Reliability and performance optimization of pipelined real-time systems - Inria - Institut national de recherche en sciences et technologies du numérique Accéder directement au contenu
Article Dans Une Revue Journal of Parallel and Distributed Computing Année : 2013

Reliability and performance optimization of pipelined real-time systems

Résumé

We consider pipelined real-time systems that consist of a chain of tasks executing on a distributed platform. The processing of the tasks is pipelined: each processor executes only one interval of consecutive tasks. We are interested in minimizing both the input-output latency and the period of application mapping. For dependability reasons, we are also interested in maximizing the reliability of the system. We therefore assign several processors to each interval of tasks, so as to increase the reliability of the system. Both processors and communication links are unreliable and subject to transient failures. We assume that the arrival of the failures follows a constant parameter Poisson law, and that the failures are statistically independent events. We study several variants of this multiprocessor mapping problem, with several hypotheses on the target platform (homogeneous/heterogeneous speeds and/or failure rates). We provide NP-hardness complexity results, and optimal mapping algorithms for polynomial problem instances. Efficient heuristics are presented to solve the general case, and experimental results are provided.
Fichier principal
Vignette du fichier
jpdc.pdf (437.37 Ko) Télécharger le fichier
Origine : Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00926123 , version 1 (09-01-2014)

Identifiants

Citer

Anne Benoit, Fanny Dufossé, Alain Girault, Yves Robert. Reliability and performance optimization of pipelined real-time systems. Journal of Parallel and Distributed Computing, 2013, 73 (6), pp.851-865. ⟨10.1016/j.jpdc.2013.02.009⟩. ⟨hal-00926123⟩
182 Consultations
274 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More