
Noname manuscript No.
(will be inserted by the editor)

Privacy Preserving Minimal Observability for Composite Transactional

Services

Debmalya Biswas · Blaise Genest

the date of receipt and acceptance should be inserted later

Abstract For complex services composed of many (component) services, logging is an integral mid-
dleware aspect, especially for providing transactions and monitoring. In the event of a failure, the log
allows us to deduce the cause of failure (diagnosis) and recover by compensating the executed services
(atomicity). However, for heterogeneous services with parts of the functionality provided by multiple
organizations, logging details of all executed services is often impracticable due to privacy/security con-
straints. Also, logging is expensive in terms of both time and space. Thus, we are interested in determining
the minimal number of services that need to be logged, and which is still sufficient to know with certainty
the actual sequence of executed services from any given log. Further to privacy issues, the complexity of
determining a minimal set of such services to log is actually NP-Complete. To solve both issues, we resort
to considering each component service as a grey box. Logs are recorded and kept local to each compo-
nent, and a black-box view of the implementation details of each component is provided. In particular,
a service which is reused as a component several times (often observed in real-life services) need not be
re-computed each time. We show that this dramatically decreases the complexity up to 2 exponentials.
For large monolithic component services that cannot be decomposed simply, we also provide heuristics
to compute a small (but not necessarily minimal) number of services to log, and experimentally analyze
their accuracy and performance.

1 Introduction

An interesting problem for complex systems is to determine a minimal set of actions that needs to be
visible such that a given property holds. This is a well researched problem, and some of the properties
for which researchers have tried to determine the required minimal visibility are: observability [21],
normality [19], diagnosability [30], testability [3,20].

Our system corresponds to a composite (workflow) Web service. A Web service [2] refers to an online
service accessible via Internet standard protocols. A composite service, composed of already existing
(component) services, combines the capabilities of its components to provide a new service. The com-
position schema which specifies the execution order of its components, can be modeled as a graph,
performing actions on global variables. We do not tackle here the modelization of a composite service as
a graph, which should be handled with care to yield a graph of reasonable size (see Section 1.2 and [36]).
The component services of a composite service may themselves be composite, leading to a hierarchical
composition.

The property that we are interested in is that of transactional atomicity for Web services. A transac-
tion can be considered as a group of actions encapsulated by the operations Begin and Commit/Abort,

Parts of this work appeared in the extended abstracts [5,6]. This work is supported by Create ACTIVEDOC and ANR
DOCFLOW projects. Most of this work has been done while the first author was at IRISA/INRIA Rennes.

D. Biswas
Iprova, Lausanne, Switzerland

B. Genest
CNRS, IRISA UMR, Campus de Beaulieu, 35042 RENNES cedex, France.

having the following properties: Atomicity (A), Consistency (C), Isolation (I) and Durability (D). Here,
we focus on the atomicity aspect, that is, either all the actions of a transaction are executed or none.
In the event of a failure, atomicity is preserved by compensation [37]. A compensating operation is an
operation capable of semantically undoing the effects of the original operation, e.g. “Cancel Flight Book-
ing” is a compensating operation of “Book Flight”. In the event of a failure, compensating operations
corresponding to each executed action are executed in the reverse order; leading to a previous stable
configuration. To enable such compensation, a log is maintained containing the executed operations and
their execution order. This compensation mechanism is on the lines of the Sagas framework [14,10]. This
is also the default compensation mechanism followed by e.g. BPEL [7], the current industry standard
to model and and execute Web services compositions. For composite service executions distributed over
multiple providers, with each provider executing a subset of the (component) services, compensation
is enabled by distributed commit specifications such as WS-Coordination, WS-AtomicTransaction and
WS-BusinessActivity [35].

The main drawback of the methods used by BPEL and advocated by the WS-specifications, is their
assumption that the whole execution log is visible globally. This is clearly impractical, especially in a
distributed scenario, where the individual confidentiality concerns of the different providers may prevent
them from exposing part of the logs corresponding to the services executed by them. Finally, logging is
an overhead for run-time execution, and as such is inefficient with respect to both time and space.

1.1 Contributions

In this work, we address distributed and heterogeneous environments where providers are interested in
logging only the required minimum to reduce run-time overhead. Further, the composition schema and
logs of each service are confidential as they contain sensitive design and run-time information regarding
that service, respectively. Given this, we require that the composite services have (almost) no knowl-
edge about execution aspects of their component services. In this context, we consider two problems
(formalized in Section 2):

1. finding a set of services to log as small as possible such that compensation can still be performed
(referred to as the minimal compensable set), without requiring any knowledge of the schemas of
component services; and

2. perform the undo operations in a hierarchical manner, based only on the (partial) logs of the com-
ponent.

Towards this end, we make the following contributions:

– The problem of determining a minimal compensable set is unfortunately NP-complete. We show that
the problem is NP-complete even if the graph corresponding to the composition schema of a service,
is acyclic [23], and is bounded by indegree and outdegree less than 3[5]. The novelty of our proof,
which follows the same strategy as [23], is that the encoding to get a unique starting and ending point
is both easier to understand and allows a lower in and outdegree (Section 3).

– We then introduce a hierarchical modeling of composite services. Intuitively, a composite service is
constructed hierarchically, with each hierarchical level describing the interactions at a different level
of abstraction. Hierarchical modeling allows us to reuse services in such a way that the hierarchical
algorithm will not re-compute twice the same service, even though it is specified as a component
many times in the overall composition. This allows us to obtain algorithms up to one exponential
faster than without reusing components. We further show how component services can be replaced
by much smaller ones leading to up to another exponential gain in complexity [5].

In this work, we propose a privacy preserving variant of [5]. From a privacy perspective, the main
disadvantage of the algorithm in [5] is that it requires a global co-ordinator having visibility over
(i) the composition schemas of all services while computing the minimal compensable set, and (ii)
then over the logs generated by all services in the hierarchy. Here we restrict the need for information
sharing to that between parent-child services only. Moreover, the shared information does not contain
any sensitive information, e.g. composition schema, execution log, of the component services. The
privacy-preserving algorithm is given in Section 4.3. We present a theoretical complexity analysis
which illustrates the benefit of our method both from a privacy-preserving and complexity perspective
(Section 4.4), which is later verified experimentally in Section 4.4.

2

– We finally provide heuristics to compute a small, but not necessarily minimal, compensable set in
Section 5. Depending on the use-case, it may be acceptable for some application scenarios to log a few
more actions as compared to the computationally expensive process of computing the exact minimum.
We propose two heuristics in Sections 5.1 and 5.2, and experimentally analyze their complexity and
accuracy in Section 5.3.

1.2 Motivational Scenario

We illustrate the challenges based on a motivational real-life Travel Funds Request service.

������������� 	
���� ��������� �����
���� ��� ����� ������������ ������
����� ������ ��!�"��#������
��$� �%�&���!� ������!�'�!�"���
��(� �)�������� ����� ��*������ '����!��+�,�-��!
���� �.� ������
��/0��!��!� '�1�2��3
���� �4� 5��� "3 �������
���� �6���� 7���'�1�2��
���� �8�

'�1�2��������
��9� �:���$
;������!�*���� ,�����!
����<�

��(
;������!�'�1�2��3
���� �=� ������

0��!��!� *����,�����!
��� �>�
0���??�����! *��������13 ?�� ?����
��� �@��� ������� *����,�����!
��� �A� ������ B�2�1 C
B�2�1 D
B�2�1 E

Fig. 1 Hierarchical Travel Funds Request service

We consider a Travel Funds Request service H in Fig. 1, inspired by the workflow in [29]. It involves
different departments across organizations, and it is hierarchical in that the Process Funds Request and
the Deliver Cheque services are hierarchically defined. We refer to the services at levels 1, 2 and 3 as
M1,M2 and M3, respectively.

Our first objective is to compute a minimal compensable set of the hierarchical service. Let us
try computing minimal compensable sets of M1,M2 and M3 independently. Let T O1 = {e3}, T O2 =
{e11, e15} and T O3 = {e23} be the computed minimal compensable sets of M1,M2 and M3, respectively.
It is easy to see that T O1 ∪ T O2 ∪ T O3 is a compensable set of H . However, a minimal compensable set
is T O = {e11, e15, e23} (shown by dashed arrows in Fig. 1), and there is no need for e3 to be visible in
M1. That is, T O1 ∪T O2 ∪T O3 is not a minimal compensable set. While it is not possible for M1 to take
such global decisions based on its local schema information, we show that it is in fact possible for M1 to
do so even without knowing the composition schema of its child M2 entirely, based only on knowledge
of some properties of M2.

Second, let us consider the problem of performing compensation based on the partially visible log.
Note that if we consider the minimal compensable set T O computed above, then M1 does not have
even a single visible transition. Given this, it is not possible for M1 to locally determine its execution
sequence from its log (it would for instance not be able to differentiate between the execution paths
e1e2e4 6= e1e3e4). It can however do so by interacting with its child service M2, that is by checking if
M2 was invoked in an execution instance.

3

1.3 Application Context

From an application perspective, the problems we address here are middleware problems, which would be
relevant to say a BPEL execution engine. We have implemented the proposed algorithms and integrated
them into the ActiveBpel [1] implementation. In BPEL, each invoke operation can be compensated. In
practice, each invoke operation implicitly creates a scope and compensating operations are associated with
the scope. In ActiveBpel, a scope is implemented by the class AeActivityScopeImpl and the information
that might be needed to compensate it is stored in a class variable mCompInfo of type AeCompInfo. An
AeCompInfo object basically contains (i) a reference to the scope that completed (execution log), and (ii)
a variable snapshot object to record the state of all of its variables (data log). We are mainly interested
in the execution log. We do not deal with the data log, as it is not directly useful for recovering the actual
sequence of actions. We assume that each service locally maintains its data log properly. Further, as with
execution logs, each service does not have any visibility over its components’ data logs; visibility over
its local data log is sufficient. For instance, service e16 in Figure 1 will be responsible for maintaining in
its (data) log the amount for the check. If an undo operation is requested, it will update the accounts
database without passing this private amount information to other peers. In the event of a failure, the
method getMatchingScopes() determines the list of scopes to be compensated. Of course, in case of
ActiveBPEL, all executed scope references are visible, and the functionality of getMatchingScopes() is
simply to traverse the hierarchy of scope references to generate the list of executed scopes. In our case,
the list of executed scopes would need to be reconstructed from the visible log. The problem is then to
determine a minimal set of scopes whose references need to be logged, based on which the complete list
of executed scopes can be determined. As with BPEL, we assume that the service providers adhere to the
applicable Service Level Agreement (SLA), with respect to not only providing the service functionality
but also their failure recovery requirements. This assumes that the providers internally maintain the
necessary logs in a durable fashion (replicating, as necessary) so that their services’ execution can be
compensated, when necessary. In the rare occasion where this is not feasible, the failure (to compensate)
will be raised as an ‘exception’ to its parent. The parent can handle the exception at its level, based
on pre-defined exception handlers, or propagate the exception further upwards. Exception handling is
beyond the scope of this work, and it suffices to say that this behavior is consistent with existing services
composition frameworks e.g. BPEL, and advanced transaction models e.g. [13,9,10] are applicable here.

1.4 Related Works

The minimality problem such that a given system property holds under partial observation has received
considerable attention in the Discrete Event Systems (DES) literature. A Discrete Event System [20]
can be represented by the pair G = (M, T c). The first component M denotes a Mealy Automaton
M = (Σ,Q, Y, δ, h) where Σ is the set of events, Q is the set of states, and δ : Σ ×Q → 2Q is the state
transition function. Y is the output space and h : Σ × Q → Y is the output function (h(σ, q) is the
observed output when σ occurs at q). In our case, outputs are the events observed themselves, that is,
Y = ΣO ∪ {ǫ} where ΣO ⊆ Σ. The second component T C ⊆ T is the set of controllable events, where
the controllability of events is interpreted in a strong sense: a controllable event can be made to occur if
physically possible.

With this definition, the problem is to select an optimum output function (or minimal observable set
of events with Y = ΣO ∪ {ǫ}) such that certain properties, e.g., observability, normality, diagnosability,
etc. hold. For observability [21] to hold, if the control events following a pair of event traces are different,
then the events observation information provided by the output function should be able to discriminate
between such a pair of traces. The same property, in a distributed setting, translates to at least one
controller being able to distinguish between such a pair of traces, known as Co-observability [28,12]. If
in addition to the observability condition, we further require that all events that a controller can control
be observable as well, then we have the stronger property of normality [19]. We cannot use the above
research results directly as we do not have any such “special” events in our framework, that is, we require
the capability to distinguish between any pair of events traces (and not only those which enable some
special transitions). For diagnosability [30], we need to be able to distinguish between a normal and
faulty trace within a bounded number of steps from the time of occurrence of a fault. Our systems stop
execution as soon as a transition fails, as such we need the capability to be able to distinguish between
traces within 0 steps of failure occurrence. A variant of the above properties is to determine the exact

4

state at any point of time, that is, we need to be able to distinguish between only those event traces
which lead to different states, also known as state-observability [25]. The states can be further divided
into a set of partitions T , and as long as we can at least distinguish between the partitions using the
events observation information, then we have testability [3,20].

The problem of determining a minimal observable set has been shown to be NP-complete for all
the above properties. [38,26,18] prove the NP-completeness based on the vertex cover problem, directed
graph st -cut problem, and SATISFIABILITY problem, respectively. Of course, the most relevant NP-
completeness proof for us is that of [23] which shows that determining a minimal observable set for
compensability is NP-hard even for directed acyclic graphs. We extend the proof to show that the
problem is NP-hard even for directed acyclic graphs with indegree and outdegree bounded by 3.

To the best of our knowledge, we are not aware of any heuristics or approximation algorithms for the
minimal sensor selection or the uniconnected graph problem. Some works which have considered heuristics
for related observability problems are mentioned below. Given observable events with an associated
(installation) cost, [39] presents a greedy algorithm based on the observation cost, to select the minimal
set of observed events. [27] discusses approximation algorithms to select the minimal set of events to be
communicated in a distributed supervisory controllers setting. [26] gives a polynomial time approximation
algorithm for a special case of the observability problem. Recent works [11,32,33] have considered the
problem of proposing policies for dynamic sensor selection which minimize the number of activated
sensors at a given time, compared to our motivational scenario where the sensors activated are fixed
after the computation stage. Among them, [33] proposes optimal policies.

From a pure transactional perspective, we are close to logging for nested transactions. For the basics
of (single level) undo/redo recovery, the interested reader is referred to [17]. [24,22] discuss the logging
required to perform undo/redo recovery for nested transaction. Note that redo is required during recovery
if a failure occurs before all transactional updates have been written to the stable storage (after commit).
In our scenario, transaction updates are applied as and when they occur. Thus, we interested in an
undo/no-redo strategy [8], where undo is performed using compensating operations. Of course, the above
works assume that all the logs are accessible (visible), and the focus is on specifying the log format so
that the nested structure of transactions/subtransactions is maintained, based on which the correct set
of updates to be undone/redone can be determined and executed in the right order. Curiously, while the
effect of partial log visibility has not received much attention from an atomicity perspective, it is close
to the concurrency control problem of providing global serializability in the absence of a central/global
Concurrency Control Manager [16]. However, the proposed solutions are more on the lines of mechanisms
(e.g., tickets) to make the conflicts at different sites explicit, rather than determining a minimal set of
conflicts/sites which need to be visible to be able to provide global serializability.

2 Formalizing Compensability

Formally, we define a transactional service as a 4-tuple Finite State Machine (FSM) M = (Q, s0, sf , T),
where (Q, T) is a graph (q ∈ Q is called a state and t ∈ T a transition) and s0 ∈ Q and sf ∈ Q are the
initial and final states respectively. Note that unlike the usual definition of FSMs, we ignore the use of
alphabets to label transitions in the FSM definition as we do not need to read words. We also assume
that there are no outgoing transitions from sf and no incoming transitions to s0 (We could deal with
FSMs without these requirements, but the proofs would be more technical.) The converse does not hold,
that is, there can be a non-initial (final) state with no incoming (outgoing) transitions. Our FSMs are
thus graphs with a unique input and output point, also known as the source and sink states respectively.
A sequence of transitions ρ = τ1 · · · τn ∈ T ∗ is a path of M if there exists q0, · · · , qn ∈ Qn+1 with
τi = (qi−1, qi) for all 1 ≤ i ≤ n. A path is called initial if furthermore q0 = s0. We denote by P(M) the
set of initial paths in M . We denote by |M | the size of M , that is, its number of transitions.

Under restricted visibility, M may not have visibility over the execution logs of all its transitions
(invocations). Thus, we further need to consider the subset of transitions T O ⊆ T visible to M . For
an execution sequence ρ of M , we call visibility projection the execution visibility we have after ρ
was executed. We say that a visibility projection σ is uncertain if there exists two paths having the
same projection. The service M is execution sequence detectable iff none of its visibility projections are
uncertain.

5

Definition 1 For a serviceM = {Q, s0, sf , T }, let T O ⊆ T be the set of visible transitions. The visibility
projection ObsO : T ∗ −→ T ∗

O is the morphism with ObsO(a1 . . . an) = o1 · · · on with oi = ai if ai ∈ T O,
and oi = ǫ if ai ∈ T \TO, with ǫ the empty word.

That is, ObsO(ρ) is the subsequence of ρ obtained by eliminating from ρ every occurrence of a transi-
tion which is not in TO. With such a visibility projection ObsO, the only way of having compensability is
to have every transition visible. Indeed, as soon as there exists even one invisible transition, the service is
non-compensable. Else, let us take a path ρτ with the last transition τ /∈ TO. Then, ObsO(ρτ) = ObsO(ρ).
A usual way to overcome such a problem is to ask for certainty only up to the last few transitions of
the sequence [25]. However, this workaround does not make sense in our framework since if we cannot
compensate the very last transition, then there is no point in compensating any transition at all. As
such, we design a new visibility mechanism, where the last state reached before failure is monitored, even
if the last transition is not logged. In practice, it means that every state that is reached is logged, and
overwrite the previous state in a special memory buffer.

Definition 2 (Visibility Projection) Let M = {Q, s0, sf , T } be a service, T O ⊆ T . The visibility
projection ObslastO : T ∗ −→ (T ∗

O, Q) is the function ObslastO (ρ) = (ObsO(ρ), q) for all ρ ∈ P(M) ending
in q.

Definition 3 (Compensability) Given a service M = (Q, s0, sf , T), we call T O ⊆ T a compensable
set of transitions if the service is execution sequence detectable with ObslastO .

We will stick with this definition of compensability for the rest of this work. As mentioned before, we
are interested in minimal visibility, that is, visibility over as few transitions as possible.

Problem statement. Given a service M = (Q, s0, sf , T), we would like to determine a minimal set of
transitions T O ⊆ T which need to be visible such that the system is still compensable.

The cardinality of such a minimal compensable set TO of a service M is referred to as its compensable
size MO(M) = |TO|. Note that as is usual with decision and computation algorithms, given a service, it
is sufficient to have an algorithm which gives its compensable size. That is, we can derive in polynomial
time a minimal compensable set of the service based on an oracle algorithm given the compensable size.

In the next section, we discuss the complexity of our problem.

3 Problem Hardness

We first relate the problem of computing MO(M) using our definition of visibility projections with other
known problems. We state now that computing a minimal compensable set is equivalent to the unicon-
nected subgraph problem [15], also called the minimal marker placement problem [23], in the meaning of
the following proposition.

Proposition 1 Let M = {Q, s0, sf , T } be a service and TO a subset of transitions of M . Denote by
M ′ = {Q, s0, sf , T \T O} the service M obtained by deleting all transitions belonging to TO. Then, TO
is a compensable set M iff there does not exist a pair of states q1 6= q2 in M ′ with more than one path
between them.

Proof First, we show that if there does not exist a pair of states q1 6= q2 in M ′ with more than one path
between them, then from any visibility projection (σ, qn+1), we can reconstruct in a unique way the path
ρ of M with ObslastO (ρ) = (σ, qn+1) using the following algorithm:

Algorithm to reconstruct the execution sequence from a given visibility projection.
Input. FSM M = {Q, s0, sf , T }, visible subset T O ⊆ T , FSM M ′ = {Q, s0, sf , T \T O} and visibility

projection (σ, qn+1).
Output. The unique path ρ of M with ObslastO (ρ) = (σ, qn+1).
Initialization. Set ρ := ǫ, current state s := s0 and we use index i to iterate the projection σ =

τ1τ2 · · · τn.

6

if (n == 0) /* No transitions were logged */

then set ρ to the unique path connecting s to qn+1 and return;

else

begin

for i = 1 · · ·n do

begin

if τi is an outgoing transition of s
then append τi to ρ;
else

begin

Determine the unique path ρ1 of M ′ connecting s to ∗τi;
Append ρ1τi to ρ;

endif

Set s := τ∗i ;
endfor

if s = τ∗n = qn+1

then return ρ;
else

begin

Determine the unique path ρ1 connecting s to qn+1;

Append ρ1 to ρ, and return ρ;
endif

endif

The converse is trivial. Clearly, if there exists more than one path between two states q1 6= q2 of M ′,
then we can find more than one execution sequence corresponding to a visibility projection which passes
through q1 and q2. ⊓⊔

The fact is that the marker placement problem is an NP-complete problem. We know from [23] that
the minimal marker placement problem is NP-complete even for acyclic graphs. However, the proof uses
a graph with unbounded (in and out) degree. We show that the problem is NP-complete even if the graph
is both acyclic and the sum of its in and outdegree bounded by 3 (that is, indegree 2 and outdegree 1,
or vice versa). The core of the proof follows the same strategy as [23], but the encoding to get a unique
starting and ending point is both easier to understand and allows a lower in and outdegree.

Theorem 1 Let M = {Q, s0, sf , T } be a service, and k a number. Knowing whether MO(M) ≤ k is
NP-complete, even if the corresponding graph is acyclic and the sum of in and outdegree of every node
bounded by 3.

Proof Let M = {Q, s0, sf , T } be a system. We reduce Vertex Cover [15] to the problem of finding a
subset of transitions TO of M , such that there are no two paths ρ1 6= ρ2 beginning and ending at the
same pair of states, and not using any transitions of TO.

Let us take an undirected graph (V,E) and a number k. We would like to know whether there exists
a subset VO of V of size ≤ k, such that for all (v, w) ∈ E, at least one of v, w belongs to VO. This
problem is NP-complete even with (V,E) of degree 3. The first FSM M we build has a state space
S = V1 ∪ V2 ∪ E1 ∪ E2 where Vi = {vi | v ∈ V } and Ei = {ei | e ∈ E}. Furthermore, for v, w ∈ V and
e ∈ E, we have transitions:

1. (e1, v1) ∈ T iff v ∈ e iff (v2, e2) ∈ T
2. (v1, w2) ∈ T iff v = w.

A graphical representation of M appears in Fig. 2. Assume that there is a subset VO of V of size k,
such that for all (v, w) ∈ E, at least one of v, w belongs to VO. Then, defining T O = {(v1, v2) | v ∈ VO},
we have that there are no two paths ρ1 6= ρ2 with ρ1 and ρ2 beginning and ending at the same pair
of nodes, and not using transitions of TO. By contradiction, else we would have ρ1, ρ2 both from some
e1 ∈ E1 to some f2 ∈ E2, and not using transitions of TO. By definition of TO, it means that for ρ1,
there exists a node v ∈ e, v ∈ f , such that v /∈ VO. Similarly, for ρ2 with a node w. Since ρ1 6= ρ2, we
have that v 6= w, hence e = (v, w) contradicts VO is a vertex cover.

7

 (v,w)

.

.

.

(v,w)
v

w

v

w
.
.
. .

.

Fig. 2 Illustration for the proof of Theorem 1

Conversely, assume that there is a set of transitions TO of size k, such that there do not exist two
distinct paths between a pair of nodes without using TO. We build the set of nodes VO = {v | (v1, v2) ∈
TO}∪{v | ∃e, (e1, v1) ∈ TO}∪{v | ∃e, (v2, e2) ∈ TO}. Clearly, |VO| ≤ |T O| = k. We prove now that V is a
vertex cover of (V,E). Assume by contradiction that there exists an edge e = (v, w), such that v, w /∈ VO.
Then, we argue that e1v1v2e2 and e1w1w2e2 are two paths not using TO, a contradiction.

However, so far, the graph defined is not a system since it has several nodes with indegree 0 (the
(e1)e∈E), and several nodes with outdegree 0 (the (e2)e∈E). Moreover, the indegree of nodes (v1)v∈V

and the outdegree of nodes (v2)v∈V can be 3 (the degree of the undirected graph (V,E)). However, it
is acyclic. For the degree, one can safely transform any node v1 with 3 incoming transitions from nodes
e1, f1, g1 by having two nodes v1, v

′
1 with transitions (e1, v

′
1), (f1, v

′
1), (v

′
1, v1) and (g1, v1). Hence, all nodes

have indegree at most 2. The same can be done for outdegree. The size of the minimal compensable set
of transitions will not change with such a transformation. Actually, with such a technique, we could start
from an undirected graph of any degree.

Making the graph a system is a little more involved. We use the graph G from Fig. 1. It then suffices
to create a balanced binary tree of transitions with root si, such that there are |E| leaves. This tree has
O(2|E|) nodes, that we add to the system S we built from (V,E). The root of the tree is the unique
initial node, and every leaf is connected to a node (e1)e∈E through a copy of graph G. The same is done
for nodes (e2)e∈E connected through copies of G to a balanced binary tree with root sf (the unique final
node). This system has O(|V |+ |E|) nodes, is acyclic and of total degree 3. Now, it is easy to show that
if the minimal vertex cover has k vertices, then the minimal compensable set of transitions is of size
k + 4|E|. Indeed, there are 2|E| copies of the graph G each of which requires 2 visible transitions. Once
these transitions have been deleted, the two balanced trees are totally disconnected from each other and
from the first system we had built (since every path from the initial to the final node of the graph G uses
one of the two visible transitions), and hence we need exactly k more transitions to be visible. Note that
connecting directly the tree with S without using G would not work since it would potentially connect
s0, sf through two different paths s0 −→ e1 −→ e2 −→ sf and s0 −→ f1 −→ f2 −→ sf , with e, f ∈ E.
⊓⊔

This theorem does not mean that the problem is impossible to solve, but that it cannot be solved
for services with too many transitions. For instance, the complexity of the brute force method which
generates every subset of transitions and tests whether it is compensable, is O(2|M|) for a service with
|M | transitions. A commonly used approach for NP-hard problems is to determine structural properties
that make the problem easier to solve, and often hold in real-life scenarios. We propose hierarchical
services as a candidate, and outline hierarchical decomposition algorithms for our problem, in the next
section.

4 Hierarchical Services

Composite services provide an efficient way to model large and complex services by allowing a modular
composition and reusability of services. For simplicity, we model composite services as hierarchical FSMs
where two transitions (supertransitions) can be further refined into another FSM. As we will illustrate
below, hierarchical FSMs are well suited to represent large systems that are inherently modular. This
allows breaking down the minimal compensable problem in terms of each one of its components, which
are small enough such that it is computationally feasible to solve the problem for each component. This
leads to a computationally feasible answer for the whole (large) system. This is not in contradiction with

8

the NP-complete worst case complexity, as not all systems can be described by a hierarchical FSM with
small components. One supertransition per service suffices to break down the system in modular fashion.
We additionally allow for 2 supertransitions per service to show the computational benefit that can be
obtained as a result of reusing component services.

Definition 4 (Hierarchical FSM) A hierarchical FSM H is a finite sequence 〈M i〉i=1···n, where M
i =

(Qi, si0, s
i
f , T

i, (τ i1, k
i
1), (τ

i
2, k

i
2)) is defined as follows:

– (Qi, T i) is a finite graph,
– si0 and sif are the initial and final states respectively, and

– τ i1, τ
i
2 ∈ T i ∪ {ǫ} are two supertransitions representing FSMs Mki

1 ,Mki
2 respectively, with ki1, k

i
2 > i.

Notice that a service can have less than 2 supertransitions by setting τ i1 = ǫ and/or τ i2 = ǫ. If
both τ i1 = τ i2 = ǫ, then the module is a (usual) FSM (without supertransition). On the other hand, if
τ i1 = (s1, s2) ∈ T i, it means that the transition from state s1 to state s2 is actually a supertransition

representing the FSM Mki
1 .

For instance, the hierarchical service in Fig. 1 can be described as a hierarchical FSM 〈M1,M2,M3〉,
where the transition e17 of M2 is a supertransition representing M3, and the transition e2 of M1 is a
supertransition representing M2. M2 will be called a module of M1, and M3 a module of M2.

With each hierarchical FSM H , we associate an ordinary FSM H obtained by taking M i, and re-
cursively substituting each supertransition τ i by the FSM Mki

it represents. Let τ i = (s1, s2) and

Mki

= {Q, s′1, s
′
2, T }, then on substituting τ i of M i by Mki

, we have Mi = {Q′, s′0, s
′
f , T

′} where

– Q′ = Qi \ {s1, s2} ∪Q
– if si0 = s1, then s′0 = s′1, else s′0 = si0
– if sif = s2, then s′f = s′2, else s′f = sif
– T ′ = T i \ {(s1, s2)}∪T ∪I, where I = {(q, s′y) | (q, sy) ∈ T i∧y ∈ {1, 2}}∪{(s′y, q) | (sy, q) ∈ T i∧y ∈

{1, 2}}.

Given a hierarchical service 〈Hn〉, Hj is a component of Hi, if Hj is a module of Hi. We define a
component FSM as follows:

Definition 5 (Component FSM) An FSM C = (Q′, s′0, s
′
f , T

′) is a component of M = (Q, s0, sf , T)
if Q′ (Q and T ′ (T and ∀q ∈ Q \Q′, q′ ∈ Q′, we have (q, q′) ∈ T or (q′, q) ∈ T implies q′ ∈ {s′0, s

′
f}.

For example, an FSM C which is isomorph to M2, is a component of M1, for the hierarchical services
〈M1,M2,M3〉 of Fig. 1 (M1 is the flat FSM represented by the hierarchical FSM M1, and M2 is the flat
FSM represented by the hierarchical FSM M2). In general, there will be n components equivalent with
Mj in Mi, if M j is used n times in M i. We define the size |H | of a hierarchical service H as the sum
of the number of transitions of its components M i. Its diameter ||H || is the number of transitions of H.
Components can be reused several times (for instance, a supertransition of H3 and two supertransitions
of H4 can represent H10, in which case one does not need to redefine H10 three times). Also, the diameter
||H || of H can be exponential in the size of H . For instance, consider a simple service H1 using twice the
service H2, which uses twice the services H3 etc. till Hn. That is, while defining only n simple composite
services, a service H1 using 2n service Hn has been defined, with ||H1|| ≥ 2n.

Hence, using only two supertransitions per service, one can obtain an exponential compression of
the descriptive size of a huge service. Note that if we allow only one supertransition, services cannot be
reused as the supertransition satisfies ki > i (that is, a service can only use a component that has been
defined earlier). Indeed, as there is only one supertransition per service, we get ki = i+ 1. Given this, if
two components M i,M j , i < j use the same service k, we get i+1 = k = j+1; hence i = j. Note that if
we did not impose ki1 > i, the description would be recursive, and it would represent an infinite system
(or equivalently, a family of finite systems), which is undesirable. Finally, many (but not all) systems
with more than 2 supertransitions per service can be modeled using additional intermediate services
with 2 supertransitions. For instance, a composite service M1 with three consecutive supertransitions
a, b, c, representing respectively services M2,M3,M4, can be encoded as a composite service N1 with
two consecutive supertransitions a′, c, where a′ represent service N2 and c still represents M4. In turn,
the service N2 has two consecutive supertransitions a, b, representing N2, N3. It is simple to check that
N 1 = M1, and that each service of N has at most 2 supertransitions.

We now define properties of components of FSM, before explaining how to replace modules of a
hierarchical FSM one by one (even if a module is used twice).

9

4.1 Component Service FSM Properties

We first define properties of a set of transitions that allow us to know whether it is a minimal compensable
set. We say that a path ρ = τi|i=1···n passes through an FSM M = (Q, s0, sf , T) if ∃τi ∈ T . We say that
a path ρ = τi|i=1···n belongs to an FSM M = (Q, s0, sf , T) if ∀τi, τi ∈ T . We say that a path ρ = τi|i=1···n

does not touch an FSM M = (Q, s0, sf , T) if ∀τi, τi /∈ T . Further, for an FSM M = (Q, s0, sf , T) and
subset of transitions T O ⊆ T , we define the following predicates: A path ρ is referred to as an invisible
path if it does not use any transitions of TO.

– P0(M, T O) holds if there does not exist more than one invisible path between any two states s1 6=
s2 ∈ Q (T O is a compensable set of transitions).

– P1(M, T O) holds if (i) P0(M, T O) holds, and (ii) there does not exist an invisible path from s0 to
sf . Basically, the existence of an invisible path from the initial to final state of a component C might
be a problem for the compensability of a composite service using M as a subservice, if there exists a
pair of states s1 6= s2 of M with one path passing via C and the other not touching C as shown in
Fig. 3(a).

– P1′(M, T O) holds if (i) P0(M, T O) holds, and (ii) there do not exist states s1, s2 ∈ Q, such that:
– there is an invisible path from s0 to s2,
– there is an invisible path from s1 to sf , and
– there is an invisible path from s1 to s2.
We refer to such a combination of states and transitions as an invisible reverse cyclic pattern between
s1 and s2 (within M). Here also, the existence of an invisible reverse cyclic pattern within a component
C of M , might be a problem with respect to the compensability of a composite service using M as a
subservice, if there exists a path from the final to initial state of C which does not touch C as shown
in Fig. 3(b) (because then there are two paths from s′1 to s′2: (i) a direct path using (s′1, s

′
2) and (ii)

a path via s′f and s′0).

By definition, P1′(M ,T O) ⇒ P1(M, T O) ⇒ P0(M, TO), since for all s, there always exists a path from
s to s. Let ǫ < 0 < 1 < 1′. We define Best(M, T O) = x ∈ {ǫ, 0, 1, 1′}, such that Px(M, TO) holds but not
Py(M, TO) with y > x, with the convention Pǫ(M, TO) is always true. Informally, Best refers to the best
properties a given set of transitions can ensure, if visible. For instance, in Fig. 1 with TO = {e11, e15},

(a)

s’fs’0s1 s2 s’2s’1
s’0 s’f

(b)

Fig. 3 Significance of P1(M, T O) and P1′ (M ,T O)

 s0 . s0'
sf'

 (a)

. sf

s0. . sf
 (b)

s0''

 sf''

Fig. 4 Computation of (a) F1(M) and (b) F1′ (M)

10

Fig. 5 Minimal sizes computation algorithm
Input. FSM M = {Q, s0, sf , T }.
Output. Minimal sizes MO(M),MO1(M),MO1′ (M) such that P0(M,T 0), P1(M, T 1), P1′ (M, T 1′) hold.
Initialization. Set MO(M) = MO1(M) = MO1′(M) = |T |.

if (|T | == 1)
then set MO(M) = 0 and return;

Compute the powerset P(T);
for i = 0 · · · |T | do

begin

Determine Pi(T) ⊂ P(T), such that each set S ∈ Pi(T) is of size |S| = i;

for each S ∈ Pi(T) do

begin

if (i < MO(M))
then check if P0(M,S) holds

then set MO(M) = i, else continue; /*‘continue’ to the next for loop iteration */

if (i < MO1(M))
then check if P1(M,S) holds

then set MO1(M) = i, else continue;

if (i < MO1′ (M))
then check if P1′ (M,S) holds

then set MO1′(M) = i and return;

endfor

endfor

P1(M
2, TO) holds but P1′(M

2, TO) does not hold as there is an invisible reverse cyclic pattern between
s12 and s13. Thus, Best(M

2, TO) = 1.
A brute force algorithm to compute the minimal sizesMO(M),MO1(M),MO1′(M) is given in Fig. 5.
We are now in a position to present our first technical result, stating that two subsets of visible

transitions can be interchangeably used in any context as long as they have the same Best value.

Proposition 2 Let C be a component of M , and T 1, T 2 be subsets of transitions of C respectively, such
that Best(C, T 1) = Best(C, T 2). Then, for all subset of transitions TO of M \C, we have Best(M, T O ∪
T 1) = Best(M, T O ∪ T 2).

Proof Let C = (Q′, s′0, s
′
f , T

′) and Best(M, T O∪T 1) = x. Let us assume that Best(M, T O∪T 2) = ǫ, that
is, there exists a pair of states s1, s2 ofM with invisible (for T O∪T 2) paths ρ1, ρ2 from s1 to s2, such that
the states traversed by ρ1 and ρ2 are disjoint, but for s1 and s2. We show now that Best(M, T O∪T 1) = ǫ.

If both ρ1 and ρ2 do not touch C, then Best(M, T O ∪ T 1) = ǫ. If both ρ1 and ρ2 belong to C, then
P0(C, T 2) does not hold, which means P0(C, T 1) does not hold, implying Best(M, T O ∪ T 1) = ǫ.

If s1, s2 ∈ (Q \ Q′) ∪ {s′0, s
′
f}, and ρ = ρ1 or ρ2 passes through C, then there exists an invisible

(for T 2) path from s′0 to s′f (a subpath of ρ). Given this, P1(C, T 2) does not hold, which implies that
P1(C, T 1) does not hold. Hence, there exists an invisible (for T 1) path from s′0 to s′f , and an invisible
(for T O ∪ T 1) path ρ′ can be constructed from this path and ρ. As such, there are two disjoint paths
invisible for T O ∪ T 1 between s1 and s2: Best(M, T O ∪ T 1) = ǫ.

If s1, s2 ∈ Q′, and ρ = ρ1 or ρ2 passes through C, then there exists an invisible reverse cyclic pattern
(for T 2) between s′0 and s′f . Given this, P1′(C, T 2) does not hold, which implies that P1′(C, T 1) does not
hold. Hence, there exists an invisible (for T 1) reverse cyclic pattern between s′0 and s′f , and an invisible
(for T O ∪ T 1) path ρ′ can be constructed from this pattern and ρ. As such, there are two disjoint paths
invisible for T O ∪ T 1 between s1 and s2: Best(M, T O ∪ T 1) = ǫ.

The cases where s1 ∈ Q′ \ {s′0, s
′
f}, s2 /∈ Q′, or both ρ1, ρ2 pass through C, are not possible because

then the paths would meet in s′0 and/or s′f .
Hence, Best(M, T O ∪ T 2) = ǫ =⇒ Best(M, T O ∪ T 1) = ǫ. By symmetry between T 1 and T 2,

we have the equivalence: Best(M, T O ∪ T 2)≥ 0 iff Best(M, T O ∪ T 1) ≥ 0. Now, for all x ∈ {1, 1′}, we
can enrich M to Fx(M) with Best(M, T O) ≥ x iff Best(Fx(M), T O) ≥ 0. Applying it to M , we get
Best(M, T O ∪ T 2) = Best(M, T O ∪ T 1). The functions Fx are given schematically in Fig. 4. ⊓⊔

11

s2s1 s’fs’0s0 sf

a

b

c

d

e

f

g

h

Fig. 6 Service M = (Q, s0, sf ,T) having simple component C = (Q′, s′0, s
′

f
, T ′).

Example 1 We illustrate the above proposition based on the FSM M = (Q, s0, sf , T) in Fig. 6, having
simple component C = (Q′, s′0, s

′
f , T

′).
Let us consider subsets T 1 = {c}, T 2 = {g} of C such that Best(C, T 1) = Best(C, T 2) = 1. That is,

P0 and P1 hold, but P1′ does not hold on deleting either transition c or g from C.
We now show that Best(M, T O ∪ T 1) = Best(M, T O ∪ T 2) irrespective of the chosen subset TO of

M \ C.

– TO = ∅: Best(M, T O ∪ T 1) = Best(M, T O ∪ T 2) = 0.
– TO = {a}: Best(M, T O ∪ T 1) = Best(M, T O ∪ T 2) = 0.
– TO = {h}: Best(M, T O ∪ T 1) = Best(M, T O ∪ T 2) = 0.
– TO = {b}: Best(M, T O ∪ T 1) = Best(M, T O ∪ T 2) = 1.
– TO = {a, h}: Best(M, T O ∪ T 1) = Best(M, T O ∪ T 2) = 0.
– TO = {a, b}: Best(M, T O ∪ T 1) = Best(M, T O ∪ T 2) = 1′.
– TO = {b, h}: Best(M, T O ∪ T 1) = Best(M, T O ∪ T 2) = 1′.
– TO = {a, b, h}: Best(M, T O ∪ T 1) = Best(M, T O ∪ T 2) = 1′.

Such Properties and Propositions can be extended to more complex component services with several
input and output states, see [4].

4.2 Replacement of a Component

Proposition 2 implies that the only piece of information, a composite service needs to know about the
set of transitions T logged by one of its components C, is Best(C, T) - a very desirable property from a
privacy perspective. In addition to preserving privacy, this also allows us to replace a potentially large
component C by a component D of fixed size, improving the complexity. We formalize this in the sequel.
Given a component C = (Q′, s′0, s

′
f , T

′) of M = (Q, s0, sf , T) and D = (Q′′, s′′0 , s
′′
f , T

′′), we denote by

MC(D) the FSM obtained on substituting C by D, that is, MC(D) = (Q̄, s̄0, s̄f , T̄) with

– Q̄ = Q \Q′ ∪Q′′,
– if s0 ∈ Q̄ then s̄0 = s0, else s̄0 = s′′0 ,
– if sf ∈ Q̄ then s̄f = sf , else s̄f = s′′f ,

– T̄ = T \T ′ ∪ T ′′ ∪ I, where I = {(q, s′′y) | (q, s
′
y) ∈ T ∧y ∈ {0, f}} ∪ {(s′′y , q) | (s

′
y , q) ∈ T ∧y ∈ {0, f}}.

Note that MC(C) = M for all C. Also, note that |MC(D)| = |M | − |C| + |D|. We now define the
common characteristics C and D should have, such that C can be safely replaced by D.

Theorem 2 Let C be a component of an FSM M = MC(C). We select an FSM D, such that ∀x ∈
{0, 1, 1′}, MOx(D)−MO(D) = MOx(C)−MO(C). Then, MO(M) = MO(MC(D))+MO(C)−MO(D).

Proof Let M = (Q, s0, sf , T) and C = (Q′, s′0, s
′
f , T

′). Further, let TOM be a minimal compensable set

of MC(C). Then, TOM can be partitioned as follows: T OM = T 1
O ⊎TOC , where T 1

O = {t | t ∈ T OM ∧ t ∈
(T \T ′)} and T OC = {t | t ∈ T OM ∧ t ∈ T ′}. Let Best(C, T OC) = x. By definition, |T OC | ≥ MOx(C).
Now, we consider a set T OM ′ = T 1

O⊎TOD , where Best(D, T OD) = x and T OD is a minimal set such that
Px(D, TOD) holds, that is, |TOD| = MOx(D). Then, by Proposition 2, T OM ′ is at least a compensable
set of MC(D), and T OM ′ ≥ MO(MC(D).

Given this, we can apply the hypothesis

12

MOx(D)−MO(D) = MOx(C)−MO(C)
⇒ |T OD| −MO(D) ≤ |T OC | −MO(C) (as MOx(D) = |T OD| and MOx(C) ≤ |T OC |)
⇒ |T 1

O|+ |T OD| −MO(D) ≤ |T 1
O|+ |T OC | −MO(C) (adding |T 1

O| on both sides)
⇒ |T OM ′ | −MO(D) ≤ |T OM | −MO(C)
⇒ MO(MC(D))−MO(D) ≤ MO(M)−MO(C) (as MO(MC(D) ≤ |T OM ′ | and |T OM | = MO(M)).
Symmetrically,D is a component ofN = MC(D), and we have with the same reasoningMO(ND(C))−

MO(C) ≤ MO(N) −MO(D). Noting that ND(C) = M , we get MO(M) = MO(MC(D)) +MO(C) −
MO(D). ⊓⊔

We now give exhaustively every possible graph D one can need to replace a component C. We denote
by D the set of such graphs. We may need an FSM D having one of the following characteristics:

– MO1′(D)−MO(D) = 0 (which implies MO1(D)−MO(D) = 0).
– MO1′(D) −MO(D) = 1 and MO1(D) −MO(D) = 0. The component FSM M2 in Fig. 1 exhibits

this characteristic.
– MO1′(D)−MO(D) = 1 andMO1(D)−MO(D) = 1. It is the case for the serviceD = ({s1, s2}, s1, s2, {(s1, s2)}).
– MO1′(D) − MO(D) = 2 and MO1(D) − MO(D) = 1. The service D = (Q, s1, s4, T) where Q =

{s1, s2, s3, s4} and T = {(s1, s3), (s1, s2), (s2, s3), (s2, s4), (s3, s4), (s1, s4)} is such an example.

Indeed, for all C,MO1(C)−MO(C) ≤ 1. Taking T with |T | = MO1(C) and P0(C, T), implies that
there is at most one invisible path from the initial to the final node of C. It then suffices to add any of the
transitions σ of that path, and set T ′ = T ∪{σ}, to get P1(C, T ′). Moreover, if MO1′(C)−MO1(C) ≥ 1,
it is sufficient to consider a D having MO1′(D)−MO1(D) = 1. Basically, for a component C of M , the
presence of several invisible reverse cyclic patterns within C is an issue with respect to the compensability
of M , iff there exists an invisible path ρ ofMC connecting the final state of C to its initial state. However,
such a path ρ is unique, and it is sufficient for a transition τ of ρ to be visible, irrespective of the actual
number (≥ 1) of invisible reverse cyclic patterns within C.

Example 2 Let us consider the FSM MC(C) in Fig. 7 having component C as shown in Fig. 8. A minimal
compensable set of C is shown by dashed arrows in Fig. 8. Then, for C, MO(C) = 11,MO1(C) −
MO(C) = 0 and MO1′(C) − MO(C) = 2. Fig. 9 shows MC(D) on substituting component C with a
suitable D = (Q′, s′i, s

′
j , {a

′, b′, c′, d′, e′}). Now, MO(D) = 2, and MO(MC(D)) = 4 as shown by the
dashed arrows in Fig. 9. Then, applying Theorem 2, MO(M) = MO(MC(D)) +MO(C) −MO(D) =
4 + 11− 2 = 13. ⊓⊔

Based on the above discussion, we can now state the following proposition:

����� ������ �� ��	
�� ��� �
��� � � � �

�
�

�

�

Fig. 7 Sample MC(C).

13

��� ����� ��� 	
� ��� �
��� � � � �

Fig. 8 Component C of M in Fig. 7 (dashed arrows show a minimal compensable set).

�� ������ �� �� ����
 !"��# $� %

����� �� ������# $�&
'()&*

Fig. 9 FSM D and MC(D) corresponding to the MC(C) in Fig. 7 (dashed arrows show a minimal compensable set).

Proposition 3 There exists a constant Cst ≤ 6 such that for all FSMs C, there exists an FSM D with
|D| ≤ Cst and MOx(D) = MOx(C) for all x ∈ {0, 1, 1′}. Also, MOx can be computed efficiently using
an algorithm computing MO.

Proof It remains to show how to compute MO1 and MO1′ . We simply extend M to FSMs M1 and M1′ ,
such that, MO1(M) = MO(M1) and MO1′(M) = MO(M1′) respectively. The corresponding M1 and
M1′ to compute MO1(M) and MO1′(M), are shown in Fig. 4(a and b) respectively. ⊓⊔

4.3 Privacy Preserving Minimal Compensability Algorithm

So far, we have explained how to replace a component of a FSM. In this section, we present a privacy
preserving framework with services in a hierarchy having only as much visibility over others as required.
We discuss the information sharing (visibility) required between services in such a restricted visibility
environment. During the computation of a minimal set of transitions, the interactions occur in a bottom-
up fashion with children sharing some information with their parents. Then, each service assigns a
minimal compensable set of transitions, not visible to anyone else than him. Finally, the actual execution,
including any compensation required in the event of a failure, also proceeds in a top-down fashion. To

14

Fig. 10 Privacy preserving minimal compensable set computation of a hierarchical service
Input. Composite service MC(C) = (Q, s0, sf ,T) having child service C = (Q′, s′0, s

′

f
,T ′).

Output. Minimal compensable set T O of MC(C).

1. C computes MOi(C) for all i ∈ {0, 1, 1′}, based on the algorithm in Fig. 5.
2. C shares two numbers x, y ∈ {0, 1} with its parent M , such x = MO1(C)−MO(C) and y = max(1,MO1′(C)−MO(C)).
3. M substitutes C with smaller D = (Q′′, s′′0 , s

′′

f
, T ′′), such that MO1(D) − MO(D) = x and MO1′(D) −MO(D) = y

(if there are two supertransitions, then both are replaced by substitute FSMs).
4. M computes a minimal compensable set TO′ of MC(D).
5. M partitions TO′ as follows: TO′ = TO1 ⊎ TO2, where TO1 = TO′ ∩ (T \ T ′′) and TO2 = TO′ ∩ T ′′.
6. M assigns the transitions in TO1 as visible and sends z = Best(D, TO2) ∈ {0, 1, 1′} to C.
7. C assigns as minimal set of transitions T ′′

O as visible, such that Pz(T ′′

O) holds (|T ′′

O | = MOz(C)).
8. TO = TO1 ∪ T ′′

O
is a minimal compensable set of MC(C).

ease illustration, we only present the information sharing (visibility) required between a pair of a parent
service MC(C) = (Q, s0, sf , T) and a child service C = (Q′, s′0, s

′
f , T

′):

Computation Stage: By computation stage, we refer to the static computation of the minimal com-
pensable set T O of M , and assigning the transitions in T O as visible.

The privacy preserving algorithm is given in Fig. 10
Note that the only information exchanged between M and C are the numerical values x, y, z. Recall

that we substitute a component C, for whichMO1′(C)−MO1(C) ≥ 1, with an FSMD havingMO1′(D)−
MO1(D) = 1. Thus, we need to make an exception to the above visibility requirement of C (Step 7) if
Best(D, T O2) = 1′ and MO1′(C) > MO1(C). Then, we need to add a transition τ of the invisible path
of M connecting final state s′f to initial state s′0 of C, to TO1 (make τ visible). And, with this addition,
it is sufficient for C to have visibility over a minimal subset TOC ⊆ T ′ which satisfies P1(C, TOC).

Example 3 We illustrate the algorithm in Figure 10 by running it on the hierarchical service M of
Figure 7, with a unique service C which M does not have visibility over.

step 1 First M asks C to compute x, y. Thus C computes MO(C) = 11,MO1(C) = 11,MO1′(C) = 13.
step 2 Service C then sends the information x = 0, y = 1 to M . Notice that C sends y = 1 as max(1, 13−

11) = 1.
step 3 : These x, y mean that C can be considered to behave like D in Figure 9. Thus M computes the FSM

MC(D) as shown in Figure 9.
step 4 Now, M computes a minimal compensable set on MC(D) and obtain TO′ = {a′, e′, x, w} as on

Figure 9.
step 5 M sets TO1 = {x,w} and TO2 = {a′, e′}.
step 6 M sets {x,w} as visible (it will log these transitions), and computes z = Best(D, {a′, e′}) = 1. It

sends z = 1 to service C.
step 7 C assigns a minimal set T

′′

Osuch that P1 holds, that is T
′′

O = {b, c, r, d, f, g, j, l,m, p, u} (see Figure 8),
and set this set as visible (it will log these transitions).

Execution Stage: In this stage, we discuss the interactions required to reconstruct the actual execution
sequence from the log (or observation projection) in the event of a failure, and performing the actual
compensation. Without global visibility, the data log (which parameter this service has been called with
(price of a ticket, etc)) and the execution log (which visible services have been performed and in which
order), are maintained locally by each service, and these logs are visible only to that service. Other
services, including even their parents or children, do not have visibility over the logs. Given this, we need
some mechanism to synchronize the logs of parent-child services. Initially, we assume the use of global
timestamps to synchronize parent-child logs (alternate strategies are discussed later). First, we give the
execution sequence reconstruction algorithm in Fig. 11. Once the execution sequence of M has been com-
puted, M compensates its executed transitions in the reverse order. For each invocation of component C,
it asks C to perform the necessary compensation, which would again involve C computing the execution
sequence corresponding to that invocation of itself, and compensating its executed transitions. Finally,
M needs to compensate the reconstructed execution sequence ρ. M starts compensating in the usual
reverse manner. As soon as it encounters a (s′0, s

′
f), it asks C to perform the necessary compensation. As

Best(C, T OC) ≥ 0 (otherwise, Best(D, T O2) < 0 and there exists greater than one path between a pair

15

Fig. 11 Compensation Algorithm under Limited Visibility

Input. Visibility projection (σ = τ1τ2 · · · τn, qn+1). We assume that qn+1 = sf if a failure did not occur with respect to M

(but failure occurred at a higher level, and the successful execution of component FSM M needs to be compensated).

Output. The unique path ρ to be compensated with ObslastO (ρ) = (σ, qn+1).

Initialization. Set ρ := ǫ, index i := 1, current state scurr := s0. The next state snext := qn+1 if n = 0 (that is, no
transitions were logged), else snext := in(τ1) where σ = τ1τ2 · · · τn.

M ′ designates M where the visible transitions TO were deleted and the component C with states Q′ and transitions T ′

was replaced by a transition (s′0, s
′

f
). That is, M ′ = {Q \Q′ ∪ {s′0, s

′

f
}, s0, sf ,T \ (T ′ ∪ T O) ∪ {(s′0, s

′

f
)}}.

while (scurr 6= qn+1) do

begin

% "Determine the executed path ρ1 from scurr to snext"

if (PM′ (scurr, snext) = {ρ2}) (exactly one path between scurr,snext)

set ρ1 := ρ2;

if (PM′ (scurr, snext) = {ρ2, ρ3}), where ρ3 contains (s′0, s
′

f
)

if C was invoked between scurr,snext (ask C)

set ρ1 := ρ3;

else set ρ1 := ρ2;

if (|PM′ (scurr, snext)| > 2) (implies cycle scurr
ρ4→ sc

ρ5→ s′0

(s′
0
,s′f)
→ s′

f

ρ6→ sc)

Determine the alternate path ρ7 connecting s′
f

to snext;

Ask the number m of times C was invoked between scurr,snext;

if (m = 0)
set ρ1 the unique path from scurr to snext

which does not contain (s′0, s
′

f
);

if (m = 1)
set ρ1 := ρ4ρ5(s′0, s

′

f
)ρ7;

if (m > 1)
set ρ1 := ρ4ρ5(s′0, s

′

f
)ρ6 · · · [ρ5(s′0, s

′

f
)ρ6]m−1ρ5(s′0, s

′

f
)ρ7;

% ρ1 does not depend upon the choice of sc (ρ4, ρ5, ρ6 changes accordingly).

Append ρ1 to ρ;

if (n 6= 0)
append τi to ρ;

if (snext = qn+1)

set scurr := qn+1 (to terminate);

else set scurr := out(τ i);
if (i < n)

increment i and set snext := in(τ i);
else set snext := qn+1;

end;

of states in D with T O2 visible), C can determine its execution sequence corresponding to an invocation
based on its local synchronized log, and perform the necessary compensation.

Proposition 4 With reference to the execution sequence reconstruction algorithm in Fig. 11, if there
exists greater than one path between a pair of states τ∗1 6=∗ τ2, τ1, τ2 ∈ T O1 of M ′, then C can determine
the number of times m ≥ 0 it was invoked between an execution of τ1 followed by τ2.

Proof If there exists two paths between τ∗1 6=∗ τ2, then T OC satisfies at least P1(C, T OC). Otherwise,
Best(D, T O2) = 0, and there exists two paths between τ∗1 6=∗ τ2 in MC(D) as well with T O′ visible. The
implication of T OC satisfying at least P1(C, T OC) is that at least one transition of C is logged each time
it is invoked. Given this, C can answer the number of times m ≥ 0 it was invoked between an execution
of τ1 followed by τ2, based on its log between the logged times (global timestamps) of τ1 and τ2. ⊓⊔

If global timestamps are infeasible, an alternate strategy would be as follows: The FSM M , in addition
to logging the transitions in its visible set T O, also inserts a special marker (say X) in its local log each
time it invokes component C. The use of markers leads to some redundancy, and as our goal is to
minimize logging, we give another strategy which in most cases leads to a shorter combined log. With

16

this strategy, M no longer needs to log a marker X each time it invokes C. Rather, for each invocation
of C, M logs a marker X stamped with its local time (or some unique local identifier) only if the last
element in its log is a visible transition (and not another marker). For each invocation of C that M
inserts a marker X in its local log, it passes the same to C, and C also inserts X in its local log (before
logging anything corresponding to that invocation). Given this, each time a marker X is encountered
while parsing M ’s log, we know that the portion of C’s log between X and the next marker (or end of
the log) corresponds to the execution between that of the visible transitions t1 and t2, logged before and
after X in M ’s log respectively, and hence can determine the number of times C was invoked between
t1’s and t2’s execution.

Example 4 We give a sample run of the hierarchical recovery mechanism outlined in this section on the
hierarchical FSM 〈M1,M2,M3〉 in Fig. 1.

To start with (in a bottom-up fashion), M3 computes x ∈ {0, 1, 1′},MOx(M
3), and sends the differ-

encesMO1′(M
3)−MO(M3) = MO1(M

3)−MO(M3) = 1 toM2. Then,M2 substitutes e17 with an FSM
D = {{s′0, s

′
f}, s

′
0, s

′
f , {(s

′
0, s

′
f)}} having similar characteristics (by Theorem 2). Let the substitutedM2 be

M ′, then M2 computes x ∈ {0, 1, 1′},MOx(M
′), and sends the differencesMO1′(M

′)−MO(M ′) = 1 and
MO1(M

′)−MO(M ′) = 0 to M1. On receiving this, M1 substitutes e2 by the FSM E = (Q′′, s′′0 , s
′′
f , T

′′)
where Q′′ = {s′′0 , s

′′
1 , s

′′
2 , s

′′
f} and T ′′ = {(s′′0 , s

′′
1), (s

′′
0 , s

′′
2), (s

′′
1 , s

′′
2), (s

′′
1 , s

′′
f), (s

′′
2 , s

′′
f)}. Let the substituted

FSM M1 be M ′′, then we have a minimal compensable size MO(M ′′) = 2.

Once the minimal compensable size has been computed, the next step is to assign the compensable
sets, which proceeds in top-down order. Let T O1 = {(s′′0 , s

′′
1), (s

′′
2 , s

′′
f)} be a minimal compensable set of

M ′′. Given this,M1 does not need to assign any of its transitions as visible. As Best(E, {(s′′0 , s
′′
1), (s

′′
2 , s

′′
f)}) =

1, then M2 needs to assign a minimal compensable set T O2 as visible, such that Best(M2, T O2) = 1,
say T O2 = {e11, e15}. On the same lines, with only the transitions in T O1 of M2 visible, none of D’s
transitions are visible, as such Best(D, ∅) = 0. Then, M3 only needs to assign a minimal set T O3 as
visible, such that Best(M3, T O3) = 0, say T O3 = {e23}. The visible transitions are denoted by dashed
arrows in Fig. 1.

Now, let us assume that a failure occurs while executing e4, and the execution sequence till then
is e1e11e14e16e21e22e24. For simplicity, we also assume that global timestamps are used. Then, the logs
at M1,M2,M3 are s3 (the state before failure), e11 and empty, respectively. Given this, M1 starts the
execution sequence reconstruction. There exists two paths e1e3 6= e1e2 between the states s1 and s3, one
containing the supertransition e2. Then, the component M2 corresponding to e2 is asked to check the
number of times it was invoked between the start time and logging time of s3. M

2 checks its log, finds
e11 logged during that time, and replies that it was invoked once. So, the execution sequence at M1 is
set to e1e2, and M1 starts compensation in the reverse order. As the first transition to be compensated
e2 is a supertransition, the corresponding component M2 is asked to compensate its execution first.
Before it can compensate, M2 also first needs to reconstruct its execution sequence. As the first logged
transition e11 is an outgoing of its initial state s11, e11 is appended to its execution sequence ρ. Then, it
checks for paths between e∗11 = s12 and its final state s16. Recall that it is checking for paths in the FSM
M2 from which the visible transitions (including e15) have been deleted. As there exists only one such
path e14e16e17, it is appended to ρ, leading to the execution sequence e11e14e16e17. With the execution
sequence determined, M2 starts compensation in the usual reverse order. As the first transition to be
compensated e17 is again a supertransition, it asks the corresponding component M3 to compensate
its execution first. For M3, its log is empty and there exists only one path e21e22e24 (after the visible
transition e23 has been deleted) between its initial state s20 and final state s24, leading to the execution
sequence e21e22e24. The rest of the process is simply invoking the respective compensating transitions of
the sequence in the determined execution order. ⊓⊔

4.3.1 Privacy Preserving Property Analysis

Before proceeding, we review the data sharing requirements of our algorithms, and show that they
indeed preserve privacy. In a composition, we consider privacy requirements of the component service
providers in terms of keeping their composition schemas confidential - not exposing them to their parent
providers. This is in sync with current Web services frameworks, where functional details of the service

17

are advertised in a UDDI1 registry, to enable discovery of services for composition. The advertised details
include parameters, e.g. category of services provided, access endpoints needed to invoke the service, etc.
The internal composition schema (workflow) is never exposed. This definition holds even for the more
semantically enabled frameworks, e.g. OWL-S2, which allow dynamic composition.

A privacy preserving composition should thus ideally reveal only a black box view of component
composition schema to its parent. To achieve minimal compensation, i.e. optimize the logging overhead,
our algorithms require a grey box view where the parent MC(C) needs/gets to know the following
information regarding its child C:

– During the computation stage, MC receives the numbers x = MO1(C)−MO(C) and y = MO1′(C)−
MO1(C) from C.

– During execution, M can observe πMC
(v), the subsequence of transitions of execution sequence v

that are in MC (that is, which are not in C), and in the same order.
– Finally, while performing compensation, C sends to MC the number m of times C was executed

between two time points.

It is clear that the third piece of information, the number of times C was executed, can be deduced
easily from πMC

(v) (it suffices to count the number of times a transition leading to C occurs in πMC
(v)

between the two states). This last piece of information is actually needed when MC only observes a
minimal compensable set. However, in violation of the privacy preserving scheme, the parent M could
cheat and record every possible invocation of C. We show that even in this case, the privacy of C, in
terms of keeping its composition schema confidential, is preserved. For this, we introduce the notion of
indistinguishability.

Definition 6 Let MC(C) be a parent composite service with child component service C. We say that
services C,D are indistinguishable for MC if MO1(C) − MO(C) = MO1(D) − MO(D), MO1′(C) −
MO1(C) = MO1′(D) − MO1(D), and for all run v of MC(C) (resp. MC(D)), there exists a run w of
MC(D) (resp. MC(C)) such that πMC

(v) = πMC
(w).

Intuitively, indistinguishability implies that M cannot distinguish between its component C and a
random FSM D, even with the additional knowledge shared by C. Hence, the confidentiality of C’s
structure is preserved.

Proposition 5 Let MC(C) be a parent composite service with child component service C. Then, for all
D such that MO1(C) −MO(C) = MO1(D) −MO(D), MO1′(C) −MO1(C) = MO1′(D) −MO1(D),
we have that C,D are indistinguishable for MC .

Proof It suffices to prove that for all run v of MC(C) (resp. MC(D)), there exists a run w of MC(D)
(resp. MC(C)), such that πMC

(v) = πMC
(w).

Hence, let us take a run v of MC(C) (the case where v is a run of MC(D) is symmetrical). We
can decompose ρ into ρ0u1v1u2 · · ·unvn, such that for all i, vi is a maximal factor of v containing only
transitions in MC , and ui is a maximal factor of v containing only transitions in C. Let u′ be an execution
of D, from the initial to the final state of D. It is easy to check that w = v0u

′v1u
′ · · ·u′vn is an execution

of MC(D), and that πMC
(v) = πMC

(w). ⊓⊔

The above proposition means that M can only know which type C is, among the four types x = y = 0,
or x = 0, y = 1, or x = y = 1, or x = 1, y = 2. And, this does not leak the composition schema of C, as
C cannot be differentiated from a random FSM D based on this information. Hence, our algorithms are
privacy preserving.

4.4 Complexity Analysis and Experiments

We show the complexity of the algorithm to compute a minimal compensable set for hierarchical systems.

Theorem 3 Let H = (Mi)
n
i=1 be a hierarchical service. It is NP-complete in the size of H to compute

MO(H). Moreover, it takes at most time O(
∑n

i=1
2|Mi|).

1 Universal Description Discovery & Integration (UDDI), http://uddi.xml.org/
2 OWL-S: Semantic Markup for Web Services, http://uddi.xml.org/

18

Proof To obtain the deterministic time complexity, it suffices to apply the decomposition algorithm to
both components in the same time. For each level, in a bottom up way, we compute Ty(Mi) and store
it in a table, in a dynamic programming fashion such that we do not have to recompute it every time.
As the components are replaced by dummy graphs D1, D2, the graphs considered at level i are at most
of size |Mi|+ 2Cst. Applying the brute force algorithm of testing all the set of transitions in the graph
to obtain the minimal one, we obtain the complexity for step 3 at level i of Ci = 2|Mi|+2Cst = O(2|Mi|).
Complexity of step 2 and 4 are negligible, while complexity of step 1 is just reading in the table what
has previously been computed at an earlier stage, which is negligible also at stage i. Overall, we need
to do this 3 times for each y ∈ {0, 1, 1′} and for each i, giving the complexity stated. We verified it
experimentally and give the results in section 4.4.

Clearly, if there exists a compensable set of size n, then it gives us such a polynomial size table.
Conversely, it is easy to check in polynomial time whether a polynomial size table is a witness for the
fact that there exists a compensable set of size n. It suffices to hierarchically compute Best(Mi, T i) and
check that Best(Mn, Tn) 6= ǫ. This gives the non deterministic polynomial complexity of the problem.

At last, the NP-hardness comes from the fact that the problem is already NP-hard even in the
much easier case where the hierarchy is restricted to one level, that is we have a graph. It gives the NP
completeness. ⊓⊔

It is important to note that since a service is in reality a hierarchical service (with hierarchy height
of 1), we know that the problem is at least NP-hard. However, the complexity could be exponentially
worse for hierarchical graphs, since a small hierarchical graph can represent an exponentially larger
flat graph. We prove that this is not the case. Moreover, we prove that the complexity is linear in
the number of hierarchy levels, and exponential only in the size of each component. That is, we prove
that with a smart algorithm, one can compute efficiently the absolute minimal compensable size even
for huge hierarchical systems, as long as each component is small enough. The best case comparison
is with respect to a hierarchical service of diameter O(2n), having n components of size 2. The brute
force non-compositional method run on H takes time O(22

n

), while our method takes O(n), that is a
doubly exponential improvement (one exponential due to the reuse of components and another due to
decomposition).

We also tested our divide and conquer algorithm on hierarchical graphs. First, we choose a number
(between one and nine) of base subcomponents in the graph. Then, we generate each of them randomly
using the Synthetic DAG generation tool [31]. We then generate inductively a hierarchical graph having
these base subcomponents randomly using the same tool, by assigning two edges to these components.
There is no reuse of components. For each value, we generate each hierarchical graph and each base
subcomponent five times to compute the mean values (because of variation in graph size, runtime and
compensable size). We then run both a brute force algorithm and our hierarchical algorithm on these
graphs.

0.01

0.1

1

10

100

1000

0 20 40 60 80 100 120

se
co

nd
s

(l
og

 s
ca

le
)

Number of edges (number of components)

Brute force

Mean brute force

Decomposition

Mean decomposition

Fig. 12 Execution time vs. Number of edges

19

Fig. 12 shows the times (in logarithmic scale) needed to compute a minimal compensable set us-
ing brute force and our decomposition algorithm with respect to the number of edges (which is linear
with respect to the number of base components in this example as we did not reuse components). The
decomposition algorithm is clearly much faster than the brute force algorithm. While the brute force
is exponential in the number of edges, already timing out at a little over 40 edges, the decomposition
algorithm on an average takes 0.73s for 108 edges.

5 Approximation

In this section, we study heuristics to obtain a compensable set of transitions, which enables compen-
sation. Indeed, for many application scenarios, it is acceptable to log a few more transitions than the
absolute minimum which we did compute with the hierarchical algorithm of the previous section. More
importantly, we want to provide a complete framework that can handle composite services even with
very large monolithic component services, for which the absolute minimum cannot be computationally
computed. For simplicity, we only describe here how to obtain a small (but not necessarily minimal)
compensable set of transitions for non-hierarchical FSMs, as it will mainly be used for leaf (bottom)
level services in the hierarchy (and hence without components of their own). Extension to compute a
compensable set for the whole hierarchy is then trivial.

We now describe two heuristic algorithms for approximating the absolute minimum, with different
trade off in term of time and accuracy. This allows users to choose the approach suitable for them.

5.1 (Positively) Discriminating Algorithm

Our first idea is to use observability as a discriminator. A path can be (positively) discriminated from
other paths if, for all (intermediate) states it passes through, we know the outgoing transition which
was executed. Clearly, for intermediate states having one outgoing transition, the choice is unique and
obvious. For intermediate states having n > 1 outgoing transitions, it is sufficient if n − 1 are visible.
Below, we present the polynomial time discriminating algorithm:

Discriminating Algorithm.

Input. FSM M = (S, s0, sf , T).

Output. A compensable set T O ⊆ T .

Initialization. T O = ǫ.

for each state s ∈ S do

if (s∗ = {τ1 · · · τn}, n > 1)
then T O = T O ∪ {τ1 · · · τn−1};
endif

endfor

Example 5 For example, let us consider the FSM M in Fig. 13, which is the flattened representation of
the hierarchical FSM in Fig. 1. An output TO of the discriminating algorithm with M as input would be
{e1, e2, e5, e8}. Fig. 14 shows M after the transitions in T O have been deleted from M , and is indeed a
compensable set of M . ⊓⊔

Proposition 6 For a given FSM M = (S, s0, sf , T), the output T O of the discriminating algorithm is
a compensable set of M . And, |T O| = |T | − |S|+ 1.

Proof The compensability of T O follows from the fact that at termination of the algorithm, all states
(except the final) of M are left with exactly one outgoing transition. Then, |T | − |T O| = |S| − 1, and
the compensable size |T O| = |T | − |S|+ 1. ⊓⊔

20

5.2 Distinguishing Algorithm

Thinking in terms of positive discrimination is not always good. For example, for the FSM M in Fig. 13,
the minimal compensable size is MO(M) = 3 ({e3, e5, e8} is a minimal compensable set of M), whereas
observing any 2 of the 3 outgoing transitions of s0 always leads to a compensable size greater than 3.
Thus, we need an alternate strategy.

We first remark that the deletion of a transition from the given FSM M , can lead to M having more
than one initial and/or final state. We call initial (final) state a state which has no incoming (outgoing)
transitions. For example, in Fig. 14, s1 also becomes an initial state after the deletion of transition
e2. The strategy we propose in this section is to select transitions which, for a pair of initial and final
states s1 6= s2 connected by a path using transition τ , maximize the number of paths not using τ but
connecting s1 to s2. That is, we now want to maximize the number of paths distinguished by a visible
transition. However, computing exactly that number of paths is really inefficient. We thus use an efficient
but slightly less accurate version in the sequel.

We want to choose a transition τ which maximizes the number of initial (final) states from (to) which
the following condition holds: For an initial (final) state s1, there exists a final (initial) state s2 with
at least two paths from s1 to s2 (s2 to s1), one using τ and one not using τ . Clearly, if a transition τ
does not figure in one of two such paths with respect to any initial or final state, then it is useless for
compensability.

We present the algorithm Count based on Depth First Search (DFS). Starting DFS from an initial
state s1, if the target state t.dest of the current transition t has been previously explored, then we know
that there exists another path not using t from s1 to t.dest. That is, we have two paths connecting s1 to
a final state reachable from t.dest (say s2), one using t and one not using t. We keep a counter t.count
associated with each transition t, and increase it as soon as we reach an already explored state s via t.
Furthermore, for each such hit, we also need to increment the counter of the transition s.first via which
s was first reached. Note that we only need to increment the counter of s.first once for each initial state
s1, and not each time s is reached via a different path from s1. To accommodate this, we use the flag
s.firstf lag, which indicates whether the counter of transition s.first has been incremented with respect
to an initial state. We cannot increment the counter of s.first initially, because then we do not know if
there exists another path from s1 to s not using s.first. The algorithm keeps a stack K, a hash table
H of states which have already been explored by the search, and each transition t has an associated flag
to tag it as explored or unexplored. K.head designates the head of the stack and push/pop are standard
stack operations.

s2

e2�� e5

e6

e7
e9

e4 sfs3

s1

e1

s4

e8

s0

Fig. 13 Flattened representation of the hierarchical FSM in Fig. 1

s2

��
e6

e7
e9

e4 sfs3

s1

s4s0

Fig. 14 The FSM M in Fig. 13, after a run of the discriminating algorithm

21

Algorithm Count.
Input. FSM M = (S, s0, sf , T).
Output. For each transition τ ∈ T , the count t.count of pairs of states s1 6= s2, such that there exists
two paths connecting s1 to s2, one containing τ and the other not containing τ .
Initialization. Create hash table H and ∀t ∈ T , t.count = 0.

for each initial state s0 of M do

Initialize H to empty, K to s0;
Set all transition tags to unexplored and ∀s ∈ S, s.firstf lag = false;

/* Run DFS from s0 */

while K is nonempty do

while there is an unexplored transition t from state K.head do

begin

Tag t as explored;

if (t.dest ∈ H)

begin /* then */

Increment t.count;
if (t.dest.firstf lag == false)

then increment t.dest.first.count and set t.dest.firstf lag = true;

endif

end /* then */

else set t.dest.first = t, insert t.dest into H, and push t.dest on K;

endif

endwhile

Pop K;

endwhile

endfor

Obviously, an algorithm CountBack can be similarly devised, running from all final states and travers-
ing transitions backwards. Now, our distinguishing algorithm proceeds as follows, choosing randomly to
apply Count or CountBack, as we experimentally observed that it was better than sticking with Count
only or CountBack only:

Algorithm Distinguish.
Input. FSM M = (S, s0, sf , T).
Output. Compensable set T O.
Initialization. Set T O = ∅.

loop

begin

Set all transition counters to 0;
Run at random Count or CountBack;

if all transition counters are 0
then return T O;

else

begin

Select one transition t with maximal counter;

Add t to T O;

Delete t from T ;

endif

endloop

The next proposition holds for both Count and CountBack, hence choosing one, the other, or to
inductively randomly applying one or the other does not change the statement.

22

Proposition 7 For a service M = (S, s0, sf , T), the distinguishing algorithm returns a compensable set
T O of transitions. Moreover, its size is always |T O| ≤ (|T | − |S|+ 1).

Proof The compensability of T O follows from the termination condition. Clearly, if all transition counters
are 0 at the end of a Count/Countback, then there does not remain greater than one path between any
pair of states.

The cardinality of T O follows from the fact that M remains connected at any stage of the algorithm.
Let us consider the transitions deleted from T (added to T O) during the algorithm. Each such transition
t is either the incoming of a state having indegree more than one (by Count) or outgoing of a state
having outdegree more than one (by CountBack). As such, even after the deletion of t from T , there are
no disconnected subgraphs, and there still exists a path from the source state of t to a final state (or
from an initial state to the target state of t). Given this, |T O| ≤ (|T |− |S|+1) follows from the property
that any undirected connected graph has at least |S| − 1 edges. ⊓⊔

Example 6 Let us consider a run of the distinguishing algorithm on the FSM M in Fig. 13. Initially, let us
assume that Count is run. Then, the counter values of the transitions e1, e2, e3, e4, e5, e6, e7, e8, e9 at the
end of Count are 1, 0, 1, 1, 1, 1, 0, 1, 1 respectively. Given this, let e8 is chosen and added to T O. Fig. 15(a)
shows M after the deletion of e8. Again, let Count is run for the next iteration. The counter values of
the transitions e1, e2, e3, e4, e5, e6, e7, e9 then at the end of Count are 1, 0, 1, 1, 1, 1, 0, 1 respectively. Give
this, let e6 is chosen and added to T O. Fig. 15(b) shows M after the deletion of e6. For the next iteration,
let CountBack is run. Note that M at this stage has two final states s2 and sf . The counter values of the
transitions e1, e2, e3, e4, e5, e7, e9 at the end of CountBack are 1, 2, 1, 0, 0, 0, 0 respectively, leading to the
addition of e2 to T O. At this stage (Fig. 15(c)), irrespective of whether Count or CountBack is run, the
counter values of all remaining transitions are 0, terminating the algorithm. Indeed, T O = {e2, e6, e8} is
a compensable set of M (actually minimal in this case). ⊓⊔

Note that there is a certain amount of randomness inherent in the algorithm. For example, T O =
{e1, e2, e5, e8} is also a valid output of the distinguishing algorithm on M . To offset this randomness, we
took the minimum of ten runs during our experimental evaluation (discussed in the next section).

5.3 Experimental Evaluation

We have some theoretical clues about how our algorithms fair against each other, and how close they
can approximate the absolute minimal compensable size. Because our discriminating and distinguishing
algorithms are polynomial time, and the problem is not approximable [26], we know that there are FSMs
on which they give an answer far away from the optimum. The first question is how far they are, and
how often it happens. Also, the distinguishing algorithm gives a set never bigger than the one given by
the discriminating algorithm. The second question then is: is it better, and if yes, by how much and how
often is it much better.

The first question is difficult to answer accurately, since obtaining the absolute minimal compensable
size is intractable. One solution could be to look at small enough FSMs to get the values, but the problem
is a variation of one visible transition having a big impact percentage wise in small sets, so the results
would not be very meaningful. Instead, we can focus on hierarchical FSMs where all the modules are
small, and use the algorithm presented in Section 4.3 to compute its minimal compensable size. As we
want to deal with FSMs having very large components, this is not very meaningful. We refer to [6] for
experimental results. In short, the three algorithms fare almost identically with respect to compensable
size, with slightly smaller compensable sets obtained using the algorithm of Section 4.3, and slightly
bigger sets for the discriminating algorithm. Computational time is reversed, that is the distinguishing
algorithm takes 2.5 seconds at most, the discriminating algorithm is almost instantaneous, and the
algorithm of Section 4.3 takes around half an hour for 700 transitions.

We now turn to general FSMs (on which we cannot compute the absolute minimum). We use the
Synthetic DAG Generation Tool to generate them, with random parameters for each size of FSM from
80 to 1200 transitions.

Fig. 16 shows the results using the discriminating (called matrix) and distinguishing algorithms,
according to the number of transitions of the FSM. The graph shows chaotic picture. Furthermore,
the distinguishing algorithm seems to often do much better than the discriminating algorithm. Still,

23

s2

e2�� e5

e6

e7
e9

e4 sfs3

s1

e1

s4s0

s2

e2�� e5

e7
e9

e4 sfs3

s1

e1

s4s0

s2

�� e5

e7
e9

e4 sfs3

s1

e1

s4s0

(a)

(b)

(c)

Fig. 15 The FSM in Fig. 13 at different stages of the distinguishing algorithm

0

100

200

300

400

500

0 200 400 600 800 1000 1200

size of graph

si
ze

 o
f o

bs
er

va
bl

e
se

t

matrix

disting.

Fig. 16 Compensable size vs. number of transitions over general FSMs

there are several cases (around 100 transitions) where both give the same results. Concerning time, the
distinguishing algorithm takes at most 15 seconds to perform.

Let us now analyze the percentage of transitions logged by the different algorithms (Fig. 17). We
see the chaosness of the picture, ranging from 15% to 50% of transitions logged by the discriminating
algorithm (mean value 34%), and from 4% to 50% for the distinguishing algorithm (mean value 18%).
The percentage of transitions can vary from 1 to 10

Finally, we give a summing up graph in Fig. 18, where we put each random FSM we generated ac-
cording to the percentage of transitions logged by the discriminating algorithm and by the distinguishing

24

0

10

20

30

40

50

%
 o

f
ed

g
es

 lo
g

g
ed

matrix

disting.

Fig. 17 Percentage of edges logged by the discriminating and distinguishing algorithms over general FSMs

0

10

20

30

40

50

60

0 10 20 30 40 50 60

%edges logged by the distinguishing algorithm

%
ed

g
es

lo
g

g
ed

b
y

M
at

ri
x

logged by disting / logged by matrix

60% 100%

18%

34%

Fig. 18 Percentage of edges logged by the discriminating vs. distinguishing algorithm over general FSMs

algorithm, together with two broken lines labeled by 18% (vertically for the distinguishing algorithm)
and 34% (horizontally for the discriminating algorithm) showing the mean values of the percentage of
transitions logged. On this graph, we can draw the line (broken line labeled 100%) on which both algo-
rithms perform similarly. We can see that it happens several times, but mainly when the discriminating
algorithm already gives good results (from 12% to 18% of transitions logged, which shall be close if
not equal to the absolute minimum). Only once, the discriminating is bad and so is the distinguishing
algorithm (around 50% of transitions logged). It was to be expected that such cases occur, since we know
that the absolute minimum is not approximable, but luckily, it is pretty rare.

Overall, the distinguishing algorithm gives a compensable size 0.6 times the size returned by the
discriminating one (we draw a broken line labeled by 60% to separate the experiments under and over
that value), and almost all of its answers are within 0.7 times of the discriminating algorithm. Moreover,
it sometimes gives one tenth the number of transitions to log compared to the discriminating algorithm
(which implies that the discriminating algorithm can be very inaccurate). Also, note that only once, the
distinguishing algorithm gives more than 30% of transitions to log (1.5% of the FSMs), while it is the
case for 50% of the FSMs with the discriminating algorithm.

6 Conclusion

We showed in this paper how to develop evolved algorithms for services computing, the new paradigm
of computing. This new paradigm enforces strong constraints on privacy, security, reliability and het-
erogeneity that have to be handled. We presented an efficient compensation framework that is privacy
preserving as well. We designed the algorithms in a pure hierarchical way. We showed how these al-

25

gorithms preserve the privacy of each component (including log privacy and the way the services are
implemented internally). Furthermore, we obtained as a byproduct much faster complexity. In addition,
we also gave heuristics to compute a compensable set. There are probably some more heuristics to apply
to get a more accurate algorithm. Nevertheless, in mean value, it seems that the distinguishing algo-
rithm gives results close to the absolute minimum (18% of transitions, while we get 20% for the absolute
minimum, looking at hierarchical FSMs), so efforts to optimize it further would probably not be worth
it but for very few pathological cases, and would slow down the algorithm.

References

1. Activebpel BPEL Implementation. http://www.activebpel.org.
2. Gustavo Alonso, Fabio Casati, Harumi Kuno and Vijay Machiraju. Web services: Concepts, Architecture and Applica-

tions. ISBN: 3540440089 (Springer Verlag), 2004.
3. Sanjiv Bavishi and Edwin K. P. Chong. Automated Fault Diagnosis using a Discrete Event Systems Framework. in:

Proceedings of the 9th IEEE International Symposium on Intelligent Control (IC) (IEEE Computer Society Press),
pages 213–218, 1994.

4. Debmalya Biswas. Visibility in Hierarchical Systems. IRISA/INRIA PhD Thesis, 2009,
http://perso.crans.org/˜genest/ThesisDebmalya.pdf.

5. Debmalya Biswas and Blaise Genest. Minimal Observability for Transactional Hierarchical Services. in: Proceedings of
the 20th International Conference on Software Engineering and Knowledge Engineering (SEKE), pages 531–536, 2008.

6. Debmalya Biswas, Thomas Gazagnaire and Blaise Genest. Small Logs for Transactional Services: Distinction is much
more Accurate than (Positive) Discrimination. in: Proceedings of the 11th IEEE High Assurance Systems Engineering
Symposium (HASE) (IEEE Computer Society Press), pages 97–106, 2008.

7. Business Process Execution Language for Web Services (BPEL) Specification. http://www-
106.ibm.com/developerworks/library/ws-bpel/.

8. Debmalya Biswas and Krishnamurthy Vidyasankar. A Nested Transaction Model for LDAP Transactions. in: Proceedings
of the 1st International Conference on Distributed Computing and Internet Technology (ICDCIT), Lecture Notes in
Computer Science vol. 3347 (Springer Verlag), pages 117–126, 2004.

9. Debmalya Biswas and Krishnamurthy Vidyasankar. Optimal Compensation for Hierarchical Web Services Compositions
under Restricted Visibility. in: Proceedings of the 4th IEEE Asia-Pacific Services Computing Conference (APSCC)
(IEEE Computer Society Press), pages 293–300, 2009.

10. R. Bruni, H. Melgratti and U. Montanari. Theoretical Foundations for Compensations in Flow Composition Languages.
in: Proceedings of the 32nd ACM Symposium on Principles of Programming Languages (POPL) (ACM Press), pages
209–220, 2005.

11. Franck Cassez and Stavros Tripakis. Fault Diagnosis with Static and Dynamic Observers. Fundamenta Informaticae,
88, pages 497540, 2008.

12. Randy Cieslak, C. Desclaux, Ayman S. Fawaz and Pravin Varaiya. Supervisory Control of Discrete Event Processes
with Partial Observation. IEEE Transactions on Automatic Control, 33(3), pages 249–260, 1988.

13. C. Hagen and G. Alonso. Exception Handling in Workflow Management Systems. IEEE Transactions on Software
Engineering, 26(10), pages 943–958, 2000.

14. Hector Garcia-Molina and Kenneth Salem. Sagas. ACM SIGMOD Record 16(3), pages 249–259, 1987.
15. Michael R. Garey and David S. Johnson. Computers and Intractability: A Guide to the Theory of NP-Completeness.

ISBN: 9780716710455 (W. H. Freeman and Company), 1979.
16. Dimitrios Georgakopoulos, Marek Rusinkiewicz and Amit P. Sheth. Using Tickets to Enforce the Serializability of

Multidatabase Transactions. IEEE Transactions on Knowledge and Data Engineering, 6(1), pages 166–180, 1994.
17. Vassos Hadzilacos Philip A. Bernstein and Nathan Goodman. Concurrency Control and Recovery in Database Systems.

ISBN: 0201107155 (Addison-Wesley), 1987.
18. Shengbing Jiang, Ratnesh Kumar and Humberto E. Garcia. Optimal Sensor Selection for Discrete-event Systems with

Partial Observation. IEEE Transactions on Automatic Control, 48(3), pages 369–381, 2003.
19. Ratnesh Kumar and Vijay K. Garg. Modeling and Control of Logical Discrete Event Systems. ISBN: 9780792395386

(Springer), 1994.
20. Feng Lin. Diagnosability of Discrete Event Systems and its Applications. Discrete Event Dynamic Systems (Springer

Netherlands), 4(2), pages 197–212, 1994.
21. Feng Lin and W. Murray Wonham. On Observability of Discrete-event Systems. Information Sciences (Elsevier

Science), 44(3), pages 173–198, 1988.
22. David B. Lomet. MLR: A Recovery Method for Multi-level Systems. in: Proceedings of the ACM SIGMOD Interna-

tional Conference on Management of Data, SIGMOD Record 21(2) (ACM Press), pages 185–194, 1992.
23. S. Maheshwari. Traversal Marker Placement Problems are NP-Complete. Research Report, Colorado Boulder Univer-

sity, USA, 1976.
24. J. E. B. Moss. Log-based Recovery for Nested Transactions. in: Proceedings of the 13th International Conference on

Very Large Data Bases (VLDB), pages 427–432, 1987.
25. Cuneyt M. Ozveren and Alan S. Wilsky. Observability of Discrete Event Dynamical Systems. IEEE Transactions on

Automatic Control, 35(7), pages 797–806, 1990.
26. Kurt Rohloff, Samir Khuller and Guy Kortsarz. Approximating the Minimal Sensor Selection for Supervisory Control.

Discrete Event Dynamic Systems (Springer Netherlands), 16(1), pages 143–170, 2006.
27. Kurt Rohloff and Jan van Schuppen. Approximating Minimal Communicated Event Sets for Decentralized Supervisory

Control. in: Proceedings of the 16th IFAC World Congress (Elsevier Science), 2005.

26

28. Karen Rudie and W. Murray Wonham. Think Globally, Act Locally: Decentralized Supervisory Control. IEEE
Transactions on Automatic Control, 37(11), pages 1692–1708, 1992.

29. Wasim Sadiq and Maria E. Orlowska. Analyzing Process Models using Graph Reduction Techniques. Information
Systems 25(2) (Elsevier Science), pages 117–134, 2000.

30. Meera Sampath, Raja Sengupta, Stéphane Lafortune, Kasim Sinaamohideen and Demosthenis Teneketzis. Diagnos-
ability of Discrete Event Systems. IEEE Transactions on Automatic Control, 40(9), pages 1555–1575, 1995.

31. Synthetic Directed Acyclic Graph Generation Tool. http://www.loria.fr/˜suter/dags.html.
32. Weilin Wang, Stéphane Lafortune, Feng Lin, and Anouck R. Girard. Minimization of Dynamic Sensor Activation in

Discrete Event Systems for the Purpose of Control. IEEE Transaction on Automatic Control, 55(11), pages 2447-2461,
2010.

33. Weilin Wang, Stéphane Lafortune, Anouck R. Girard, Feng Lin. Optimal sensor activation for diagnosing discrete
event systems. Automatica, 46(7), pages 1165-1175, 2010.

34. Gerhard Weikum, Andrew Deacon, Werner Schaad and Hans-Jorg Schek. Open Nested Transactions in Federated
Database Systems. IEEE Data Engineering Bulletin 16(2), pages 4–7, 1993.

35. Web Services Transactions Specifications. http://msdn2.microsoft.com/en-us/library/ms951262.aspx.
36. Andreas Wombacher, Peter Fankhauser and Erich Neuhold. Transforming BPEL into Annotated Deterministic Finite

State Automata for Service Discovery. in: Proceedings of the 2nd International Conference on Web Services (ICWS)
(IEEE Computer Society Press), pages 316–323, 2004.

37. Debmalya Biswas. Compensation in the World of Web Services Composition. in: Proceedings of the 1st International
Workshop on Semantic Web Services and Web Process Composition (SWSWPC) (LNCS 3387), pages 69–80, 2004.

38. Tae-Sic Yoo and Stéphane Lafortune. NP-completeness of sensor selection problems arising in partially observed
discrete-event systems. IEEE Transactions on Automatic Control, 47(9), pages 1495–1499, 2002.

39. Stanley D. Young and Vijay K. Garg. Optimal sensor and actuator choices for discrete event systems. in: Proceedings
of the 31st Allerton Conference on Communication, Control, and Computing, 1993.

7 Appendix

Computing the Largest Component In this section, we address the problem that the hierarchical structure
specifying the components at each level is not available. It can be the case if the service was build
in a monolithic fashion, or more pragmatically if it is not accessible anymore. That is, given a (flat
representation of a) composite service, we would like to recover the hierarchical structure from it. Also,
the effectiveness of our divide and conquer algorithms (Section 4.2) are clearly proportional to the size
the components, that is, the larger the components the better as large components can possibly be
refined further (which would imply that we should be interested in the smallest component C, however
then the MC would be large). Towards this end, we show how to recover the largest component from a
given composite service M in Section 7. First, we present a linear time (in the number of transitions)
algorithm to compute a smallest component C of an FSM M , knowing its initial, final state and an
outgoing transition of the initial state.

Algorithm to compute a smallest component C of the given service M .
Input. A service M = (Q, s0, sf , T), τ = (s, s1) ∈ T and t ∈ Q.
Output. A smallest component C = (Q′, s, t, T ′) of M with τ ∈ T ′.
Initialization. T ′ = φ, S = {τ}, Q′ = {s, s1, t}.

1. Select a transition τ ′ = (s′1, s
′
2) ∈ S. If s′2 6= t, then S = S ∪ {(s′2, s

′
3) | (s

′
2, s

′
3) ∈ T \ T ′}. If s′1 6= s,

then S = S∪{(s′3, s
′
1) | (s

′
3, s

′
1) ∈ T \T ′}. Finally, S = S \{τ ′}, T ′ = T ′∪{τ ′}, and Q′ = Q′∪{s′1, s

′
2}.

2. If S 6= ∅, repeat step 1.
3. If (s 6= s0 ∧ s0 ∈ Q′)∨ (t 6= sf ∧ sf ∈ Q′), then return that a component between s and t with respect

to τ does not exist. Else, return C.

The above algorithm can be iteratively invoked to compute the set SC of all components of an FSM
M . We now give an algorithm to compute a largest component of M .

Algorithm to compute a largest component C of the given service M .

1. For a pair of components D, E ∈ SC , if D is a subgraph of E, delete D.
2. For a pair of components D = (Q′, s′0, s

′
f , T

′) and E = (Q′′, s′′0 , s
′′
f , T

′′) of SC , if s
′
0 = s′′0 and s′f = s′′f ,

then create a new component F = (Q′ ∪Q′′, s′0, s
′
f , T

′ ∪ T ′′). If F 6= M , then delete D and E from
SC , and add F to SC .

3. Return the biggest C ∈ SC .

Using the above algorithm, a largest component of given service M can computed in quadratic time.
The algorithm can thus be called inductively until there are no more components in the determined
component FSM N of a level, and then the hierarchical structure of M has been obtained.

27

