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Abstract. We introduce a notion of proof for CTL with respect to a
given finite model and show some advantages of using such a notion.
This also suggests to define a slight extension of CTL, called SCTL,
where predicates can have an arbitrary arity.

1 Introduction

Model-checking and proof-checking are ubiquitous in formal methods. They dif-
fer by the fact that proof-checking mostly uses undecidable theories, such as
first-order logic, arithmetic, type theory, set theory, etc., while model-checking
uses decidable theories, such as propositional modal logic, LTL, CTL, etc. When
a theory is decidable, the notion of truth can be defined by an algorithm and
the notion of proof is not needed.

However, even for decidable theories, a notion of proof may be useful. First,
once the truth of a formula is established by a decision algorithm, a proof may
be seen as a trace of the execution of this algorithm, and checking the correction
of this proof requires less computation than checking the validity of the formula
again, in the same way that checking some number is a divisor of a large natural
number requires less computation than finding a divisor. Thus a proof may be
a good way to remember or to communicate that a formula is valid. Defining
such a notion of proof also permits to use proof-search algorithms instead of
model-checking ones. Finally, a proof theoretical approach may also be useful to
extend these logics to non decidable cases.

In this work we focus on CTL parametrized by a given finite model and
introduce a notion of proof for this logic. While a provable proposition is usually
valid in all models, we show here how to customize the notion of proof for a
specific model.

This work has also suggested a slight extension of CTL, called SCTL, where
predicates may have an arbitrary arity. Strangely, this extension of CTL is not
more complex that CTL itself.



1.1 Kripke models

A possible notion of model for modal logic is that of a Kripke model. In general,
a Kripke model for a language L is given by

– a set S of states (or worlds), equipped with an accessibility relation −→,

– for each state s, a domain of interpretation,

– for each state s and symbol P of the language L, an interpretation P̂ s of the
symbol P in the state s.

In the particular case of propositional modal logics, the domains of interpre-
tations are no longer needed and the definition boils down to

– a set S of states, equipped with an accessibility relation −→,

– for each state s and proposition symbol P of the language, an interpreta-
tion P̂ s ∈ {0, 1} of the symbol P in the state s or, equivalently, for each
proposition symbol P a set of states P̂ (the set {s | P̂ s = 1}).

Then, the validity of a formula φ in a given state s of the model (written
s 
 φ) is defined by induction on the structure of the formula. Typically,

– s 
 P if s ∈ P̂ (that is P̂ s = 1),

– s 
 φ1 ∧ φ2 if s 
 φ1 and s 
 φ2,

– s 
 ⋄φ if there exists an s′ such that s −→∗ s′ and s′ 
 φ, where −→∗ is the
transitive closure of −→,

– etc.

1.2 From Kripke models to models of predicate logic

A proposition symbol P is thus interpreted in a Kripke model as a set P̂ of states,
much like a unary predicate symbol would be interpreted in an ordinary model,
whose domain would be the set S of states of the Kripke model. Introducing a
constant for each state, and considering P not as a proposition symbol but as a
unary predicate symbol, we can express the judgement s 
 P as a formula P (s)
and the validity of this formula in a model would be defined as

– |= P (s) if s ∈ P̂ ,

– |= φ1 ∧ φ2 if |= φ1 and |= φ2,

– etc.

like in the case of predicate logic. The only specificity of such a model is that it
is equipped with an accessibility relation that is used to define the interpretation
of modalities. For instance, if P is a unary predicate symbol, we can build the
formula (⋄ P )(s) and transform the clause above into

– |= (⋄ P )(s) if there exists a s′ such that s −→∗ s′ and |= P (s′).
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Note that replacing the judgement s 
 P by the formula P (s) permits to
speak about specific states of the Kripke model in the language itself, which is not
usual in modal logics. This transformation can be compared to the introduction
of adverbial phrases in natural languages. For instance the sentence P “The sky
is blue” can be true or false at different moments. Introducing a tense such as
the “The sky will be blue” corresponds to the introduction of a modality such as
⋄P and the introduction of an adverbial phrase “The sky will be blue Monday
January 1st” corresponds to the introduction of an explicit state P (s).

A next step could be to introduce, in the language, a symbol for the transition
relation [1], but this alone would not permit to express the inductive and co-
inductive modalities. Thus, we prefer to keep this symbol implicit and introduce
modalities such as AX, EX, EF , etc. as primitive symbols. For instance, the
formula EF (P )(s) (written (⋄P )(s) above) expresses the existence of a sequence
s0, s1, ... starting from s and a natural number n such that for all i, si −→ si+1

and, P (sn) holds. The formula EG(P )(s) expresses the existence of a sequence
s0, s1, ... starting from s such that for all i, si −→ si+1 and for all i, P (si) holds,
etc.

In modal logics, it is possible to apply a modality, such as ⋄, to an atomic
formula, but also to a compound formula, for instance ⋄(P ∧Q). In the same way,
in CTL, we can apply the modality EF to a compound formula EF (P ∧Q)(s).
When expressing CTL in predicate logic, P and Q are not proposition sym-
bols anymore but unary predicate symbols and it does make sense to apply
the conjunction ∧ to unary predicate symbols. Thus it is natural to apply
the modality EF not to predicates symbols but to formulae: EF (P (x))(s),
EF (P (x) ∧ Q(x))(s), etc. In this case, the symbol EF must bind the variable
x in its first argument, like a quantifier, and we must write EFx(P (x))(s) and
EFx(P (x) ∧Q(x))(s) instead of EF (P (x))(s) and EF (P (x) ∧Q(x))(s).

1.3 Predicate symbols of arbitrary arity

When expressing CTL this way, it is natural to introduce not only unary predi-
cate symbols, such as P , but also predicates of arbitrary arity, for instance binary
predicate symbols, while this would not make much sense in a Kripke model,
where the central notion is the validity of a formula in a state (s 
 φ). For
instance, we may want to express the existence of a sequence s0, s1, ... starting
from s such that for all i, si −→ si+1 and such that one can buy a left shoe at
some state sn and then the right shoe of the same pair at a later state sp. This
requires to introduce a binary predicate symbol P , that relates these sates, and
express it with the formula EFx(EFy(P (x, y))(x))(s).

Introducing such predicate symbols of arbitrary arity extends the expressivity
of CTL but not its complexity.

The first contribution of this paper is to introduce a system SCTL extending
CTL with predicate symbols of arbitrary arity. In this system, modalities are
applied to formulae and states, binding variables in these formulae. We will
define a notion of model for this logic and focus on the case of finite models.
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1.4 Models and proofs

The second contribution of this paper is to define a sequent calculus to write
proofs in SCTL. Unlike the usual sequent calculus, where a formula is provable
if and only if it is valid in all models, we design a sequent calculus tailored for
each specific finite model M: a formula is provable in this sequent calculus if
and only it it is valid in the model M.

Of course, such a sequent calculus can only be defined when the validity in
the model M is semi-decidable. For instance there is no such sequent calculus
for the standard model of arithmetic. But it can be defined for any finite model.

Such a proof-theoretic definition of truth is complementary from a model-
theoretic one, although both are effective.

First, once the truth of a formula EFx(P (x))(s) is established, by finding a
finite sequence s0, s1, ..., sn starting from s such that for all i < n, si −→ si+1 and
such that P (sn), a proof may be a good way to remember, or to communicate,
this sequence.

Defining such a notion of proof also permits to use proof-search algorithms
instead of model-checking ones, and, in some cases, proof-search may be more
efficient than model-checking. Assume, for instance, that a state s has immediate
successors s1, s2, and s3 and the predicate P is verified by s1 and s2 but not by s3.
We want to prove the proposition EXx(¬P (x))(s). A model checking-algorithm
would enumerate all the successors of s, while a proof-search algorithm would
introduce a variable x for such a state and attempt to prove ¬P (x), under the
axioms P (s1), P (s2), and ¬P (s3), with the constraint that xmust be substituted
with an element of Next(s). The resolution method, for instance, would attempt
to unifiy P (x) with a P (s3) and directly find the substitution x = s3 without
enumerating s1 and s2. Of course, the generality of this example remains to be
investigated.

Finally, a proof theoretical approach may also be useful to extend CTL for
models that are infinite, but simpler than the standard model of arithmetic, such
as pushdown systems.

Proof systems for modal logics have been defined. See, for instance, [2–6].
When designing such a proof-system for modal logic, one of the main issues is to
handle co-inductive modalities, for instance asserting the existence of an infinite
sequence whose elements all verify some property. It is tempting to reflect this
infinite sequence as an infinite proof and then use the finiteness of the model to
prune the search-tree in a proof-search method. Instead, we use the finiteness of
the model to keep our proofs finite, like in the usual sequent calculus. This is
the purpose of the merge rules.

2 Models and formulae

The models we consider in this work are Kripke models.

Definition 1. A Kripke model M is given by
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– a non empty set S, whose elements are called states,
– a binary relation −→ defined on S, such that for each s in S, there exists at

least one s′ in S, such that s −→ s′,
– and a family of subsets of Sn, where n is a natural number, called relations.

We write Next(s) for the set {s′ | s −→ s′}. A path is an infinite sequence
s0, s1, ... of states such that for each i, si+1 ∈ Next(si).

Properties of such a model are expressed in a language, tailored for this
model, that contains

– for each state s, a constant, also written s,
– for each relation P , a predicate symbol, also written P .

Formulae are built in the usual way with the connectors ⊤, ⊥, ∧, ∨ and ¬,
to which we add modalities AX, EX, AF , EG, AR, and EU . If φ is a formula,
and t is either a constant or a variable, then AXx(φ)(t), EXx(φ)(t), AFx(φ)(t),
and EGx(φ)(t) are formulae. Like quantifiers, modalities bind the variable x
in φ. If φ1 and φ2 are formulae and t is either a constant or a variable, then
ARx,y(φ1, φ2)(t) and EUx,y(φ1, φ2)(t) are formulae. These modalities bind the
variable x in φ1 and y in φ2.

We consider only formulae in negative normal form, that is formulae where
negation is applied to atoms only. It is routine to check that each formula φ can
be transformed into an equivalent formula |φ| in negative normal form.

– |φ| = φ, if φ is atomic,
– |⊤| = ⊤,
– |⊥| = ⊥,
– |φ1 ∧ φ2| = |φ1| ∧ |φ2|,
– |φ1 ∨ φ2| = |φ1| ∨ |φ2|,
– |AXx(φ1)(t)| = AXx(|φ1|)(t),
– |EXx(φ1)(t)| = EXx(|φ1|)(t),
– |AFx(φ1)(t)| = AFx(|φ1|)(t),
– |EGx(φ1)(t)| = EGx(|φ1|)(t),
– |ARx(φ1, φ2)(t)| = ARx(|φ1|, |φ2|)(t),
– |EUx(φ1, φ2)(t)| = EUx(|φ1|, |φ2|)(t),
– |¬φ1| = |φ1|

⊥,

where φ⊥ is defined by

– φ⊥ = ¬φ, if φ is atomic,
– (¬φ1)

⊥ = φ1, if φ1 is atomic,
– ⊤⊥ = ⊥,
– ⊥⊥ = ⊤,
– (φ1 ∧ φ2)

⊥ = φ⊥

1 ∨ φ⊥

2 ,
– (φ1 ∨ φ2)

⊥ = φ⊥

1 ∧ φ⊥

2 ,
– (AXx(φ1)(t))

⊥ = EXx(φ
⊥

1 )(t),
– (EXx(φ1)(t))

⊥ = AXx(φ
⊥

1 )(t),
– (AFx(φ1)(t))

⊥ = EGx(φ
⊥

1 )(t),
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– (EGx(φ1)(t))
⊥ = AFx(φ

⊥

1 )(t),
– (ARx(φ1, φ2)(t))

⊥ = EUx(φ
⊥

1 , φ
⊥

2 )(t),
– (EUx(φ1, φ2)(t))

⊥ = ARx(φ
⊥

1 , φ
⊥

2 )(t).

Finally, we use the following abbreviations

– φ1 ⇒ φ2 = φ⊥

1 ∨ φ2,
– EFx(φ)(t) = EUz,x(⊤, φ)(t),
– ERx,y(φ1, φ2)(t) = (EUy,z(φ2, ((z/x)φ1 ∧ (z/y)φ2))(t)∨EGy(φ2)(t)), where

z is a variable that occurs neither in φ1 nor in φ2,
– AGx(φ)(t) = (EFx(φ

⊥)(t))⊥,
– AUx,y(φ1, φ2)(t) = (ERx,y(φ

⊥

1 , φ
⊥

2 )(t))
⊥.

Definition 2. Let M be a model and φ be a closed formula, the set of valid

formulae |= φ in the model M is defined by induction on φ as follows

– |= P (s1, ..., sn), if 〈s1, ..., sn〉 ∈ P ,

– |= ¬P (s1, ..., sn), if 〈s1, ..., sn〉 6∈ P ,

– |= ⊤,

– |= ⊥ is never the case,

– |= φ1 ∧ φ2 if |= φ1 and |= φ2,

– |= φ1 ∨ φ2 if |= φ1 or |= φ2,

– |= AXx(φ1)(s), if for each state s′ in Next(s), |= (s′/x)φ1,

– |= EXx(φ1)(s), if there exists a state s′ in Next(s) such that |= (s′/x)φ1,

– |= AFx(φ1)(s), if for all paths s0, s1, ... such that s0 = s there exists a natural

number i, such that |= (si/x)φ1,

– |= EGx(φ1)(s), if there exists a path s0, s1, ... such that s0 = s, and for all

natural numbers i, |= (si/x)φ1,

– |= ARx,y(φ1, φ2)(s), if for all paths s0, s1, ... such that s0 = s, for all j, either
|= (sj/y)φ2 or there exists an i < j such that |= (si/x)φ1,

– |= EUx,y(φ1, φ2)(s), if there exists a path s0, s1, ... such that s0 = s, there ex-

ists a natural number j such that |= (sj/y)φ2, and for all i < j, |= (si/x)φ1.

Remark 1. From the definitions above, we obtain |= EFx(φ)(s), if there exists a
path s0, s1, ... such that s0 = s, and a natural number j such that |= (sj/x)φ,
etc.

Example 1. The formula

EFx(EFy(P (x, y))(x))(a)

expresses the existence of a path starting from a, that contains two states related
by P . This formula is valid in a model formed with the relation depicted below

a b

c

ed
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and the set P = {〈a, c〉}, but not in that formed with the same relation and the
set P = {〈a, d〉} instead.

Remark 2. An alternative definition of |= AFx(φ1)(s), |= ARx,y(φ1, φ2)(s), and
|= EUx,y(φ1, φ2)(s) is the following.

– |= AFx(φ1)(s), if there exists a finite tree T such that T has root s; for each
internal node s′, the children of this node are labeled by the elements of
Next(s′); and for each leaf s′, |= (s′/x)φ1,

– |= ARx,y(φ1, φ2)(s), if there exists an infinite tree T such that T has root s;
for each internal node s′, the children of this node are labeled by the elements
of Next(s′); for each node s′, |= (s′/y)φ2; and for each leaf s′, |= (s′/x)φ1,

– |= EUx,y(φ1, φ2)(s), if there exists a finite sequence s0, ..., sn such that s0 =
s; |= (sn/y)φ2; and for all i between 0 and n− 1, |= (si/x)φ1.

3 Proofs

We now consider a fixed finite model M. As the model is finite, the sets Next(s)
are always finite.

Consider, for instance, the formula AFx(P (x))(s). This formula is valid if
there exists a finite tree T whose root is labeled by s, such that the children of
an internal node labeled by a state a are labeled by the elements of Next(a),
and such that all the leaves are in P . Such a tree can be called a proof of the
formula AFx(P (x))(s).

Consider now the formula AFx(AFy(P (x, y))(x))(s) that contains nested
modalities. To justify the validity of this formula, one needs to provide a tree,
where at each leaf a, the formula AFy(P (a, y))(a) is valid. And to justify the
validity of the formulae AFy(P (a, y))(a), one needs to provide other trees. These
hierarchical trees can be formalized with the sequent calculus rules

⊢ (s/x)φ
AF-right

⊢ AFx(φ)(s)

⊢ AFx(φ)(s1) ... ⊢ AFx(φ)(sn) AF-right
{s1...sn} = Next(s)⊢ AFx(φ)(s)

Example 2. Consider the model formed with the relation

a

b

c

d

and the set P = {b, c}. A proof of the formula AFx(P (x))(a) is

atom-right
⊢ P (b)

AF-right
⊢ AFx(P (x))(b)

atom-right
⊢ P (c)

AF-right
⊢ AFx(P (x))(c)

AF-right
⊢ AFx(P (x))(a)
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where besides the rules AF-right, we use the rule

atom-right
〈s1, ..., sn〉 ∈ P⊢ P (s1, ..., sn)

The above discussion leads to the sequent calculus depicted in Figure 1.
Note that in the usual sequent calculus, the right rule of disjunction can

either be formulated in a multiplicative way

Γ ⊢ φ1, φ2, ∆
Γ ⊢ φ2 ∨ φ2, ∆

or in an additive way
Γ ⊢ φ1, ∆

Γ ⊢ φ1 ∨ φ2, ∆

Γ ⊢ φ2, ∆
Γ ⊢ φ1 ∨ φ2, ∆

These two formulations are equivalent in presence of structural rules. For in-
stance the proof of the sequent ⊢ P ⇒ P , that is ⊢ ¬P ∨P , in the multiplicative
system

axiom
P ⊢ P

¬-right
⊢ ¬P, P

∨-right
⊢ ¬P ∨ P

can be rewritten in the additive one

axiom
P ⊢ P

¬-right
⊢ ¬P, P

∨-right
⊢ ¬P,¬P ∨ P

∨-right
⊢ ¬P ∨ P,¬P ∨ P

contraction-right
⊢ ¬P ∨ P

The contraction rule, or the multiplicative rule, is needed to build the sequent
⊢ ¬P, P that is provable even if none of its weakenings ⊢ ¬P and ⊢ P is, because
we do not know whether the formula P is true or false.

Our sequent calculus needs neither contraction rules nor multiplicative rules,
because for each atomic formula P , either P is provable or ¬P is. Therefore the
sequent ⊢ ¬P ∨ P is proved by proving either the sequent ⊢ ¬P or the sequent
⊢ P .

As we have neither multiplicative rules nor structural rules, if we start with
a sequent ⊢ φ, then each sequent in the proof has one formula on the right
and none on the left. Thus, the lists Γ and ∆ are empty and the rules can be
formulated as

⊢ φ1

⊢ φ1 ∨ φ2
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atom-right
〈s1, ..., sn〉 ∈ P⊢ P (s1, ..., sn)

¬-right
〈s1, ..., sn〉 6∈ P⊢ ¬P (s1, ..., sn)

⊤-right
⊢ ⊤

⊢ φ1 ⊢ φ2
∧-right

⊢ φ1 ∧ φ2

⊢ φ1 ∨-right
⊢ φ1 ∨ φ2

⊢ φ2 ∨-right
⊢ φ1 ∨ φ2

⊢ (s1/x)φ ... ⊢ (sn/x)φ AX-right
{s1...sn} = Next(s)⊢ AXx(φ)(s)

⊢ (s′/x)φ EX-right
s′ ∈ Next(s)⊢ EXx(φ)(s)

⊢ (s/x)φ
AF-right

⊢ AFx(φ)(s)

⊢ AFx(φ)(s1) ... ⊢ AFx(φ)(sn) AF-right
{s1...sn} = Next(s)⊢ AFx(φ)(s)

⊢ (s/x)φ Γ,EGx(φ)(s) ⊢ EGx(φ)(s
′) EG-right

s′ ∈ Next(s)Γ ⊢ EGx(φ)(s)

EG-merge
EGx(φ)(s) ∈ ΓΓ ⊢ EGx(φ)(s)

⊢ (s/x)φ1 ⊢ (s/y)φ2
AR-right

Γ ⊢ ARx,y(φ1, φ2)(s)

⊢ (s/y)φ2 Γ ′ ⊢ ARx,y(φ1, φ2)(s1) ... Γ ′ ⊢ ARx,y(φ1, φ2)(sn)
AR-right
{s1, ..., sn} = Next(s)
Γ ′ = Γ,ARx,y(φ1, φ2)(s)

Γ ⊢ ARx,y(φ1, φ2)(s)

AR-merge
ARx,y(φ1, φ2)(s) ∈ ΓΓ ⊢ ARx,y(φ1, φ2)(s)

⊢ (s/y)φ2
EU-right

⊢ EUx,y(φ1, φ2)(s)

⊢ (s/x)φ1 ⊢ EUx,y(φ1, φ2)(s
′) EU-right

s′ ∈ Next(s)Γ ⊢ EUx,y(φ1, φ2)(s)

Fig. 1. SCTL

⊢ φ2

⊢ φ1 ∨ φ2

Finally, as all sequents have the form ⊢ φ, the left rules and the axiom rule can be
dropped as well. In other words, unlike the usual sequent calculus, our sequent
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calculus, like Hilbert systems, is tailored for deduction, not for hypothetical
deduction.

The case of co-inductive formulae, for instance EGx(P (x))(s), is more com-
plex than that of the inductive formulae, such as AFx(P (x))(s). To justify its
validity, one needs to provide an infinite sequence, that is an infinite tree with
only one branch, such that the root of the tree is labeled by s, the child of a node
labeled by a state a is labeled by an element of Next(a), and each node of the
tree verifies P . But, as the model is finite, we can always restrict to regular trees
and use a finite representation of such trees. This leads us to introduce a rule,
called EG-merge, that permits to prove a sequent of the form ⊢ EGx(P (x))(s),
provided such a sequent already occurs lower in the proof. To make this rule lo-
cal, we re-introduce hypotheses Γ to record part of the history of the proof. The
sequents have therefore the form Γ ⊢ φ, with a non empty Γ in this particular
case only, and the EG-merge rule is then just an instance of the axiom rule.

4 Soundness and completeness

Propositions 1 and 2 below permit to transform finite structures into infinite ones
and will be used in the Soundness proof, while Propositions 3 and 4 permit to
transform infinite structures into finite ones and will be used in the Completeness
proof.

Proposition 1 (Finite to infinite sequences). Let s0, ..., sn be a finite se-

quence of states such that for all i between 0 and n−1, si −→ si+1, and sn = sp
for some p between 0 and n− 1. Then there exists an infinite sequence of states

s′0, s
′

1, ... such that for all i, s′i −→ s′i+1, and all the s′j are among s0, ...., sn.

Proof. Take the sequence s0, ..., sp−1, sp, ..., sn−1, sp, ..., sn−1, ...

Proposition 2 (Finite to infinite trees). Let Φ be a set of states and T be

a finite tree labeled by states such that, for each internal node s, the immediate

successors of s are the elements of Next(s) and each leaf is labeled with a state

which is either in Φ or also a label of a node on the branch from the root of T to

this leaf. Then there exists an infinite tree T ′ labeled by states such that for each

internal node s the successors of s are the elements of Next(s), all the leaves

are labeled by elements of Φ, and all the labels of T ′ are labels of T .

Proof. Consider for T ′ the tree whose root is labeled by the root of T and such
that for each node s, if s is in Φ, then s is a leaf of T ′, otherwise the successors
of s are the elements of Next(s). It is easy to check that all the nodes of T ′ are
labeled by labels of T .

Proposition 3 (Infinite to finite sequences). Let s0, s1, ... be an infinite

sequence of states such that for all i, si −→ si+1. Then there exists a finite

sequence of states s′0, ..., s
′

n such that for all i between 0 and n− 1, s′i −→ s′i+1,

s′n = s′p for some p between 0 and n− 1, and all the s′j are among s0, s1, ....

10



Proof. As the number of states is finite, there exists p and n such that p < n
and sp = sn. Take the sequence s0, ..., sn.

Proposition 4 (Infinite to finite trees). Let Φ be a set of states and T be

an infinite tree labeled by states such that for each internal node s the successors

of s are the elements of Next(s) and each leaf is labeled by a state in Φ. Then,
there exists a finite tree labeled by states such that for each internal node s the

successors of s are the elements of Next(s) and each leaf is labeled with a state

which is either in Φ or also a label of a node on the branch from the root of T
to this leaf.

Proof. As the number of states is finite, on each infinite branch, there exists
p and n such that p < n and sp = sn. Prune the tree at node sn. This tree
is finitely branching and each branch is finite, hence, by Köning’s lemma, it is
finite.

Definition 3. Let s be a state and T1, ..., Tn be trees labeled by states. We write

s(T1, ..., Tn) for the tree whose root is labeled by s and whose immediate subtrees

are T1, ..., Tn.

Proposition 5 (Soundness). Let φ be a closed formula. If the sequent ⊢ φ has

a proof π, then |= φ.

Proof. By induction on the structure of the proof π.

– If the last rule of π is atom-right, then the proved sequent has the form
⊢ P (s1, ..., sn), hence |= P (s1, ..., sn).

– If the last rule of π is ¬-right, then the proved sequent has the form ⊢
¬P (s1, ..., sn), hence |= ¬P (s1, ..., sn).

– If the last rule of π is ⊤-right, the proved sequent has the form ⊢ ⊤ and
|= ⊤.

– If the last rule of π is ∧-right, then the proved sequent has the form ⊢ φ1∧φ2.
By induction hypothesis |= φ1 and |= φ2, hence |= φ1 ∧ φ2.

– If the last rule of π is ∨-right, then the proved sequent has the form ⊢ φ1∨φ2.
By induction hypothesis |= φ1 or |= φ2, hence |= φ1 ∨ φ2.

– If the last rule of π is AX-right, then the proved sequent has the form
⊢ AXx(φ1)(s). By induction hypothesis, for each s′ in Next(s), |= (s′/x)φ1,
hence |= AXx(φ1)(s).

– If the last rule of π is EX-right, then the proved sequent has the form
⊢ EXx(φ1)(s). By induction hypothesis, there exists a state s′ in Next(s),
such that |= (s′/x)φ1, hence |= EXx(φ1)(s).

– If the last rule of π is AF-right, then the proved sequent has the form
⊢ AFx(φ1)(s). We associate a finite tree |π| to the proof π by induction in
the following way.

• If the proof π ends with the first AF-right rule with a subproof ρ of the
sequent ⊢ (s/x)φ1, then the tree contains a single node s.
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• If the proof π ends with the second AF-right rule, with subproofs π1, ...,
πn of the sequents ⊢ AFx(φ1)(s1), ..., ⊢ AFx(φ1)(sn), respectively, then
|π| is the tree s(|π1|, ..., |πn|).

The tree |π| has root s; for each internal node s′, the children of this node
are labeled by the elements of Next(s′); and for each leaf s′ the sequent
⊢ (s′/x)φ1 has a proof smaller than π. By induction hypothesis, for each leaf
s′ of |π|, |= (s′/x)φ1. Hence |= AFx(φ1)(s).

– If the last rule of π is EG-right, then the proved sequent has the form
⊢ EGx(φ1)(s). We associate a finite sequence |π| to the proof π by induction
in the following way.

• If the proof π ends with the EG-merge rule, then the sequence contains
a single element s.

• If the proof π ends with the EG-right rule, with subproofs ρ and π1 of
the sequents ⊢ (s/x)φ1 and Γ,EGx(φ1)(s) ⊢ EGx(φ1)(s

′), respectively,
then |π| is the sequence s|π1|.

The sequence |π| = s0, s1, ..., sn is such that s0 = s; for all i between 0
and n − 1, si −→ si+1; for all i between 0 and n, the sequent ⊢ (si/x)φ1

has a proof smaller than π; and sn is equal to sp for some p between 0
and n − 1. By induction hypothesis, for all i, we have |= (si/x)φ1. Using
Proposition 1, there exists an infinite sequence s′0, s

′

1, ... such that for all i,
we have s′i −→ s′i+1, and |= (s′i/x)φ1. Hence, |= EGx(φ1)(s).

– If the last rule of π is AR-right, then the proved sequent has the form
⊢ ARx,y(φ1, φ2)(s). We associate a finite tree |π| to the proof π by induction
in the following way.

• If the proof π ends with the first AR-right rule with subproofs ρ1 and
ρ2 of the sequents ⊢ (s/x)φ1 and ⊢ (s/y)φ2, respectively, or with the
AR-merge rule, then the tree contains a single node s.

• If the proof π ends with the second AR-right rule, with subproofs ρ, π1,
..., πn of the sequents ⊢ (s/y)φ2, Γ,ARx,y(φ1, φ2)(s) ⊢ ARx,y(φ1, φ2)(s1),
..., Γ,ARx,y(φ1, φ2)(s) ⊢ ARx,y(φ1, φ2)(sn), respectively, then |π| is the
tree s(|π1|, ..., |πn|).

The tree |π| has root s; for each internal node s′, the children of this node
are labeled by the elements of Next(s′); for each node s′ of |π|, the sequent
⊢ (s′/y)φ2 has a proof smaller than π; and for each leaf s′, either the sequent
⊢ (s′/x)φ1 has a proof smaller than π, or s′ is also a a label of a node on the
branch from the root of |π| to this leaf. By induction hypothesis, for each
node s′ of this tree |= (s′/y)φ2 and for each leaf s′, either |= (s′/x)φ1 or
s′ is also a label of a node on the branch from the root of |π| to this leaf.
Using Proposition 2, there exists an infinite tree T ′ labeled by states such
that for each internal node s the successors of s are the elements of Next(s),
for each node s′ of T ′, |= (s′/y)φ2, and for each leaf s′ of T ′, |= (s′/x)φ1.
Thus, |= ARx,y(φ1, φ2)(s).

– If the last rule of π is EU-right, then the proved sequent has the form
⊢ EUx,y(φ1, φ2)(s). We associate a finite sequence |π| to the proof π by
induction in the following way.
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• If the proof π ends with the first EU-right rule with a subproof ρ of the
sequent ⊢ (s/y)φ2, then the sequence contains a single element s.

• If the proof π ends with the second EU-right rule, with subproofs ρ and
π1 of the sequents ⊢ (s/x)φ1 and ⊢ EUx,y(φ1, φ2)(s

′), respectively, then
|π| is the sequence s|π1|.

The sequence |π| = s0, ..., sn is such that s0 = s; for each i between 0 and
n − 1, si −→ si+1; for each i between 0 and n − 1, the sequent ⊢ (si/x)φ1

has a proof smaller than π; and the sequent ⊢ (sn/y)φ2 has a proof smaller
than π. By induction hypothesis, for each i between 0 and n−1, |= (si/x)φ1

and |= (sn/y)φ2. Hence, |= EUx,y(φ1, φ2)(s).
– The last rule cannot be a merge rule.

Proposition 6 (Completeness). Let φ be a closed formula. If |= φ then the

sequent ⊢ φ is provable.

Proof. By induction over the structure of φ.

– If φ = P (s1, ..., sn), then as |= P (s1, ..., sn), the sequent ⊢ P (s1, ..., sn) is
provable with the rule atom-right.

– If φ = ¬P (s1, ..., sn), then as |= ¬P (s1, ..., sn), the sequent ⊢ ¬P (s1, ..., sn)
is provable with the rule ¬-right.

– If φ = ⊤, then ⊢ ⊤ is provable with the rule ⊤-right.
– If φ = ⊥, then it is not the case that |= ⊥.
– If φ = φ1 ∧φ2, then as |= φ1 ∧φ2, |= φ1 and |= φ2. By induction hypothesis,

the sequents ⊢ φ1 and ⊢ φ2 are provable. Thus the sequent ⊢ φ1 ∧ φ2 is
provable with the ∧-right rule.

– If φ = φ1 ∨ φ2, as |= φ1 ∨ φ2, |= φ1 or |= φ2. By induction hypothesis, the
sequent ⊢ φ1 or ⊢ φ2 is provable and the sequent ⊢ φ1 ∨ φ2 is provable with
the ∨-right rule.

– If φ = AXx(φ1)(s), as |= AXx(φ1)(s), for each state s′ in Next(s), we have
|= (s′/x)φ1. By induction hypothesis, for each s′ in Next(s), the sequent
⊢ (s′/x)φ1 is provable. Using these proofs and the AX-right rule, we build
a proof of the sequent ⊢ AXx(φ1)(s).

– If φ = EXx(φ1)(s), as |= EXx(φ1)(s), there exists a state s′ in Next(s)
such that |= (s′/x)φ1. By induction hypothesis, the sequent ⊢ (s′/x)φ1 is
provable. With this proof and the EX-right rule, we build a proof of the
sequent ⊢ EXx(φ1)(s).

– If φ = AFx(φ1)(s), as |= AFx(φ1)(s), there exists a finite tree T such that
T has root s, for each internal node s′, the children of this node are labeled
by the elements of Next(s′), and for each leaf s′, |= (s′/x)φ1. By induction
hypothesis, for every leaf s′, the sequent ⊢ (s′/x)φ1 is provable. Then, to
each subtree T ′ of T , we associate a proof |T ′| of the sequent ⊢ AFx(φ1)(s

′)
where s′ is the root of T ′, by induction, as follows.

• If T ′ contains a single node s′, then the proof |T | is built with the first
AF-right rule from the proof of ⊢ (a/x)φ1 given by the induction hy-
pothesis.
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• If T ′ = s′(T1, ..., Tn), then the proof |T | is built with the second AF-right
rule from the proofs |T1|, ..., |Tn| of the sequents ⊢ AFx(φ1)(s1), ..., ⊢
AFx(φ1)(sn), respectively, where s1, ..., sn are the elements of Next(s′).

This way, the proof |T | is a proof of the sequent ⊢ AFx(φ1)(s).
– If φ = EGx(φ1)(s), as |= EGx(φ1)(s), there exists a path s0, s1, ... such that

s0 = s and for all i, |= (si/x)φ1. By induction hypothesis, all the sequents
⊢ (si/x)φ1 are provable. Using Proposition 3, there exists a finite sequence
T = s0, ..., sn such that for all i, si −→ si+1, the sequent ⊢ (si/x)φ1 is
provable and sn is some sp for p < n. We associate a proof |si, ..., sn| of the
sequent EGx(φ1)(s0), ..., EGx(φ1)(si−1) ⊢ EGx(φ1)(si) to each suffix of T
by induction as follows.
• The proof |sn| is built with the EG-merge rule.
• If i ≤ n − 1, then the proof |si, ..., sn| is built with the EG-right rule
from the proof of ⊢ (si/x)φ1 given by the induction hypothesis and
the proof |si+1, ..., sn| of the sequent EGx(φ1)(s0), ..., EGx(φ1)(si) ⊢
EGx(φ1)(si+1).

This way, the proof |s0, ..., sn| is a proof of the sequent ⊢ EGx(φ1)(s).
– If φ = ARx,y(φ1, φ2)(s), as |= ARx,y(φ1, φ2)(s), there exists an infinite tree

such that the root of this tree is s, for each internal node s′, the children
of this node are labeled by the elements of Next(s′), for each node s′, |=
(s′/y)φ2 and for each leaf s′, |= (s′/x)φ1. By induction hypothesis, for each
node s′ of the tree, the sequent ⊢ (s′/y)φ2 is provable and for each leaf s′

of the tree, the sequent ⊢ (s′/x)φ1 is provable. Using Proposition 4, there
exists a finite tree T such that for each internal node s′ the successors of
s′ are the elements of Next(s′), for each node s′, the sequent ⊢ (s′/y)φ2

is provable, and for each leaf s′, either the sequent ⊢ (s′/x)φ1 is provable
or s′ is also a label of a node on the branch from the root of T to this
leaf. Then, to each subtree T ′ of T , we associate a proof |T ′| of the sequent
ARx,y(φ1, φ2)(s1), ..., ARx,y(φ1, φ2)(sm) ⊢ ARx,y(φ1, φ2)(s

′) where s′ is the
root of T ′ and s1, ..., sm is the sequence of nodes in T from the root of T to
the root of T ′.
• If T ′ contains a single node s′, and the sequent ⊢ (s′/x)φ1 is provable

then the proof |T ′| is built with the first AR-right rule from the proofs
of ⊢ (s′/x)φ1 and ⊢ (s′/y)φ2 given by the induction hypothesis.

• If T ′ contains a single node s′, and s′ is among s1, ..., sm, then the proof
|T ′| is built with the AR-merge rule.

• If T ′ = s′(T1, ..., Tn), then the proof |T ′| is built with the second AR-
right rule from the proofs ⊢ (s′/y)φ2 given by the induction hypothesis
and the proofs |T1|, ..., |Tn| of the sequents

ARx,y(φ1, φ2)(s1), ..., ARx,y(φ1, φ2)(sm), ARx,y(φ1, φ2)(s
′) ⊢ ARx,y(φ1, φ2)(s

′

1)

...

ARx,y(φ1, φ2)(s1), ..., ARx,y(φ1, φ2)(sm), ARx,y(φ1, φ2)(s
′) ⊢ ARx,y(φ1, φ2)(s

′

n)

respectively, where s′1, ..., s
′

n are the elements of Next(s′).
This way, the proof |T | is a proof of the sequent ⊢ ARx,y(φ1, φ2)(s).
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– If φ = EUx,y(φ1, φ2)(s), as |= EUx,y(φ1, φ2)(s), there exists a finite sequence
T = s0, ..., sn such that |= (sn/y)φ2 and for all i between 0 and n − 1,
|= (si/x)φ1. By induction hypothesis, the sequent ⊢ (sn/y)φ2 is provable
and for all i between 0 and n− 1, the sequent ⊢ (si/x)φ1 is provable.

We associate a proof |si, ..., sn| of the sequent ⊢ EUx,y(φ1, φ2)(si) to each
suffix of T by induction as follows.

• The proof |sn| is built with the first EG-right rule from the proof of
⊢ (sn/y)φ2 given by the induction hypothesis.

• If i ≤ n− 1, then the proof |si, ..., sn| is built with the second EG-right
rule from the proof of ⊢ (si/x)φ1 given by the induction hypothesis and
the proof |si+1, ..., sn| of the sequent ⊢ EUx,y(φ1, φ2)(si+1).

This way, the proof |s0, ..., sn| is a proof of the sequent ⊢ EUx,y(φ1, φ2)(s).

5 Decidability

As they have a proof system, the logics CTL and SCTL are semi-decidable. As
they are moreover complete, they are also is decidable and a simple enumeration
always finds a proof of φ or of φ⊥.

But a more efficient algorithm is to search for a proof in the sequent calculus
depicted in Figure 1: the premises of a rule always have a number of symbols
that is smaller than or equal to the size of the conclusion, thus the search space
for a formula is finite and a bottom-up search, avoiding redundancies, always
terminate.

6 Conclusion and Future Work

We have shown that a natural notion of proof can be defined for CTL relative to
a given finite model. This logic is sound, complete, and decidable. Searching for
a proof bottom-up mimics an explicit model-checking algorithm, although some
choices can be delayed by the introduction of a variable at existential nodes.
Further investigations include the use of such a logic in automated theorem
proving.

Also this work in only a first step in the direction of bridging the gap between
proof-checking and model-checking. More proof-systems are needed for instance
for infinite models and to analyze symbolic model-checking.
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