCompanySpec.setRoles(Collections.singletonList(SECURITY COMPANY));
125 securityCompanySpec.addDependency(new ServiceDependency(AIRPORT, AIRPORT));
126 }
127
128 private void initMIDMicrophoneSensorsAggregatorSpecs() {
129 midMicrophoneSensorsAggregatorSpec = new DeployableServiceSpec(MID MICROPHONE SENSORS AGGREGATOR,
130 ServiceType.SOAP, PackageType.COMMAND LINE, resourceImpact, serviceVersion,
131 MID MICROPHONE SENSORS AGGREGATOR JAR, MID MICROPHONE SENSORS AGGREGATOR PORT,
132 MID MICROPHONE SENSORS AGGREGATOR, 1);
133 midMicrophoneSensorsAggregatorSpec.setRoles(Collections.singletonList(MID MICROPHONE SENSORS AGGREGATOR));
134 }
135
136 private void initMIDLocationSensorsAggregatorSpecs() {
137 midLocationSensorsAggregatorSpec = new DeployableServiceSpec(MID LOCATION SENSORS AGGREGATOR, ServiceType.SOAP,
138 PackageType.COMMAND LINE, resourceImpact, serviceVersion, MID LOCATION SENSORS AGGREGATOR JAR,
139 MID LOCATION SENSORS AGGREGATOR PORT, MID LOCATION SENSORS AGGREGATOR, 1);
140 midLocationSensorsAggregatorSpec.setRoles(Collections.singletonList(MID LOCATION SENSORS AGGREGATOR));
141 }
142
143 private void initMIDDisplayActuatorsAggregatorSpecs() {
144 midDisplayActuatorsAggregatorSpec = new DeployableServiceSpec(MID DISPLAY ACTUATORS AGGREGATOR,
145 ServiceType.SOAP, PackageType.COMMAND LINE, resourceImpact, serviceVersion,
146 MID DISPLAY ACTUATORS AGGREGATOR JAR, MID DISPLAY ACTUATORS AGGREGATOR PORT,
147 MID DISPLAY ACTUATORS AGGREGATOR, 1);
148 midDisplayActuatorsAggregatorSpec.setRoles(Collections.singletonList(MID DISPLAY ACTUATORS AGGREGATOR));
149 }
150
151 private void initLuggageHandlingCompanySpecs() {
152 luggageHandlingCompanySpec = new DeployableServiceSpec(LUGGAGE HANDLING COMPANY, ServiceType.SOAP,
153 PackageType.COMMAND LINE, resourceImpact, serviceVersion, LUGGAGE HANDLING COMPANY JAR,
154 LUGGAGE HANDLING COMPANY PORT, LUGGAGE HANDLING COMPANY, 1);
155 luggageHandlingCompanySpec.setRoles(Collections.singletonList(LUGGAGE HANDLING COMPANY));
156 luggageHandlingCompanySpec.addDependency(new ServiceDependency(AIRPORT, AIRPORT));
157 }
158
159 private void initBookableAmenitySpecs() {
160 bookableAmenitySpec = new DeployableServiceSpec(BOOKABLE AMENITY, ServiceType.SOAP, PackageType.COMMAND LINE,
161 resourceImpact, serviceVersion, BOOKABLE AMENITY JAR, BOOKABLE AMENITY PORT, BOOKABLE AMENITY, 1);
162 bookableAmenitySpec.setRoles(Collections.singletonList(BOOKABLE AMENITY));
163 }
164
165 private void initAirportSpeakerActuatorsAggregatorSpecs() {
166 airportSpeakerActuatorsAggregatorSpec = new DeployableServiceSpec(AIRPORT SPEAKER ACTUATORS AGGREGATOR,
167 ServiceType.SOAP, PackageType.COMMAND LINE, resourceImpact, serviceVersion,
168 AIRPORT SPEAKER ACTUATORS AGGREGATOR JAR, AIRPORT SPEAKER ACTUATORS AGGREGATOR PORT,
169 AIRPORT SPEAKER ACTUATORS AGGREGATOR, 1);
170 airportSpeakerActuatorsAggregatorSpec.setRoles(Collections.singletonList(AIRPORT SPEAKER ACTUATORS AGGREGATOR));
171 }
172

CHOReOS

FP7-257178 72

173 private void initAirportSignActuatorsAggregatorSpecs() {
174 airportSignActuatorsAggregatorSpec = new DeployableServiceSpec(AIRPORT SIGN ACTUATORS AGGREGATOR,
175 ServiceType.SOAP, PackageType.COMMAND LINE, resourceImpact, serviceVersion,
176 AIRPORT SIGN ACTUATORS AGGREGATOR JAR, AIRPORT SIGN ACTUATORS AGGREGATOR PORT,
177 AIRPORT SIGN ACTUATORS AGGREGATOR, 1);
178 airportSignActuatorsAggregatorSpec.setRoles(Collections.singletonList(AIRPORT SIGN ACTUATORS AGGREGATOR));
179 }
180
181 private void initAirportPressureSensorsAggregatorSpecs() {
182 airportPressureSensorsAggregatorSpec = new DeployableServiceSpec(AIRPORT PRESSURE SENSORS AGGREGATOR,
183 ServiceType.SOAP, PackageType.COMMAND LINE, resourceImpact, serviceVersion,
184 AIRPORT PRESSURE SENSORS AGGREGATOR JAR, AIRPORT PRESSURE SENSORS AGGREGATOR PORT,
185 AIRPORT PRESSURE SENSORS AGGREGATOR, 1);
186 airportPressureSensorsAggregatorSpec.setRoles(Collections.singletonList(AIRPORT PRESSURE SENSORS AGGREGATOR));
187 }
188
189 private void initAirportNoiseSensorsAggregatorSpecs() {
190 airportNoiseSensorsAggregatorSpec = new DeployableServiceSpec(AIRPORT NOISE SENSORS AGGREGATOR,
191 ServiceType.SOAP, PackageType.COMMAND LINE, resourceImpact, serviceVersion,
192 AIRPORT NOISE SENSORS AGGREGATOR JAR, AIRPORT NOISE SENSORS AGGREGATOR PORT,
193 AIRPORT NOISE SENSORS AGGREGATOR, 1);
194 airportNoiseSensorsAggregatorSpec.setRoles(Collections.singletonList(AIRPORT NOISE SENSORS AGGREGATOR));
195 }
196
197 private void initAirportInfraredSensorsAggregatorSpecs() {
198 airportInfraredSensorsAggregatorSpec = new DeployableServiceSpec(AIRPORT INFRARED SENSORS AGGREGATOR,
199 ServiceType.SOAP, PackageType.COMMAND LINE, resourceImpact, serviceVersion,
200 AIRPORT INFRARED SENSORS AGGREGATOR JAR, AIRPORT INFRARED SENSORS AGGREGATOR PORT,
201 AIRPORT INFRARED SENSORS AGGREGATOR, 1);
202 airportInfraredSensorsAggregatorSpec.setRoles(Collections.singletonList(AIRPORT INFRARED SENSORS AGGREGATOR));
203 }
204
205 private void initAirportDisplayActuatorsAggregatorSpecs() {
206 airportDisplayActuatorsAggregatorSpec = new DeployableServiceSpec(AIRPORT DISPLAY ACTUATORS AGGREGATOR,
207 ServiceType.SOAP, PackageType.COMMAND LINE, resourceImpact, serviceVersion,
208 AIRPORT DISPLAY ACTUATORS AGGREGATOR JAR, AIRPORT DISPLAY ACTUATORS AGGREGATOR PORT,
209 AIRPORT DISPLAY ACTUATORS AGGREGATOR, 1);
210 airportDisplayActuatorsAggregatorSpec.setRoles(Collections.singletonList(AIRPORT DISPLAY ACTUATORS AGGREGATOR));
211 }
212
213 private void initAirportBusCompanySpecs() {
214 airportBusCompanySpec = new DeployableServiceSpec(AIRPORT BUS COMPANY, ServiceType.SOAP,
215 PackageType.COMMAND LINE, resourceImpact, serviceVersion, AIRPORT BUS COMPANY JAR,
216 AIRPORT BUS COMPANY PORT, AIRPORT BUS COMPANY, 1);
217 airportBusCompanySpec.setRoles(Collections.singletonList(AIRPORT BUS COMPANY));
218 airportBusCompanySpec.addDependency(new ServiceDependency(AIRPORT, AIRPORT));
219 }
220
221 private void initAirportSpecs() {
222 airportSpec = new DeployableServiceSpec(AIRPORT, ServiceType.SOAP, PackageType.COMMAND LINE, resourceImpact,
223 serviceVersion, AIRPORT JAR, AIRPORT PORT, AIRPORT, 1);
224 airportSpec.setRoles(Collections.singletonList(AIRPORT));
225 airportSpec.addDependency(new ServiceDependency(AIRPORT BUS COMPANY, AIRPORT BUS COMPANY));
226 airportSpec.addDependency(new ServiceDependency(AIRPORT DISPLAY ACTUATORS AGGREGATOR,
227 AIRPORT DISPLAY ACTUATORS AGGREGATOR));
228 airportSpec.addDependency(new ServiceDependency(AIRPORT INFRARED SENSORS AGGREGATOR,
229 AIRPORT INFRARED SENSORS AGGREGATOR));
230 airportSpec.addDependency(new ServiceDependency(AIRPORT NOISE SENSORS AGGREGATOR,
231 AIRPORT NOISE SENSORS AGGREGATOR));
232 airportSpec.addDependency(new ServiceDependency(AIRPORT PRESSURE SENSORS AGGREGATOR,
233 AIRPORT PRESSURE SENSORS AGGREGATOR));
234 airportSpec.addDependency(new ServiceDependency(AIRPORT SIGN ACTUATORS AGGREGATOR,
235 AIRPORT SIGN ACTUATORS AGGREGATOR));
236 airportSpec.addDependency(new ServiceDependency(AIRPORT SPEAKER ACTUATORS AGGREGATOR,
237 AIRPORT SPEAKER ACTUATORS AGGREGATOR));
238 airportSpec.addDependency(new ServiceDependency(BOOKABLE AMENITY, BOOKABLE AMENITY));
239 airportSpec.addDependency(new ServiceDependency(LUGGAGE HANDLING COMPANY, LUGGAGE HANDLING COMPANY));
240 airportSpec.addDependency(new ServiceDependency(MID DISPLAY ACTUATORS AGGREGATOR,
241 MID DISPLAY ACTUATORS AGGREGATOR));
242 airportSpec.addDependency(new ServiceDependency(MID LOCATION SENSORS AGGREGATOR,
243 MID LOCATION SENSORS AGGREGATOR));
244 airportSpec.addDependency(new ServiceDependency(MID MICROPHONE SENSORS AGGREGATOR,
245 MID MICROPHONE SENSORS AGGREGATOR));
246 airportSpec.addDependency(new ServiceDependency(SECURITY COMPANY, SECURITY COMPANY));
247 airportSpec.addDependency(new ServiceDependency(STAND AND GATE MANAGEMENT, STAND AND GATE MANAGEMENT));
248 }
249
250 public ChoreographySpec getChorSpec() {
251 return chorSpec;
252 }
253
254 }

Listing A.1: WP6 choreography specification used as Enactment Engine input

CHOReOS

FP7-257178 73

1 package org.ow2.choreos;
2
3 import org.ow2.choreos.chors.ChoreographyDeployer;
4 import org.ow2.choreos.chors.ChoreographyNotFoundException;
5 import org.ow2.choreos.chors.EnactmentException;
6 import org.ow2.choreos.chors.client.ChorDeployerClient;
7 import org.ow2.choreos.chors.datamodel.Choreography;
8 import org.ow2.choreos.chors.datamodel.ChoreographySpec;
9 import org.ow2.choreos.utils.Alarm;

10 import org.ow2.choreos.utils.CommandLineException;
11
12 public class ThalesEnact {
13
14 public static void main(String[] args) throws EnactmentException, ChoreographyNotFoundException, CommandLineException {
15
16 final String CHOR DEPLOYER URI = ”http://localhost:9102/choreographydeployer”;
17 ChoreographyDeployer chorDeployer = new ChorDeployerClient(CHOR DEPLOYER URI);
18 ThalesSpecs thalesSpecs = new ThalesSpecs();
19 ChoreographySpec chorSpec = thalesSpecs.getChorSpec();
20
21 String chorId = chorDeployer.createChoreography(chorSpec);
22 Choreography chor = chorDeployer.enactChoreography(chorId);
23
24 System.out.println(chor); // just to check EE output
25 }
26 }

Listing A.2: Program to invoke Enactment Engine and launch WP6 choreography deployment

CHOReOS

FP7-257178 74

	List Of Tables
	List Of Figures
	Introduction
	CHOReOS Middleware: Architecture & Implementation
	eXecutable Service Composition
	Things Composition and Estimation C&E
	AoSBM Service Substitution

	eXtensible Service Access
	XSB
	EasyESB
	LSB

	eXtensible Service Discovery
	AoSBM Discovery
	Things Discovery
	Plugin Manager

	Cloud and Grid Middleware
	The CHOReOS Enactment Engine

	How to Use the CHOReOS Middleware
	XSC – How to Use
	Composition and Estimation – How to Use
	AoSBM Service Substitution – How to Use

	XSA – How to Use
	XSB – How to Use
	EasyESB – How to Use
	LSB – How to Use

	XSD – How to Use
	AoSBM – How to Use
	Things Discovery – How to Use
	Plugin Manager and Plugins – How to Use

	Cloud and Grid – How to Use

	Evaluation
	Use-Case-Based Evaluation
	IoTS Middleware Use-Case-Based Evaluation
	XSB Use-Case-Based Evaluation
	EasyESB Evaluation
	AoSBM Discovery and Service Substitution Use-Case-Based Evaluation
	Cloud Enactment Engine Use-Case-Based Evaluation

	Experiment-Based Evaluation
	ULS Evaluation of IoTS Middleware
	XSB Evaluation
	EasyESB Evaluation
	AoSBM Discovery Evaluation
	AoSBM Service Substitution Evaluation
	Cloud Enactment Engine Evaluation

	Conclusion
	Bibliography
	Enactment Engine Listings

