
HAL Id: hal-00922285
https://inria.hal.science/hal-00922285

Submitted on 25 Dec 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Alignment infrastructure for ontology mediation and
other applications

Jérôme Euzenat

To cite this version:
Jérôme Euzenat. Alignment infrastructure for ontology mediation and other applications. Proc.
1st ICSOC international workshop on Mediation in semantic web services, Dec 2005, Amsterdam,
Netherlands. pp.81-95. �hal-00922285�

https://inria.hal.science/hal-00922285
https://hal.archives-ouvertes.fr


Alignment infrastructure for ontology mediation and

other applications

Jérôme Euzenat

INRIA Rhône-Alpes, Montbonnot, France,

Jerome.Euzenat@inrialpes.fr

Abstract. Web services are not the only application requiring ontology matching

and mediation. Agent communication, peer-to-peer systems, etc. also need to find

relationships between ontologies. However, they do not necessarily require the

same kind of mediation as web services. In order to maximise the utility of the

semantic web infrastructure, it seems reasonable to share the mediation services

among these applications. To that extent we propose an infrastructure based on

the reified notion of alignments and show how it can be used in these various

cases.

1 Introduction

Like the web, the semantic web will have to be distributed and heterogeneous. Its main

problem is the integration of the resources that compose it. For contributing solving this

problem, data is expressed in the framework of ontologies. However, ontologies them-

selves can be heterogeneous and some work has to be done to achieve interoperability.

Web services and semantic web services suffer from the same problems. There is

no reason to think that the resources required, provided and consumed by services are

described in the same ontology by services. Requiring this would be a threat to inno-

vation in the domain. In consequence, before comparing or composing services, it is

necessary to find correspondences between the heterogeneous ontologies that are used

for describing them.

Semantic interoperability can be grounded on ontology reconciliation: finding rela-

tionships between concepts belonging to different ontologies.

We call this process “ontology matching”. The ontology matching problem may be

described in one sentence: given two ontologies each describing a set of discrete entities

(which can be classes, properties, rules, predicates, or even formulas), find the corre-

spondences (e.g., equivalence or subsumption) holding between these entities. This set

of correspondences is called an alignment. Since the terminology is not shared between

everyone, here are the definitions of the various terms used in this paper:

matching is the task of comparing two ontologies and finding the relationships be-

tween them;

alignment is the result of the matching task: it is a set of correspondences;

correspondence the relation holding (or supposed to hold according to a particular

matching algorithm or individual) between two entities of different ontologies.

These entities can be as different as classes, individuals, properties or formulas.

Some authors use the term “mapping” or “mapping rule” that will not be used here.

Page 81

© 2005 for the individual papers by the papers' authors. Copying permitted for  
private and scientific purposes. Re-publication of material in this volume requires  
permission by the copyright owners.



2 Jérôme Euzenat

transformation a program that transforms an ontology from one ontology expression

language to another;

translation a program that transforms formulas with regard to some ontology into for-

mulas with regard to another ontology (translation can be implemented by a set of

translation rules, an XSLT stylesheet or a more classical program).

bridge axioms are formulas in an ontology language that expresses the relations as

assertions on the related entities. They are used when merging ontologies.

mediator in web services a mediator is a translation of an information stream, in query

application it is a dual pair of translations that transforms the query from one on-

tology to another and that translate the answer back.

This has been identified in some frameworks as ontology mediation [4]. Ontology

mediation consists of taking advantage of the relations between ontologies for compos-

ing services. The semantic web service concept depends on the availability of mediators

anywhere and anytime.

So it seems that the solution is in sharing these alignments. We pretend that semantic

web services should benefit from a wider infrastructure than ontology mediation tools

built for semantic web services only. There are several reasons for this:

Each application can benefit from more algorithms Many different applications have

needs similar to those of web services. It is thus appropriate to share the solutions to

these problems. This is especially true as alignments are quite difficult to provide.

Each algorithm can be used in more applications Alignments can be used for dif-

ferent purposes and must be expressed in a more general way than web service

mediators so that they could be used in other contexts.

Each individual alignment can be reused by different applications There is no magic

algorithm for quickly providing a useful alignment. Once high quality alignments

have been established – either automatically or manually –, it is very important to

be able to store, share and reuse them.

We present in the next section various contexts in which aligning ontologies are

necessary (§2) and what are the needs of these applications (§3). We then describe an

alignment infrastructure for the semantic web (§4) that can be used, in particular, for

ontology mediation in semantic web services.

2 Ontology heterogeneity problems on the semantic web

In this section we introduce a number of examples of semantic heterogeneity on the

semantic web and the benefit they can have from some alignment services. This section

can be skipped by those already convinced of the ubiquity of this problem and that

alignments can be applied to solve it.

2.1 Editing

The first place where ontology heterogeneity can be found is while designing an appli-

cation. If it makes heterogeneous resources interoperate, finding the correspondences

Page 82



Alignment infrastructure for ontology mediation 3

between ontologies in order to include some data transformation in the applications is

an option. In this simple case, the application developer can find the correspondences

by hand and design the corresponding transformations.

Some tools provide support for finding the correspondences, like Protégé through

the Prompt suite of tools [15]. This is a first step towards the integration of mediators.

However, if the alignments between widely accepted ontologies are required, there are

chances that they will have to be found over and over again. An infrastructure capable

of storing the alignments and/or transformations and of providing them on demand to

other users would be useful.

Newer ontology development environments whose goal is to take into account, from

the beginning, networked ontologies take this step. These systems provide together with

the ontologies, the mediators for having their data interoperating, both ontologies and

mediators being distributed on the web.

This first kind of application is simple because it is static: ontologies are encoun-

tered at design time and mediators can be built at that moment. However, in an evolving

world, it is better to design adaptive applications that can dynamically take advantage

of non expected resources and ontologies.

2.2 Semantic web services

Web services have clearly been designed for being independent and replaceable. So,

web service processors are open to incorporate new services in their workflow. For that

purpose, they must be able to compare the description of these services (in order to

know if they can be used and for what) and to route the knowledge they process (in

order to compose different services together).

However, in case of semantic web services, which can be described with regard to

different ontologies, imposing a central common ontology does not seem realistic and

would freeze the possibility of such services. So ontologies used in descriptions must be

matched and mediators must be able to translate the output of one service in a suitable

input for another service [4]. This task can be carried out by hand or by a programme,

online or off-line.

It is thus necessary to generate and store these mediators. Although this can be done

within some static web service workflows, dynamic composition of services requires

a more open infrastructure in which the mediator is defined and involved at run time.

We think that it is preferable to be able to take advantage of what can be provided by

the environment. For that purpose, the environment must store this mediator or some

independent representation from which a mediator can be generated on demand.

2.3 Meaning negotiation in multi agent systems

Agents communicate by exchanging messages. The content of these messages is ex-

pressed in some language, very often with regard to some ontology accessible to the

agent. The FIPA Agent Communication Language [10, 9] makes provision for declar-

ing within messages, the ontology in which their content is expressed.

In a society of independently developed agents, it may happen that agents using

different ontologies have to communicate. Several proposals have been made to address

Page 83



4 Jérôme Euzenat

this situation [1, 17, 16] and we recently proposed ours [8]. Their goal is to assess the

correspondences between the terms of the ontologies. However, these correspondences,

once established (through negotiation or other means), are not stored and cannot be

used in further dialogues or by other similar agents.

In order to share the benefits of the agreed alignments, it is useful to have an infras-

tructure able to find and deliver these alignments. To avoid having all agents embed-

ding heavy matching methods, it is more convenient to have agents and services able to

share stored alignments and matching capabilities. Moreover, having a specific repre-

sentation of alignments enables agents to negotiate them through argumentation before

using them [8].

2.4 Matching contexts in ambient computing

In ambient computing, applications take advantage of the environment for providing

services to users. This environment changes, e.g., with regard to the user location, and

applications must always keep track of the changing environment involving new de-

vices and sensors. By doing so, they will provide context aware solutions. If one wants

to design flexible and smart ambient computing applications, it is necessary to take ad-

vantage of ontologies of these various devices, sensors and their capabilities [5]. Like in

web service descriptions, these ontologies will provide description of the devices (even

abstract devices like a temperature service) and the way to interact with them.

Again, it is expected that device providers will develop different ontologies adapted

to their products or will extend some standard ontologies. Moreover, since applications

evolve in ever changing environments in which devices fail and new ones are added,

there is no way to freeze once and for all the considered ontologies.

In order to properly operate ambient computing environments, applications have

to be expressed in terms of generic features that are matched against the actual envi-

ronment. This matching process can take advantage of ontology matching. Because the

same devices will be met by similar applications, providing a service for reconciling the

various ontologies and storing the result will help these application to share established

alignments.

2.5 Peer to peer mediation

Peer-to-peer systems, when used for sharing discrete resources (files containing images,

music, texts, etc.), are organised independently by each peer. Currently, their descrip-

tions correspond to a hierarchy in which the files are stored. However, improving the

search on these systems requires a finer description of items. Anyone wanting to share

their pictures with their family wants to index them by the name of depicted people, the

place where it is, the sights in the pictures, etc. This tagging scheme will benefit from

using some ontological description (for retrieving the pictures of “one of your daughters

on a horse” by opposition to “Jenny on Tornado”).

Individuals have no or little reasons to commit to the same ontology (like they do

not do in current peer-to-peer systems) and they cannot be prevented from modifying

and refining their current lightweight ontologies [3].

Page 84



Alignment infrastructure for ontology mediation 5

So the use of peer-to-peer systems consists of querying for information and re-

sources to a network of peers, which are all described in autonomous ontologies; in this

situation the queries (and sometimes the answers) must be translated from peer to peer.

This is up to the peer-to-peer systems (with the help of their users) to find the cor-

respondences between ontologies that enable answering queries. This need was explicit

in projects like Edutella [14].

For that purpose, it is useful to be able to propose similar ontologies to users if

they feel like adopting some standard ontologies. It is also useful to provide them with

alignments when they want to issue some query towards other peers and to keep track

of these alignments in order not to bother users again and again. These alignments can

be used in the reverse direction and shared among the peers.

2.6 Emergent semantics between users

In most of the mentioned applications, nodes have their own ontologies and share align-

ments between these ontologies. Because individuals and organizations can have differ-

ent needs and different standpoints, it may be uncomfortable to commit to a single

common ontology. However, the social action of constantly aligning ontologies can be

the occasion to confront and revise these ontologies. So, in an even more dynamic way,

users may want to establish more consensual ontologies from this confrontation [18].

There are several ways in which this can be helped by some alignment infrastruc-

ture:

– Producing alignments contributes to solve the gap between ontologies. The align-

ments are a basis from which some discussion can start (like agent protocol for

arguing about correspondences, see § 2.3);

– Alignment algorithms are very often able to compute a distance between ontolo-

gies. This is useful when one wants to find the closest ontology.

– By building some network of ontologies and alignments in which the alignments

measure the distance between ontologies, it is possible to find out the proximity be-

tween people and agents with the help of social network analysis techniques. They

will provide indication that can help customising the query process, the matchmak-

ing process between people and even the consensus building.

These results will help users and community consolidating their ontologies by first

achieving consensus among the more similar representations. This can also be used for

selecting the most central ontology (in social network analysis terms).

2.7 Safe composition infrastructure

Last, but not least, we proposed in [6] a transformation infrastructure for the semantic

web. Its goal is to provide transformations between heterogeneous ontologies that guar-

antee the properties satisfied by the transformations. These properties can be semantic

properties like model or consequence preservation, or the preservation of some types

of formulas or that only some types of entities are aligned. An organisation can also

certify the alignment.

Page 85



6 Jérôme Euzenat

In a web context, transformations, their properties and their proofs can be made

available on the network. Knowing the semantics of languages and the proofs of the

transformation enables the application of the “proof-carrying code” idea [13] to knowl-

edge exchange. Consequently, the user can be sure that the result of the transformation

is the transcription of the initial knowledge with the desired properties.

In applications like semantic web services, it is critical, before launching some com-

plex workflow to know that it satisfies some properties. In particular, it is important to

assess the level of correctness of mediators (i.e., that an entity is not translated into an-

other entity that will lead the web service to perform inadequately): the correspondences

between ontologies cannot be assumed correct. Proving them would be a must.

3 Towards a common solution

It is clear, from the above examples, that matching ontologies is a major issue on the

semantic web. It is not circumscribed to semantic web services, but applies to any ap-

plication that communicates through ontologies.

3.1 Global needs. . .

As heterogeneous ontologies are a global problem of the semantic web, this calls for an

infrastructure able to help these different applications to deal with it. In such a way, the

effort of interoperating ontologies does not need to be solved in each kind of use made

of this semantic web.

Moreover, given the difficulty of the matching tasks, there are a few algorithms

available and when good alignments are available, it would be very useful to share them

among applications. Hence a global solution requires sharing among various instances

of applications and not only within each kind of application (web services, agents, etc.).

Given that the task (finding correspondences between ontologies) is very basically

the same, it seems possible to use the same tools for that purpose.

3.2 . . . but heterogeneous needs

However, if all these applications require ontology matching, they require it for different

purposes:

– edition requires the ability to transform some ontology in order to integrate it or to

generate a set of bridge axioms that will help identify corresponding concepts (the

transformations act at the ontological level);

– agent communication requires translators for messages sent from one agent to an-

other (they act at the data level); similarly, semantic web services require one-way

data translations for composing services;

– peer-to-peer systems and more generally query systems require bidirectional medi-

ators able to translate queries (ontological level) and translate back answers (data

level).

Page 86



Alignment infrastructure for ontology mediation 7

So, sharing between the applications mentioned here is difficult at the level of the par-

ticular reconciliation services they require. For these reasons, it is certainly more con-

venient to share the matching results themselves (i.e., the alignments) and to ask the

infrastructure to be able to generate the appropriate mediators.

3.3 Requirements

This infrastructure should be able to store and retrieve alignments as well as providing

them on the fly. We call it an infrastructure because it will be shared by the applica-

tions using ontologies on the semantic web. However, it may be seen as a directory or

a service by web services, as an agent by agents, as a library in ambient computing

applications, etc.

Services that are necessary in such an infrastructure are:

– The ability to store alignments, whether they are provided by automatic means or

by hand;

– Their proper annotation in order for the clients to evaluate the opportunity to use

one of them or to start from it (this starts with the information about the matching

algorithms, the justifications for correspondences that can be used in agent argu-

mentation, as well as properties of the alignment, see § 2.7);

– The ability to produce alignments on the fly through various algorithms that can be

extended and parameterized;

– The ability to generate knowledge processors such as mediators, transformations,

translators, rules as well as to process these processors if necessary;

– The possibility to find similar ontologies and to contact other such services in order

to ask them for operations that the current service cannot provide by itself.

In addition, it is necessary that services be able to exchange between them the align-

ments they found and select them on various criteria.

4 Architecture proposal for an alignment infrastructure

We argue below that alignments are the necessary structure for supporting this infras-

tructure. We propose an infrastructure made of a network of services that can be invoked

with some particular commands. These services will manipulate alignments through an

embedded implementation of our Alignment API.

4.1 Alignments

[2] tried to provide some strict definition of the alignment structure so as to be able

to use and reuse it in various situations. Given two ontologies O and O′, alignments

are made of a set of correspondences (called mappings when the relation is oriented)

between pairs of (simple or complex) entities 〈e, e′〉 belonging to O and O′ respectively.

A correspondence is described as a quadruple:

〈e, e′, R, n〉

where:

Page 87



8 Jérôme Euzenat

– e and e′ are the entities (e.g., formulas, terms, classes, individuals) between which

a relation is asserted by the correspondence;

– R is the relation holding between e and e′, asserted by the correspondence. For in-

stance, this relation can be a simple set-theoretic relation (applied to entities seen as

sets or their interpretation seen as sets), a fuzzy relation, a probabilistic distribution

over a complete set of relations, a similarity measure, etc.

– n is a degree of confidence in that correspondence (this degree does not refer to the

relation R, it is rather a measure of the trust in the fact that the correspondence is

appropriate – “I trust 70% the fact that the correspondence is correct/reliable/. . . ” –

and can be compared with the certainty measures provided by meteorological agen-

cies). The trust degree can be computed in many ways, including users’ feedback

or log analysis.

So, the simplest kind of correspondence (level 0) is:

URI1 = URI2

while a more elaborate one could be:

URI1(x, y, z)⇐
.85 URI2(x, w) ∧ URI3(z, concat(y, w))

The first one express the equivalence (=) of what is denoted by two URIs (with full

confidence), while the second one is a Horn-clause expressing that if there exists a

w such that URI2(x,w) and URI3(w, concat(y, z)) is true in one ontology then

URI1(x, y, z) must be true in the other one (and the confidence is here quantified with

a .85 degree).

As can be observed from these two examples, alignments in themselves are not tied

to a particular language. But in order to use complex alignments like the second one,

systems must be able to understand the language in which formulas and relations are

expressed. This is supported through the definition of a particular subtype of alignment

(the first example resorting to the level zero of alignment).

We claim that alignments are more intelligible than transformations: they only ex-

press correspondences between ontology entities, not the way they must be used. This

can be the basis for studying their properties (moreover, these properties can also be

inferred from the methods used for generating alignments).

In order to help developing applications based on alignments, we designed the

Alignment API [7]. It has been developed in the aim of manipulating a standard align-

ment format for sharing among matching systems. But it provided the features required

for sharing them more widely. The API is a JAVA description of tools for accessing

alignments in the format presented above.

The Alignment API as been implemented on top of the OWL API (other implemen-

tations could be based on totally different languages). This implementation offers the

following services:

– Storing, finding, and sharing alignments;

– Piping alignments algorithms (for improving an existing alignment);

– Manipulating (trimming and hardening) and combining (merging, composing) align-

ments;

Page 88



Alignment infrastructure for ontology mediation 9

– Generating “mediators” (transformations, axioms, rules in format such as XSLT,

SWRL, OWL, C-OWL, WSML);

– Comparing alignments (like computing precision and recall or a symmetric distance

with regard to a particular reference alignment).

The API also provides the ability to compose matching algorithms and manipulating

alignments through programming. Part of the interface of the API is presented in Ta-

ble 1. The API can be used for producing transformations, rules or bridge axioms inde-

pendently from the algorithm that produced the alignment. Since its definition, several

matching systems have been developed within this API (OLA, OMAP) and more of

them are able to generate its format (FOAM, Prompt, Falcon, etc.).

4.2 Alignment services

Our architecture is based on Alignment services. These services are able to perform a

number of alignment tasks and offer them to the other agents or services. These tasks

are summarised in Table 1.

Service Syntax

Finding a similar ontology O′ ⇐ Match(O, T )
Align two ontologies A′ ⇐ Align(O, O′, A, P )

Thresholding A′ ⇐ Threshold(A, V )
Generating code P ⇐ Render(A, language)

Translating a message m′ ⇐ Translate(m, A)
Storing alignment n ⇐ Store(A, O, O′)

Suppressing alignment Delete(n)
Finding (stored) alignments {n} ⇐ Find(O, O′)

Retrieving alignment: 〈O, O′, A〉 ⇐ Retrieve(n)

Table 1. Services provided by the alignment service and corresponding API primitives (O denotes

an ontology, A an alignment, P parameters, n an index denoting an alignment, P a programme

realising the alignment and T and m some expressions).

Most of these services correspond to what is provided by any implementation of the

Alignment API. They are exposed to clients through various communication channels

(FIPA ACL, SOAP messages) so that all clients can effectively share the infrastructure.

The alignments are indexed by ontology pairs and by surrogates allowing fast re-

trieving. To one surrogate corresponds only one alignment while for an ontology pair,

there can be several such alignments. There is no constraint that the alignments are

computed online or off-line (i.e., they are stored in the alignment store) or that they are

processed by hand or automatically. This kind of information can however be stored

together with the alignment in order for the client to be able to discriminate among

them.

The main principle of the Alignment API is that it can always be extended. In partic-

ular, it is possible to add new matching algorithms and mediator generators that will be

Page 89



10 Jérôme Euzenat

accessible through the API. They will also be accessible through the alignment services.

Services can thus be extended to new needs without breaking the infrastructure.

Moreover, the kind of annotations put on alignments is also extensible. So far, align-

ments contain information about:

– the kind of alignment it is (1:1 or n:m for instance);

– the algorithm that provided it (or if it has been provided by hand);

– the language level used in the alignment (level 0 for the first example, level 2Horn

for the second one);

– the confidence in each correspondence.

Other valuable information that may be added to the alignment format are:

– the parameters passed to the generating algorithm;

– the properties satisfied by the correspondences (and their proof if necessary);

– the certificate from a issuing source;

– the limitations of the use of the alignment;

– the arguments in favour or against a correspondence [8].

4.3 End-user support

The main purpose of the alignment infrastructure is to be invoked by applications that

use the alignments for themselves and generally hide the alignments away from users.

However, in some cases, it is necessary that users have access to these alignments

and the alignment services. This is particularly the case in the editor application in

which it may be useful to allow users to display and modify the alignments by hand.

More generally, it is useful for any application in which alignments can be computed

and reviewed off-line. Edition facilities must enable to provide high quality reviewed

alignments to the infrastructure.

This is also useful in the emergent semantics application when it involves users,

because inspecting alignments can help providing arguments for reaching consensus.

Again, using alignments by opposition to more operational transformation or me-

diators opens the opportunity to share the same tools all over the infrastructure (which

does not exclude, in addition, to use some more specific editors). It will thus be useful

to provide standard tools for ontology editing that can be shared among these various

applications. The VisOn1 tool developed by University of Montréal is such a tool that

can be used for editing alignments in the Alignment API format. Other tools such as

the WSML Mapping language editor [11] could be adapted.

4.4 Inter-service communication

Alignment services must be found on the semantic web. For that purpose they can be

registered by service directories (e.g., UDDI for web services). Services or other agents

should also be able to subscribe some particular results of interest by these services.

1 http://www.iro.umontreal.ca/˜owlola/visualization.html

Page 90



Alignment infrastructure for ontology mediation 11

These directories are useful for other web services, agents, peers to find the align-

ment services. They are even more useful for alignment services to basically outsource

some of their tasks. In particular, it may happen that:

– they cannot render an alignment in a particular format;

– they cannot process a particular matching method;

– they cannot access a particular ontology;

– a particular alignment is already stored by another service.

In these events, the concerned alignment service will be able to call other alignment

services. This is especially useful when the client is not happy with the alignments

provided by the current service, it is then possible to either deliver alignments provided

by other services or to redirect the client to these services.

Moreover, this opens the door to value-added alignment services which use the re-

sults of other services as a pre-processing for their own treatments or which aggregates

the results of other services in order to deliver a better alignment.

Such an organisation takes full advantage of the goal assigned first to the Align-

ment API, namely, the ability to compose matching algorithms, here under the form of

alignment services.

5 Example

We provide below an example of the use of this alignment infrastructure in the context

of agent communication. All actors are agents which communicate through messages

using a small set of FIPA Agent Communication Language message types. The com-

munication rules obey a precise protocol that has been defined in [8].

The scenario presented here involves four agents: two agents a and b are commu-

nicating but agent a uses ontology O while agent b uses O′. b will call two alignment

services c and d with c being a powerful aligner with a restricted access to b environ-

ment (it cannot access O′) and d having a broader access. Lines beginning with “//”

provide explanations for the dialogue moves.

// Agent a is looking for a book and asks agent b

a−query-ref( :ontology O

:language RDQL

:content "SELECT x WHERE x O:autobiography http://www.bertrandrussell.com"

:reply-with 1 )→ b

// Agent b does not understand ontology O and asks service c to align it with O′

b−request( :content align(O,O′,∅,∅) :reply-with 1 )→ c

// Service c cannot reach ontology O′

b←failure( :in-reply-to 1 :content unreachable(O′) )−c

// Agent b asks d to find a similar ontology

b−request( :content find(O′,m) :reply-with 2 )→ d

O′′ ⇐Match(O′,T )

// Service d found O′′

b←inform( :in-reply-to 2, :content O′′ )−d

Page 91



12 Jérôme Euzenat

// Agent b asks service d to align O′ with O′′

b−request( :content is-align(O′,O′′) :reply-with 3 )→ d

s⇐ Find(O′,O′′,∅,∅)
// Service d had already stored such an alignment and returns it

b←inform( :in-reply-to 3, :content s′ )−d

// Agent b asks service c to align O with O′′

b−request( :content align(O,O′′,∅,∅) :reply-with 4 )→ c

A⇐ Align( O,O′′,∅,∅ )

s⇐ Store( O,O′′, A )

// Service c computes the alignment

b←inform( :in-reply-to 4, :content s )−c

// Agent b asks service c to translate the message with the found alignment

b−request( :content translate( m, s ) :reply-with 5 )→ c

〈O,O′′, A〉 ⇐ Retrieve(s)

m⇐ Translate( m, A )

b←inform( :in-reply-to 5

:content "SELECT x

WHERE x O′:biography http://www.bertrandrussell.com.

x O′:author http://www.bertrandrussell.com.")−c

// Agent b asks service d to translate the result with the O′ to O′′ alignment

b−request( :content translate( m′, s′ ) :reply-with 6 )→ d

〈O′, O′′, A′〉 ⇐ Retrieve(s′)

m′′ ⇐ Translate( m′, A′ )

b←inform( :in-reply-to 6

:content "SELECT x

WHERE x rdf:type O′:biografia.

x dc:subject http://www.bertrandrussell.com.

x dc:creator http://www.bertrandrussell.com.")−d

// The returned query is evaluated by agent b

QueryResult(m′′)⇒ x=http://isbn.org/2-436-4428-1

// which returns the answer to agent a

a←reply-ref( :content "x=http://isbn.org/2-436-4428-1" :in-reply-to 1 )−b

// a is satisfied and wants to know the publisher of the book

a−request-ref( :content "http://isbn.org/2-436-4428-1 O:publisher x" :reply-with 2)→ b

// b had not recorded the alignment surrogate and asks it to c

b−request( :content align(O,O”,∅,∅) :reply-with 7)→ c

// which only have to retrieve it in its store

s⇐ Find(O,O”,∅,∅)
b←inform( :content s :in-reply-to 7 )−c

// b asks c for a program in order to translate the messages by itself

b−request( :content render( s, C-OWL ) :reply-with 8)→ c

// but c cannot deliver this format

b←failure( :content unsupported(C-OWL) :in-reply-to 8)−c

// so b ask for another one

b−request( :content render( s, XSLT ) :reply-with 9)→ c

Page 92



Alignment infrastructure for ontology mediation 13

〈O,O′′, A〉 ⇐ Retrieve(s)

P ⇐ Render( A, XSLT )

b←inform( :content P :language XSLT :in-reply-to 9)−c

// which is delivered and used by b to translate the message

m′ ⇐ P (m)
// The translation goes once again through d

b−request( :content translate( m′, s′ ) :reply-with 10 )→ d

〈O′, O′′, A′〉 ⇐ Retrieve(s′)

m′′ ⇐ Translate( m′, A′ )

b←inform( :in-reply-to 10

:content "SELECT x

WHERE http://isbn.org/2-436-4428-1 dc:publisher x")−d

// and the query is processed by b

QueryResult(m′′)⇒ "x=http://www.example.com/#Routledge"

// which returns the result

a←reply-ref( :content "x=http://www.example.com/#Routledge" :in-reply-to 2 )−b

We have not described the use of these services for semantic web services. However,

any application for composing web services may use exactly the same services for

generating mediators.

6 Related work

Most of the work on general organisation of alignments is tied to some kind of appli-

cation (e.g., C-OWL for peer-to-peer applications, WSMX for web services, Edutella

for emerging semantics). The work most similar to the one presented here is that on

MAFRA [12]. MAFRA proposes an architecture for dealing with “semantic bridges”

that offers many functions such as creation and storing of such bridges. The dimension

that distinguishes both works is the insistence of MAFRA to have a transformation as-

sociated with bridges. Although the transformations can take very different forms, this

prevents the use of the same alignment for different purposes: the very benefit of the

proposed architecture.

7 Conclusion

In the semantic web, ontologies are used by different kinds of applications and they

all suffer from ontology heterogeneity. Henceforth, we have considered the problem

of generating mediators for semantic web services as a global problem for the seman-

tic web rather than a specific web service problem. Doing so enables semantic web

applications to share ontology alignments instead of developing concurrent pieces of

infrastructure.

A common infrastructure have to rely on alignments instead of mediators because

alignments can be used by any application. We proposed an alignment infrastructure

Page 93



14 Jérôme Euzenat

based on our Alignment API. The API already implements most of the functions re-

quired for the alignment service. It has been enhanced by an agent interaction protocol

that enables communicating with it and we are developing a web service interface. The

API has been used by various groups, in particular for plugging in their matching algo-

rithms. This API is extensible and can deliver alignments for many different languages.

It is too early to consider the scalability of this approach. On the one hand, aligning

on the fly and using many different ontologies seems a threat to scalability. On the other

hand this may be regarded as a lightweight process with regard to the cost of some

heavy standardisation process. We think that the factor that will help this alignment

infrastructure to scale is its flexible nature.

Of course, the proposed architecture, beside the alignment format and the inter-

action primitives, is open. This means that any other implementation than the current

alignment API can be provided as one service and interact with the other ones.

The same service can be shared by all in a natural way (for agent, the alignment

service is another agent, for services, it is a web service). The fact that the same service

is used throughout the semantic web multiplies the chances that required alignments

are already available and prevents the waste of resources.

We hope to have been convincing that such an infrastructure is worthwhile and

would contribute to the growth of the semantic web and semantic web services.

Acknowledgements: This work has been partly supported by the European network

of excellence Knowledge Web (IST-2004-507482).

References

1. Sidney Bailin and Walt Truszkowski. Ontology negotiation: How agents can really get to

know each other, 2002.

2. Paolo Bouquet, Jérôme Euzenat, Enrico Franconi, Luciano Serafini, Giorgos Stamou, and

Sergio Tessaris. Specification of a common framework for characterizing alignment. deliv-

erable D2.2.1, Knowledge web NoE, 2004.

3. Paolo Bouquet, Luciano Serafini, and Stefano Zanobini. Semantic coordination: A new ap-

proach and an application. In Dieter Fensel, Katia Sycara, and John Mylopoulos, editors,

Proceedings of the 2nd International Semantic Web Conference (ISWC), volume 2870 of

Lecture Notes in Computer Science, pages 130–145, Sanibel Island (FL, USA), October

2003. Springer Verlag.

4. Chris Bussler, Dieter Fensel, and Alexander Mädche. A conceptual architecture for semantic

web enabled web services. SIGMOD Records, 31(4):24–29, 2002.

5. Joelle Coutaz, James Crowley, Simon Dobson, and David Garlan. Context is key. Commu-

nications of the ACM, 48(3):49–53, 2005.

6. Jérôme Euzenat. An infrastructure for formally ensuring interoperability in a heterogeneous

semantic web. In Isabel Cruz, Stefan Decker, Jérôme Euzenat, and Deborah McGuinness,

editors, The emerging semantic web, pages 245–260. IOS press, Amsterdam (NL), 2002.

7. Jérôme Euzenat. An API for ontology alignment. In Proc. 3rd international semantic web

conference, Hiroshima (JP), pages 698–712, 2004.

8. Jérôme Euzenat, Loredana Laera, Valentina Tamma, and Alexandre Viollet. Negotia-

tion/argumentation techniques among agents complying to different ontologies. deliverable

D2.3.7, Knowledge web NoE, 2005.

Page 94



Alignment infrastructure for ontology mediation 15

9. FIPA ACL communicative act library specification. Technical report, FIPA, 2002.

http://www.fipa.org/specs/fipa00037.

10. FIPA ACL message structure specification. Technical report, FIPA, 2002.

http://www.fipa.org/specs/fipa00061.

11. Armin Haller, Emilia Cimpian, Adrian Mocan, Eyal Oren, and Chris Bussler. WSMX –

a semantic service-oriented architecture. In Proceedings International Conference on Web

Services (ICWS 2005), Orlando (FL US), 2005.

12. Alexander Mädche, Boris Motik, Nuno Silva, and Raphael Volz. MAFRA – a mapping

framework for distributed ontologies. In Proceedings of the International Conference on

Knowledge Engineering and Knowledge Management (EKAW), pages 235–250, 2002.

13. George Necula and Peter Lee. Efficient representation and validation of proofs. In Pro-

ceedings of the 13th symposium on "logic in computer science", Indianapolis (IN US), pages

93–104, 1998.

14. Wolfgang Nejdl, Boris Wolf, Changtao Qu, Stefan Decker, Michael Sintek, Ambjörn Naeve,

Mikael Nilsson, Matthias Palmér, and Tore Risch. EDUTELLA: A P2P networking infras-

tructure based on RDF. In Proceedings WWW Conference, Hawaii (HA US), 2002.

15. Natasha Noy and Mark Musen. PROMPT: Algorithm and tool for automated ontology

merging and alignment. In Proc. 17th AAAI, Austin (TX US), pages 450–455, 2000.

http://citeseer.nj.nec.com/528663.html.

16. Jun Wang and Les Gasser. Mutual online ontology alignment. In AAMAS OAS workshop,

2002.

17. F. Wiesman, N. Roos, and P. Vogt. Automatic ontology mapping for agent communication.

Research memorandum, MERIT-Infonomics, Maastricht (NL), 2001.

18. Anna Zhdanova, Reto Krummenacher, Jan Henke, and Dieter Fensel. Community-driven on-

tology management: DERI case study. In Proceedings of the IEEE/WIC/ACM International

Conference on Web Intelligence, Compiegne (FR), 2005.

Page 95


