
HAL Id: hal-00919437
https://inria.hal.science/hal-00919437

Preprint submitted on 16 Dec 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On the definition of the classical connectives and
quantifiers
Gilles Dowek

To cite this version:

Gilles Dowek. On the definition of the classical connectives and quantifiers. 2013. �hal-00919437�

https://inria.hal.science/hal-00919437
https://hal.archives-ouvertes.fr


On the definition of the classical connectives and
quantifiers

Gilles Dowek

INRIA, 23 avenue d’Italie, CS 81321, 75214 Paris Cedex 13, France.
gilles.dowek@inria.fr

The history of the notion of constructivity started with a dispute on the
deduction rules that one should or should not use to prove a theorem. Depending
on the rules accepted by the ones and the others, the proposition P ∨ ¬P , for
instance, had a proof or not. A less controversial situation was reached with a
classification of proofs, and it became possible to agree that this proposition had
a classical proof but no constructive proof.

An alternative is to use the idea of Hilbert and Poincaré that axioms and
deduction rules define the meaning of the symbols of the language and it is then
possible to explain that some judge the proposition P ∨ ¬P true and others do
not because they do not assign the same meaning to the symbols ∨, ¬, etc. The
need to distinguish several meanings of a common word is usual in mathematics.
For instance the proposition “there exists a number x such that 2x = 1” is true of
false depending on whether the word “number” means “natural number” or “real
number”. Even for logical connectives, the word “or” has to be disambiguated
into inclusive and exclusive.

Taking this idea seriously, we should not say that the proposition P ∨ ¬P
has a classical proof but no constructive proof, but we should say that the
proposition P ∨c ¬cP has a proof, but not the proposition P ∨ ¬P , that is we
should introduce two symbols for each connective and quantifier, for instance
a symbol ∨ for the constructive disjunction and a symbol ∨c for the classical
one, instead of introducing two judgements: “has a classical proof” and “has
a constructive proof”. We should also be able to address the question of the
provability of mixed propositions and, for instance, express that the proposition
(¬(P ∧Q))⇒ (¬P ∨c ¬Q) has a proof.

The idea that the meaning of connectives and quantifiers is expressed by
the deduction rules leads to propose a logic containing all the constructive and
classical connectives and quantifiers and deduction rules such that a proposition
containing only constructive connectives and quantifiers has a proof in this logic
if and only if it has a proof in constructive logic and a proposition containing
only classical connectives and quantifiers has a proof in this logic if and only if
it has a proof in classical logic. Such a logic containing classical, constructive,
and also linear, connectives and quantifiers has been proposed by J.-Y. Girard
[3]. This logic is a sequent calculus with unified sequents that contain a linear
zone and a classical zone and rules treating differently propositions depending
on the zone they belong.

Our goal in this paper is slightly different, as we want to define the meaning
of a small set of primitive connectives and quantifiers with deduction rules and



define the others explicitly, in the same way the exclusive or is explicitly defined
in terms of conjunction, disjunction and negation: A⊕B = (A∧¬B)∨(¬A∧B). A
first step in this direction has been made by Gödel [4] who defined a translation of
constructive logic into classical logic, and Kolmogorov [7], Gödel [5], and Gentzen
[2] who defined a translation of classical logic into constructive logic. As the first
translation requires a modal operator, we shall focus on the second. This leads
to consider constructive connectives and quantifiers as primitive and search for
definitions of the classical ones. Thus, we want to define classical connectives and
quantifiers >c, ⊥c, ¬c, ∧c, ∨c, ⇒c, ∀c, and ∃c and embed classical propositions
into constructive logic with a morphism ‖ ‖ defined as follows.

Definition 1 (Morphism).

– ‖P‖ = P if P is an atomic proposition
– ‖>‖ = >c

– ‖⊥‖ = ⊥c

– ‖¬A‖ = ¬c‖A‖
– ‖A ∧B‖ = ‖A‖ ∧c ‖B‖
– ‖A ∨B‖ = ‖A‖ ∨c ‖B‖
– ‖A⇒ B‖ = ‖A‖ ⇒c ‖B‖
– ‖∀x A‖ = ∀cx ‖A‖
– ‖∃x A‖ = ∃cx ‖A‖

If Γ = A1, ..., An is a multiset of propositions, we write ‖Γ‖ for the multiset
‖A1‖, ..., ‖An‖.

Kolmogorov-Gödel-Gentzen translation can be defined as follows

– (P )′ = ¬¬P , if P is an atomic proposition
– (>)′ = ¬¬>
– (⊥)′ = ¬¬⊥
– (¬A)′ = ¬¬¬(A)′

– (A ∧B)′ = ¬¬((A)′ ∧ (B)′)
– (A ∨B)′ = ¬¬((A)′ ∨ (B)′)
– (A⇒ B)′ = ¬¬((A)′ ⇒ (B)′)
– (∀x A)′ = ¬¬(∀x (A)′)
– (∃x A)′ = ¬¬(∃x (A)′)

or more succinctly as

– (P )′ = ¬¬P , if P is an atomic proposition
– (∗)′ = ¬¬∗, if ∗ is a zero-ary connective
– (∗A)′ = ¬¬(∗(A)′), if ∗ is a unary connective
– (A ∗B)′ = ¬¬((A)′ ∗ (B)′), if ∗ is a binary connective
– (∗x A)′ = ¬¬(∗x (A)′), if ∗ is a quantifier

For instance

(P ∨ ¬P )′ = ¬¬(¬¬P ∨ ¬¬¬¬¬P )



And it is routine to prove that a proposition A has a classical proof if and only
if the proposition (A)′ has a constructive one.

This translation does not directly provide definitions of classical connectives
and quantifiers because it is not a morphism. For instance, if we take the defini-
tion

– ¬cA = ¬¬¬A
– A ∨c B = ¬¬(A ∨B)
– etc.

where a double negation is put before each connective and quantifier, then the
proposition P ∨c ¬cP is ¬¬(P ∨ ¬¬¬P ) where the double negations in front
of atomic propositions are missing. Thus, we would need to also introduce a
proposition symbol P c defined by P c = ¬¬P . But this would lead us too far: we
want to introduce constructive and classical versions of the logical symbols—the
connectives and the quantifiers—but not of the non logical ones, such as the
predicate symbols.

Another translation introduced by L. Allali and O. Hermant [1] leads to the
definition

– ¬cA = ¬¬¬A
– A ∨c B = (¬¬A) ∨ (¬¬B)
– etc.

where double negations are put after, and not before, each connective and quan-
tifier.

The proposition P ∨c ¬cP is then ¬¬P ∨ ¬¬¬¬¬P where the double nega-
tion at the top of the proposition is missing. Using this translation Allali and
Hermant prove that the proposition A has a classical proof if and only if the
proposition ¬¬‖A‖ has a constructive one and they introduce another provabil-
ity judgement expressing that the proposition ¬¬A has a constructive proof.
This also would lead us too far: in our logic, we want a single judgement “A
has a proof” expressing that A has a constructive proof, and not to introduce a
second judgement, whether it be “A has a classical proof” or “¬¬A has a proof”.

In order to do so, we define the classical connectives and quantifiers by in-
troducing double negations both before and after each symbol.

Definition 2 (Classical connectives and quantifiers).

– >c = ¬¬>
– ⊥c = ¬¬⊥
– ¬cA = ¬¬¬¬¬A
– A ∧c B = ¬¬((¬¬A) ∧ (¬¬B))
– A ∨c B = ¬¬((¬¬A) ∨ (¬¬B))
– A⇒c B = ¬¬((¬¬A)⇒ (¬¬B))
– ∀cx A = ¬¬(∀x (¬¬A))
– ∃cx A = ¬¬(∃x (¬¬A))



Notice that the propositions > ⇔ >c, ⊥ ⇔ ⊥c, and ¬A ⇔ ¬cA where A ⇔ B
is defined as (A ⇒ B) ∧ (B ⇒ A), have proofs. Thus, the symbols >c, ⊥c, and
¬c could be just defined as >, ⊥, and ¬.

With this definition, neither the double negations in front of atomic propo-
sitions nor those at the top of the proposition are missing. The price to pay is
to have four negations instead of two in many places, but this is not harmful.

Yet, there is still a problem with the translation of atomic propositions: as
with any morphism, the proposition P alone is translated as P and not as ¬¬P .
Thus, the property that a sequent Γ ` A has a classical proof if and only if the
sequent ‖Γ‖ ` ‖A‖ has a constructive one only holds when A is not atomic. For
instance, the sequent P ∧c Q ` P , that is ¬¬((¬¬P ) ∧ (¬¬Q)) ` P , does not
have a constructive proof.

A solution to this problem is to decompose hypothetical provability into
absolute provability and entailment. For absolute provability, the property that
a sequent ` A has a classical proof if and only if the sequent ` ‖A‖ has a
constructive one holds for all propositions, because atomic propositions have no
proof. Thus, the sequent H1, ...,Hn ` A has a classical proof if and only if the
sequent ` ‖H1‖ ⇒c ...⇒c ‖Hn‖ ⇒c ‖A‖ has a constructive one. This leads to a
system where we have only one notion of absolute provability, but two notions
of entailment: “A has a proof from the hypothesis H” can either be understood
as “H ⇒ A has a proof” or “H ⇒c A has a proof”.

axiomA ` A
Γ,A,A ` ∆

contr-lΓ,A ` ∆
Γ ` A,A,∆

contr-rΓ ` A,∆
Γ ` ∆

weak-lΓ,A ` ∆
Γ ` ∆

weak-rΓ ` A,∆

>-rΓ ` >,∆

⊥-lΓ,⊥ ` ∆
Γ ` A,∆ ¬-lΓ,¬A ` ∆

Γ,A ` ∆ ¬-r
Γ ` ¬A,∆

Γ,A,B ` ∆ ∧-lΓ,A ∧B ` ∆
Γ ` A,∆ Γ ` B,∆ ∧-r

Γ ` A ∧B,∆
Γ,A ` ∆ Γ,B ` ∆ ∨-lΓ,A ∨B ` ∆

Γ ` A,∆ ∨-r
Γ ` A ∨B,∆
Γ ` B,∆ ∨-r

Γ ` A ∨B,∆
Γ ` A,∆ Γ,B ` ∆⇒-lΓ,A⇒ B ` ∆

Γ,A ` B,∆ ⇒-r
Γ ` A⇒ B,∆

Γ, (t/x)A ` ∆ ∀-lΓ,∀x A ` ∆
Γ ` A,∆ ∀-rΓ ` ∀x A,∆

Γ,A ` ∆ ∃-lΓ,∃x A ` ∆
Γ ` (t/x)A,∆ ∃-rΓ ` ∃x A,∆

Fig. 1. Sequent calculus



Definition 3 (Classical and constructive provability). Classical provabil-
ity is defined by the cut free sequent calculus rules of Figure 1. We say that the
proposition A has a classical proof if the sequent ` A does.

Constructive provability, our main notion of provability, is obtained by re-
stricting to sequents with at most one conclusion. This requires a slight adapta-
tion of the ⇒-l rule

Γ ` A Γ,B ` ∆
⇒-l

Γ,A⇒ B ` ∆

We say that the proposition A has a constructive proof if the sequent ` A does.

Proposition 1. If the proposition ‖A‖ has a constructive proof, then the propo-
sition A has a classical one.

Proof. If the proposition ‖A‖ has a constructive proof, then ‖A‖ also has a
classical proof. Hence, ‖A‖ being classically equivalent to A, A also has a classical
proof.

We now want to prove the converse: that if the proposition A has a classical
proof, then ‖A‖ has a constructive proof. To do so, we first introduce another
translation where the top double negation is removed, when there is one.

Definition 4 (Light translation).

– |P | = P ,
– |>| = >,
– |⊥| = ⊥,
– |¬A| = ¬¬¬‖A‖,
– |A ∧B| = (¬¬‖A‖) ∧ (¬¬‖B‖),
– |A ∨B| = (¬¬‖A‖) ∨ (¬¬‖B‖),
– |A⇒ B| = (¬¬‖A‖)⇒ (¬¬‖B‖),
– |∀x A| = ∀x (¬¬‖A‖),
– |∃x A| = ∃x (¬¬‖A‖).

If Γ = A1, ..., An is a multiset of propositions, we write |Γ | for the multiset
|A1|, ..., |An| and ¬|Γ | for the multiset ¬|A1|, ...,¬|An|.

Proposition 2. If the proposition A is atomic, then ‖A‖ = |A|, otherwise
‖A‖ = ¬¬|A|.

Proof. By a case analysis on the form of the proposition A.

Proposition 3. If the sequent Γ, |A| ` has a constructive proof, then so does
the sequent Γ, ‖A‖ `.

Proof. By Proposition 2, either ‖A‖ = |A|, or ‖A‖ = ¬¬|A|. In the first case the
result is obvious, in the second, we build a proof of Γ, ‖A‖ ` with a ¬-l rule, a
a ¬-r rule, and the proof of Γ, |A| `.

Proposition 4. If the sequent Γ ` ∆ has a classical proof, then the sequent
|Γ |,¬|∆| ` has a constructive one.



Proof. By induction on the structure of the classical proof of the sequent Γ ` ∆.
As all the cases are similar, we just give a few.

– If the last rule is the axiom rule, then Γ = Γ ′, A and ∆ = ∆′, A, and the
sequent |Γ ′|, |A|,¬|A|,¬|∆| `, that is |Γ |,¬|∆| `, has a constructive proof.

– If the last rule is the ⇒-l rule, then Γ = Γ ′, A ⇒ B and by induction hy-
pothesis, the sequents |Γ ′|,¬|A|,¬|∆| ` and |Γ ′|, |B|,¬|∆| ` have construc-
tive proofs, thus the sequents |Γ ′|,¬‖A‖,¬|∆| ` and |Γ ′|, ‖B‖,¬|∆| ` have
constructive proofs, thus, using Proposition 3, the sequent |Γ ′|,¬¬‖A‖ ⇒
¬¬‖B‖,¬|∆| `, that is |Γ |,¬|∆| `, has a constructive proof.

– If the last rule is the⇒-r rule, then∆ = ∆′, A⇒ B and by induction hypoth-
esis, the sequent |Γ |, |A|,¬|B|,¬|∆′| ` has a constructive proof, thus, using
Proposition 3, the sequent |Γ |, ‖A‖,¬‖B‖,¬|∆′| ` has a constructive proof,
thus the sequent |Γ |,¬(¬¬‖A‖ ⇒ ¬¬‖B‖),¬|∆′| `, that is |Γ |,¬|∆| `, has
a constructive proof.

Proposition 5. If the sequent Γ ` A has a classical proof and A is not an
atomic proposition, then the sequent ‖Γ‖ ` ‖A‖ has a constructive one.

Proof. By Proposition 4, as the sequent Γ ` A has a classical proof, the se-
quent |Γ |,¬|A| ` has a constructive one. Thus, by Proposition 3, the sequent
‖Γ‖,¬|A| ` has a constructive proof, and the sequent ‖Γ‖ ` ¬¬|A| also. By
Proposition 2, as A is not atomic, ‖A‖ = ¬¬|A|. Thus, the sequent ‖Γ‖ ` ‖A‖
has a constructive proof.

Theorem 1. The proposition A has a classical proof if and only if the proposi-
tion ‖A‖ has a constructive one.

Proof. By Proposition 1, if the proposition ‖A‖ has a constructive proof, then the
proposition A has a classical one. Conversely, we prove that if the proposition
A has a classical proof, then the proposition ‖A‖ has a constructive one. If
A is atomic, the proposition A does not have a classical proof, otherwise, by
Proposition 5, the proposition ‖A‖ has a constructive proof.

Corollary 1. The sequent H1, ...,Hn ` A has a classical proof if and only if the
sequent ` ‖H1‖ ⇒c ...‖Hn‖ ⇒c ‖A‖ has a constructive one.

Proof. The sequent H1, ...,Hn ` A has a classical proof if and only if the sequent
` H1 ⇒ ...Hn ⇒ A has one and, by Theorem 1, if and only if the sequent
` ‖H1‖ ⇒c ...‖Hn‖ ⇒c ‖A‖ has a constructive proof.

There is no equivalent of Theorem 1 if we add double negations after the
connectors only. For instance, the proposition P ∨ ¬P has a classical proof, but
the proposition ¬¬P ∨ ¬¬¬¬¬P has no constructive proof. O. Hermant [6] has
proved that there is also no equivalent of Theorem 1 if we add double negations
before the connectors only. For instance, the proposition (∀x (P (x) ∧ Q)) ⇒
(∀x P (x)) has a classical proof, but the proposition ¬¬((¬¬∀x ¬¬(P (x)∧Q))⇒
(¬¬∀x P (x))) has no constructive proof.



Let H1, ...,Hn be an axiomatization of mathematics with a finite number of
axioms, H = H1 ∧ ... ∧Hn be their conjunction, and A be a proposition. If the
proposition H ⇒ A has a classical proof, then, by Theorem 1, the proposition
‖H‖ ⇒c ‖A‖ has a constructive one. Thus, in general, not only the proposition
A must be formulated with classical connectives and quantifiers, but the axioms
of the theory and the entailment relation also.

Using Proposition 5, if A is not an atomic proposition, then the proposition
‖H‖ ⇒ ‖A‖ has a constructive proof. In this case, the axioms of the theory
must be formulated with classical connectives and quantifiers, but the entailment
relation does not.

In many cases, however, even the proposition H ⇒ ‖A‖ has a constructive
proof. For instance, consider the theory formed with the axiom H “The union
of two finite sets is finite”

∀x∀y (F (x)⇒ F (y)⇒ F (x ∪ y))

—or, as the cut rule is admissible in sequent calculus, any theory where this
proposition has a proof—and let A be the proposition “If the union of two sets
is infinite then one of them is”

∀a∀b ((¬F (a ∪ b))⇒ (¬F (a) ∨ ¬F (b)))

which is, for instance, at the heart of the proof of Bolzano-Weierstrass theorem,
then the proposition H ⇒ ‖A‖ has a constructive proof

axiom
F (a), F (b) ` F (a)

axiom
F (a), F (b) ` F (b)

axiom
F (a ∪ b), F (a), F (b) ` F (a ∪ b)

⇒-l
F (b)⇒ F (a ∪ b), F (a), F (b) ` F (a ∪ b)

⇒-l
F (a)⇒ F (b)⇒ F (a ∪ b), F (a), F (b) ` F (a ∪ b) ∀-l, ∀-l

H,F (a), F (b) ` F (a ∪ b) ¬-l, ¬-r, ¬-l, ¬-r, ¬-l, ¬-r, ¬-l
H,¬¬(¬cF (a ∪ b)), F (a), F (b) ` ¬-r, ¬-l, ¬-r, ¬-l, ¬-r
H,¬¬(¬cF (a ∪ b)), F (a) ` ¬cF (b) ¬-l, ¬-r, ∨-r, ¬-r, ¬-l

H,¬¬(¬cF (a ∪ b)), F (a) ` ¬cF (a) ∨c ¬cF (b)
¬-l

H,¬¬(¬cF (a ∪ b)),¬(¬cF (a) ∨c ¬cF (b)), F (a) ` ¬-r, ¬-l, ¬-r, ¬-l, ¬-r
H,¬¬(¬cF (a ∪ b)),¬(¬cF (a) ∨c ¬cF (b)) ` ¬cF (a) ¬-r, ¬-l, ∨-r, ¬-r, ¬-l

H,¬¬(¬cF (a ∪ b)),¬(¬cF (a) ∨c ¬cF (b)) ` ¬cF (a) ∨c ¬cF (b)
¬-l

H,¬¬(¬cF (a ∪ b)),¬(¬cF (a) ∨c ¬cF (b)),¬(¬cF (a) ∨c ¬cF (b)) `
contr-l

H,¬¬(¬cF (a ∪ b)),¬(¬cF (a) ∨c ¬cF (b)) ` ¬-r
H,¬¬(¬cF (a ∪ b)) ` ¬¬(¬cF (a) ∨c ¬cF (b)) ¬-r, ¬-l, ⇒-r
H ` (¬cF (a ∪ b))⇒c (¬cF (a) ∨c ¬cF (b))

(¬-r, ¬-l, ∀-r, ¬-r, ¬-l)2
H ` ∀ca∀cb ((¬cF (a ∪ b))⇒c (¬cF (a) ∨c ¬cF (b))) ⇒-r` H ⇒ ∀ca∀cb ((¬cF (a ∪ b))⇒c (¬cF (a) ∨c ¬cF (b)))

In this case, even the proposition

H ⇒ ∀a∀b ((¬F (a ∪ b))⇒ (¬F (a) ∨c ¬F (b)))

where the only classical connective is the disjunction, has a constructive proof.



Which mathematical results have a classical formulation that can be proved
from the axioms of constructive set theory or constructive type theory and which
require a classical formulation of these axioms and a classical notion of entailment
remains to be investigated.
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