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Non linear modelling of scattered multivariate data
and its application to shape change

B. Chalmond and S. Girard

Abstract

We are given a set of points in a space of high dimension. For instance, this set may
represent many visual appearances of an object, a face or a hand. We address the problem of
approximating this set by a manifold in order to have a compact representation of the object
appearance. When the scattering of this set is approximately an ellipsoid, then the problem
has a well-known solution given by Principal Components Analysis (PCA). However, in
some situations like object displacement learning or face learning this linear technique may
be ill-adapted and nonlinear approximation has to be introduced. The method we propose
can be seen as a Non Linear PCA (NLPCA), the main difficulty being that the data are not
ordered. We propose an index which favours the choice of axes preserving the neighborhood
of the nearest neighbours. These axes determine an order for visiting all the points when
smoothing. Finally a new criterion, called ”generalization error”, is introduced to determine
the smoothing rate, that is the knot number of the spline fitting. Experimental results
conclude this paper: the method is tested on artificial data and on two data bases used in
visual learning.
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1 Introduction

In many situations in pattern recognition, machine intelligence, or artificial vision, it is necessary
to approximate multivariate data by a parametric model in order to be able to handle more easily
the information contained in these data. In this paper, the data set X = {xj , 1 ≤ j ≤ N} belongs

to a high dimensional space : xj = (x
(i)
j )1≤i≤n ∈ IRn. The problem is then to compress this data

set to a low-dimensional manifold. A technique now commonly used for dimensionality reduction
in computer vision is Principal Components Analysis (PCA) which yields a linear representation.
Since this technique summarizes the data by the mean and the standard deviation (the covariance
matrix), the linear representation is accurate only if the data distribution is gaussian, i.e., if the
cloud X is a n-D ellipsoid (Fig. 2(a)). Although this linear model is effective in a very broad
range of applications, there are however situations where the PCA breaks down. It happens
when means and standard deviations do not accuratly reflect the data distribution, in other
words, when the cloud is not an ellipsoid (Fig. 2(c)). This indicates the need for nonlinear
representations.

In this paper a novel technique for designing and fitting nonlinear models is proposed.
From the geometric point of view, we try to approximate X by a d-dimensional manifold

with d < n [33]. This manifold will be given by an implicit equation G(θ, x) = 0, where θ is
a vector of parameters and G(θ, .) is a continuously differentiable function from IRn to IRn. A
model is a particular analytical expression of G, the most simple being the linear representation
as it is given by Principal Components Analysis. Our problem, in a nutshell, is a smoothing
problem. However in our case, it is not a classical smoothing problem since the points xj are

not ordered. Fitting a manifold is a much more difficult problem than function fitting. A second
difficulty adds to the former. The number of points xj in the data set is usually moderate with
respect to the dimension n. This means that the space IRn is nearly empty, what it is known as
the ”curse of dimensionality” [25].

1.1 Application domains

Let us illustrate our purpose by examples in visual learning, although our technique is not
limited to this domain. The data set X is composed of N instances of an object appearance.
Here, ”object” is a generic term which designates for example a rigid or flexible manufactured
object, a face, a hand,... [35, 15, 19, 26, 29]. It is convenient to see X as a set of occurrences
of a random vector X in IRn. Such an occurrence can be a curve [16], an image [26], or
a feature vector as Gabor coefficients for example [32]. An approach for the visual learning
problem consists in fitting a compact model of the object’s appearance to X . The aim of this
appearance-based representation is to capture the flexibility or the changes of the object in a
compact manner such that every occurrence of X can be approximated by a point of the manifold
defined by the model. Such a representation has wide applications: recognition and pose of 3D
objects [35], face recognition [26, 22, 45], face tracking [32], gesture recognition, [37], image
retrieval [46]. In visual learning, PCA is widely used for dimensionality reduction to enable
efficient learning. However, PCA use is limited since its linear representation is inappropriate
for modelling nonlinear effects such as bending or rotation of shape. This drawback has been
highlighted by Murase and Nayar [35]. These authors have used the principal components of
many views of a single rigid object to visualise the low dimensional manifold describing changes
due to rotation and illumination conditions. The object’s pose is then determined by the position
of its projection on this manifold.

Let us say a few words about the application which has motivated our research. In [15],
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the authors address the problem of identifying the radiographic projection of an object (its ap-
pearance) from incomplete data extracted from a radiographic image. They assume that the
unknow appearance is a particular instance of the projection of a flexible object. Their approach
consists in learning a deformation model and its probability distribution able to represent and
to simulate a great variety of appearances. This modelization is achieved using a training set
of complete appearances. Then, given the incomplete data, the identification task consists in
estimating the unknown appearance using the previous model whose probability distribution
plays the role of a prior distribution in a Bayesian framework.

1.2 PCA and its limitations

Let us recall some important points of the PCA method [31, 21] which will be usefull for the
forthcoming nonlinear model. The PCA model is linear. When the data are centered, its
expression is

G(a, x)
def
= x − F (a, x) (1)

with F (a, x) =
d∑

k=1

ak (aT
k x) ,

where ak ∈ IRn are unit orthogonal vectors which span the principal axes. Then, G(a, x) = 0
defines a d-dimensional linear subspace in IRn. As the xj are observations of a non-degenerated
random variable, it is clear that they cannot verify the deterministic equation G(a, xj) = 0 all
together : G(a, xj) 6= 0 and we define

rj(d)
def
= G(a, xj) . (2)

For a d-dimensional model, rj(d) is interpreted as the residual approximation error of xj by
F (a, xj). The model (1) is said to be auto-associative since xj is approximated by a function of
{xj}. The model parameters a = (a1, ..., ad) in (1) are estimated by minimizing the empirical

mean square
∑N

j=1 ‖rj(d)‖2. Since these estimations are related to the xj orthogonal projections
on the desired subspace, the rj are the Euclidian distances to the subspace.

Let us consider an artificial data set X composed of translated curves (Fig.1(a)). This set
corresponds to a cloud in IRn located on a 1-dimensional manifold. We can imagine what this
manifold looks like, by projecting X on the first principal plane computed by PCA (Fig.1(d)).
This kind of figure is known in the statistical litterature as ”the horseshoe effect” [31]. We get
a similar phenomenon when X is composed of faces in rotation [32]. On the artificial training
set, the estimated linear model leads to non-realistic curve simulations and does not allow to
reproduce the variations due to a translation (Fig.1(c)). Here, the simulated curves are obtained
by drawing random points on the principal axes. This very simple academic example is only
presented to illustrate our purpose and we must not mistake it for a registration problem [39].
Even for a variation as simple as translation, the linear model given by PCA is ill-adapted. More
complex exemples are showned in Fig.6 and Fig.7. Recently, in the context of visual learning
for object representation, nonlinear problems have arisen several times, but no general solution
has been proposed [6, 35].

1.3 Related work

The reconstruction of n − 1 dimensional manifolds in IRn, like curves in IR2 or surfaces in IR3,
seems at first glance close to our problem. In [24], a numerical algorithm is proposed. Its
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input is an unordered set X ⊂ IR3 near an unknown manifold, and its output is a surface
that approximates the manifold. Reconstruction problems of this kind occur in engineering
applications like representation from range data. This algorithm makes heavy use of the fact
that the data set is ”continuously dense” in some sense, around the unknown manifold. This
situation is not verified in our case. Furthermore, we are firstly interested in manifolds whose
dimension d is much smaller than n, and secondly in representations based on an analytical
model.

The PCA methods for analysing the variations of flexible curves, have grown in the last few
years as a separate research topic called ”Fonctional data analysis” [39]. The basic philosophy
of functional data analysis is that one should think of observed data functions as single entities,
rather than merely a sequence of individual observations. Nevertheless, the results of this
research have not been generalized to flexible surfaces, i.e. to images.

Besides, PCA generalizations have been proposed in order to take into account nonlinear
phenomena. PCA-like auto-associative methods have been studied from the neural networks
point of view with perceptron networks [27], but in the end, these models remain linear. In the
case n = 2, a truly nonlinear approach is proposed in [23]. It consists in searching a curve called
”principal curve” which passes through the middle of the data set. This means that every point
on the curve is the average of the observations projecting onto it. This yields a second approach
to the n− 1 dimensional manifofd reconstruction as introduced above. However, this technique
is mainly dedicated to the dimension n = 2 and is non-parametric. Its extension to a greater
dimension is a difficult task.

A specific technique close to PCA is Multimensional Scaling (MDS) [3, 30, 42]. MDS adresses
the problem of constructing a configuration of N points Y = {yj , 1 ≤ j ≤ N} in IRd satisfying
‖yi − yj‖ ≈ ‖xi − xj‖. This is achieved by minimizing a distorsion index whose expression is for
instance [42]:

IS(Y) =

∑
i<j(‖yi − yj‖ − ‖xi − xj‖)

2

∑
i<j ‖yi − yj‖2

. (3)

In this spirit, MDS technique has been applied to build self-organized neural networks which
give a low-dimensional mapping of the manifod of a non linearly related data set. It yields an
unfolding of the data manifold. We shall come back later to that kind of index.

In the second section of this paper, we define a Non Linear Principal Component Analysis
(NLPCA) limited to one axis (d = 1) for sake of clarity. Our aim is to approximate X by a
n-dimensional curve C. In other words, we want to determine a curve C which estimates an
ideal curve C∗ using the sample X .

From this point of view, we have to deal with a curve reconstruction problem. Curve re-
construction has efficient solutions when the xj are ordered and a parametrization of the curve
is given. So, as for MDS technique, our approach consists in searching a parametrization axis
which yields an approximate ordering of the points xj . It follows that our methods works well
when the curve to reconstruct is, roughly speaking, the graph of a function over an unknown

axis in IRn. In IR2, this approach is less general than the principal curves one. In the third
section, this is extended to several axis (d ≥ 1). Finally, in the fourth section, experimental
results are described.
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Observations

Modele ACP

Modele non-lineaire

Figure 1: (a) Translated curves. (b) Simulation using PCA. (c) Simulation using NLPCA. (d)
Projection on the first PCA plane.
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2 Nonlinear PCA with one axis

2.1 Introduction

Let us gradually introduce our algorithm in an intuitive fashion using Fig.2. In Fig.2(a), X is a
non-isotrope Gaussian cloud and thus PCA is well adapted. Each point xj of X is approximated
by its projection on the principal axis defined by the unit vector a1. This projection is:

F (a1, xj) = a1(a
T
1 xj) .

In Fig.2(b,c,d) the cloud X is no more Gaussian and thus its approximation by projection on
the pincipal axis is inaccurate. In Fig.2(b), we are naturally led to approximate X by a smooth
curve with parameter b1. In that case, the xj approximation is

F (θ1, xj) = Sb1

(
aT

1 xj

)
with θ1 = (a1, b1) .

S is a function of u = aT
1 x. Let us note that uj = aT

1 xj is the coordinate of the xj projection
on the axis a1. On this figure, the order of the uj in IR approximatively corresponds to the
”topological order” of the xj in IRn. On the contrary, in Fig. 2(c) the principal axis a1 does
not allow to determinate the topological order. For instance, two non neighbor and distant
points in IRn may have neighbor projections on the axis a1. It is a crucial problem. If we still
attempt to approximate X by a smooth curve parametrized by u = aT

1 x, the representation
would be inadequate for synthesis: outside the values uj , the function Sb1(u) would not deliver
realistic occurrences of X (Fig.2(c)). This difficulty can be overcomed by choosing an axis which
preserves the topological order after projection (Fig.2(d)). For this, we shall define an index
I(a,X ) measuring the preservation of the neighborhood structure of X . The selected axis will
maximize this index :

a1 = arg max
a

I(a,X ) (4)

Finally, the smooting function parameter is obtained as follows :

b1 = arg min
b

1

N

N∑

j=1

‖rj(1)‖2

with rj(1) = xj − Sb

(
aT

1 xj

)
. (5)

Our curve fitting algorithm consists of two stages: axis search (4) and smoothing (5). The
forthcoming sections develop in more details the successive steps of the algorithm.

2.2 Definition of I and S

In (4) and (5), we have to define the projection index I(a,X ) and the smoothing function Sb.

Projection index

A first idea would be to use the index (3) which attempts to preserve all the distances. In
our context, the important point is not the distance preservation but the preservation of the
neighborhood structure of X : if two points are neighbors in IRn then their projections should
be neighbors in IR and conversely, as it is illustrated in Fig.2(d) but not in Fig.2(c) for many
points.
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Figure 2: (a) Gaussian cloud. (b-c-d) Non Gaussian cloud.

To simplify this criterion, we decide not to preserve the complete neighborhood structure, but
only the closest neighbors structure. The chosen index is naturally the number of points for
which the constraints are verified:

I(a,X ) =

N∑

i=1

∑

j 6=i

Ψ[(xj closest to xi) =⇒ (aT xj closest to aT xi)] , (6)

where Ψ is the indicator function. The analytical expression of I is obtained as follows. Let
xφ(i) be the closest neighbor of xi. We want aT xφ(i) to be the closest neighbor of aT xi in IR.
Consequently, for every i, a has to verify N − 1 inequalities:

I(a,X ) =
N∑

i=1

∑

j 6=i

Ψ
[ ∣∣aT xi − aT xφ(i)

∣∣ ≤
∣∣aT xi − aT xj

∣∣ ]

=
N∑

i=1

∑

j 6=i

Ψ
[ ∣∣aT x̄iφ(i)

∣∣ ≤
∣∣aT x̄ij

∣∣ ]
,

where x̄ij = xi − xj . Finally, since a and −a define the same axis, we get:

I(a,X ) =
N∑

i=1

∏

j 6=i

Ψ
[
aT

(
x̄iφ(i) − x̄ij

)
≥ 0

]
× Ψ

[
aT

(
x̄iφ(i) + x̄ij

)
≤ 0

]
. (7)

It can be shown that this index has the following invariance properties: (1) I(a,X ) = I(a,X +t),
t ∈ IRn; (2) I(a, sX ) = I(a,X ), s ∈ IR; (3) I(Da, DX ) = I(a,X ) with tDD = I. The first

7



H1

2H

3H

region courante

region candidate

candidate
region

region candidate

s   (a(p))3

a(p)

Figure 3: Random walk on the regions.

two invariance properties with respect to translation and scale indicate that this index belongs
to the class III defined by Hubert [25], which is well-adapted to Projection Pursuit algorithms.
The last property shows that the axis does not depend on the orientation of X (rotation and
symmetry invariance).

Smoothing function

The choice of Sb is much more simpler than the index choice. We express Sb as a multivariate
spline function Sb : IR → IRn [10]. This representation is well-known. The i-th coordinate

of Sb is noted S
(i)

b(i)
with b = (b(i))1≤i≤n, We approximate the ith coordinate {x

(i)
1 , ..., x

(i)
N } of

the vector set X with respect to the parametrization {u1, ..., uN}, by a cubic regression spline

S
(i)

b(i)
(u), u ∈ [umin, umax]. To do that, we need to sort the set {uj} for each coordinate i.

Let {uσ(j)} be the sorted set. The i-th coordinate smoothing is performed on the couples

{(uσ(j), x
(i)
σ(j)), j = 1, ..., N}. Such a spline representation implies to choose discontinuity knots

in the uσ(j) series. The number of knots tunes the smoothing rate. In general, this choice is
quite difficult and will be discussed in Appendix.

2.3 Computation

Index maximization

To perform this optimization, we have to note that I(a,X ) is a finite piecewise constant function.
Since the equation aT x = 0 implies that a belongs to the hyperplane orthogonal to x, the I(a,X )
expression (7) shows N(N − 1) hyperplanes noted Hk :

Hk =
{
a ∈ IRn s.t. aT nk = 0

}
, 1 ≤ k ≤ N(N − 1),

nk ∈
{(

x̄iφ(i) − x̄ij
)

,
(

x̄iφ(i) + x̄ij
)

; i = 1, ..., N ; j 6= i
}

.

These N(N −1) hyperplanes determine a IRn partition in L regions Rℓ, (L ≤ 2N(N−1)), in which
the index is constant: I(a,X ) =

∑L
ℓ=1 Iℓ Ψ[a ∈ Rℓ].
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Although it is possible to compute I for every vector a by applying (7), we do not know how to
extract a vector a from every region Rℓ. To overcome this difficulty, the idea is to construct an
iterative algorithm A of type a(p + 1) = A[a(p)] which visits the regions from an initial solution
a(0) (as a gradient algorithm would do it in the case of a regular function), a(p) and a(p + 1)
being in distinct regions. The stochastic algorithms framework yields a general formalization
to that optimization problem. To maximize I, the idea is to build a random walk upon the
regions and try to increase the index value at each step. Each step is defined by a hyperplane
Hk obtained by random choice of the integers {k} and considered as a border of the new visited
region. If a(p) is the solution at the previous step, the new candidate a(p + 1) is obtained by
the orthogonal symmetry sk with respect to Hk: sk(a(p + 1)) = a(p) − 2(a(p)T nk)nk.
Algorithm A

1. Initialization: a(0) is chosen at random.

2. a(p) is known, a(p + 1) is computed as follows :

- k is randomly chosen between 1 and N(N − 1).

- Comparison between the regions separated by Hk:
a′ ← sk(a(p)).
If I(a′,X ) > I(a(p),X )
Then a(p + 1) ← a′ Else a(p + 1) ← a(p).

3. Go back to 2, until convergence.

The resulting index sequence is decreasing, the algorithm converges quickly towards a local

maximum. An iteration cost is equivalent to the index I(a′, X) computation cost, that is O(nN2)
(differences x̄ij are computed as a preprocessing at the initialization step).
Algorithm A′

When a local maximum has been reached, all the regions accessible by the operator sk (dark
grey regions in Fig.3) have an index value lower than the maximum one (clear grey regions in
Fig.3). Yet, the index value on the other regions (white regions in Fig. 3) could be greater
than the local maximum. As it is impossible to reach these regions directly from the region
of local maximum, a solution for visiting them is to pass through a region of lower value (a
dark grey region), the transition being governed by a probability. This is the basic idea of the
simulated annealing that we briefly describe in our context [38]. Contrary to the algorithm A
which imposes at each iteration p that ∆I=̇[I(a(p + 1),X ) − I(a(p),X )] > 0, the stochastic
algorithm (algorithm A′) authorizes ∆I to be negative: ∆I > Tp log ξ where ξ is a uniform
random number on ]0, 1[ and Tp is a sequence decreasing towards 0 : Tp = T0 λp, with λ < 1.
The algoritm A′ is the algorithm A in which the condition (If...Then) is modified by plugging
∆I > Tp log ξ. As p grows Tp log ξ → 0, and the probability to accept a region of lower index
becomes zero. A rigorous writting of this algorithm can be derived from the Metropolis dynamic
[5].

Spline smoothing

At this time, the principal axis is known through its estimation a1 as obtained above. We have
now to deal with a well-known smoothing problem since we use a spline regression model. Let
us denote again uj = aT

1 xj the coordinate of the projection of xj . The goal here is to find b1
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which minimizes the approximation error

ε2(b) =
1

N

N∑

j=1

‖rj(1)‖2 =
1

N

N∑

j=1

‖xj − Sb(uj)‖
2,

=
1

N

n∑

i=1




N∑

j=1

(
x

(i)
j − S

(i)

b(i)
(uj)

)2



 =

n∑

i=1

ε2i (b
(i)). (8)

It appears that the approximation error ε2 is expanded into n independent approximation errors
ε2i . Let us note B the B-spline matrix corresponding to the chosen knots. Each of the n
approximation errors is then written as

N∑

j=1

(
x

(i)
σ(j) − S

(i)

b(i)
(uσ(j))

)2
= ‖x(i) − Bb(i)‖2

N , 1 ≤ i ≤ n , (9)

where ‖.‖N is the IRN Euclidian norm. Let b
(i)
1 be the least-squares minimum, and ν the spline

number of knots. Let us emphasize that b
(i)
1 is computed as soon as ν is fixed, hence is denoted

as b
(i)
1 (ν). We use a second criterion to determine the best number of knots, as presented in

Appendix.

3 Nonlinear PCA with several axes

In the spirit of the Projection Pursuit [25], a second axis of projection can be computed on the
residuals rj(1) which take the place of X in (4) and (5), leading to new residuals rj(2). This
procedure can be again performed on the new residuals rj(2), and so on.
NLPCA algorithm

1. Initialization:
k ← 0 and rj(0) ← xj , j = 1, ..., N

2. Parameter estimation: θk+1 = (ak+1, bk+1)

ak+1 = arg max
a

I(a, {rj(k)}N
j=1) (10)

bk+1 = arg min
b

N∑

j=1

‖rj(k) − Sb(a
T
k+1 rj(k))‖2 (11)

3. Residual errors update:
rj(k + 1) ← rj(k) − Sbk+1

(aT
k+1 rj(k)) , j = 1, ..., N

4. Go back to 2, if the residual errors are too large, with k ← k + 1;
else d = k and end.

Orthogonality conditions

We achieve the algorithm by adding some constraints that we have not given so far to simplify
the presentation. Up to now, we have implicitly supposed that the residual errors rj(k) are

10



orthogonal to the axis ak

aT
k rj(k) = 0 , ∀j . (12)

It is straightforward to show that (12) follows the natural condition aT
k Sbk

(u) = u. Thanks to
this condition the algorithm is very simple. After an approximation with respect to the axis ak,
the residual errors rj(k) are located in its orthogonal subspace. So, the new axis as well as the
new smoothing function are built in the ak, ak−1, ..., a1 orthogonal subspace, that is:

aT
k aℓ = 0 , ∀ 1 ≤ ℓ, k ≤ d (13)

aT
ℓ Sbk

(u) = 0 , ∀ 1 ≤ ℓ < k ≤ d , u ∈ IR .

Let us emphasize that the orthogonality condition (13) gives an answer to the difficult problem
of iterating the Projection Pursuit algorithm from ak to ak+1, [11].

Associated model

Now, the question is: what kind of representation is produced by our algorithm ? For d = 1,
the answer is simple since X is approximated by a curve whose equation is G(θ1, x) = 0, G
being the model G(θ1, x) = x − Sb1

(
aT

1 x
)

(see (5)). In order to write this model for d > 1 in a
concise form, let us denote aT

k x = Pak
(x), Pak

being the function IRn → IR which defines the
orthogonal projection of xj on the axis ak. With this notation, from the algorithm, we get:

rj(1) = (IdIRn − Sb1Pa1) (xj)

rj(2) = (IdIRn − Sb2Pa2) (rj(1)) ...

... rj(d) = (IdIRn − Sbd
Pad

) (rj(d − 1)).

that can be rewritten as:

rj(d) = (IdIRn − Sbd
Pad

)...(IdIRn − Sb2Pa2)(IdIRn − Sb1Pa1)(xj)

=

(
1∐

k=d

(IdIRn − Sbk
Pak

)

)
(xj) .

Finally, it appears that the representation of X is defined by G(θ, x) = 0 with:

G(θ, x) =

(
1∐

k=d

(IdIRn − Sbk
Pak

)

)
(x) , (14)

where θ = (θ1, ..., θd), the error being rj(d) = G(θ, xj).

Properties

The model (14) has the following properties : (1) with d axis, G(θ, x) = 0 defines a d-dimensional
manifold, (2) the errors are decreasing, (3) with d = n, the model is exact. Proof is given in
[17, 18]. Let us note that linear PCA shares these properties. Like for PCA, we define the
information ratio associated to the d-dimensional model:

Kd = 1 −
∑

j

‖rj(d)‖2/
∑

j

‖xj‖2 .
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We deduce from the previous proposition that the Kd series are increasing and that Kn = 1.
Kd allows to choose the model dimension for a given information ratio.

Let us come back to the condition (12). It justifies the residual errors definition. This
definition comes directly from the model equation G(θ, x) = 0 by setting rj(d) = G(θ, xj). This
way of defining an approximation error may be ill-conditioned. For instance when G(θ, x) = 0
defines a quadratic curve, rj does not come from an orthogonal projection on the curve (except in
the circle case), and rj can even be infinity for some points close to the curve (see [2]). However,
in our case, for a given axis, we avoid this problem thanks to the orthogonality [20].

4 Experimental results

First experiment

This is an academic example. Fig.1(a) shows a sample of a set of curves obtained by translating
a given curve. Let us denote this set as {gj(s), j = 1, ..., N} where N = 100 and j corresponds
to the translation index. All these curves are sampled on a same interval. For each of them,
this leads to a vector xj = ((gj(s1), ..., gj(sn)), with n = 50. This set corresponds to a cloud
X in IRn located on a 1-dimensional manifold. The number of examples N may look small
compared to the space dimension n, but the important thing here is to have a large number of
samples compared to the intrinsic dimension of X . We can imagine what this manifold looks
like by projecting it on the first principal plane computed by PCA (Fig.1(d)). Using the 1-
dimensional PCA approximation, we get a straight line. This representation is not sufficient.
To get a good approximation of the one-dimensional set X , five axes are necessary. This leads
to a five-dimensional linear subspace representing 95% of the cloud variance. PCA simulations
provide points in IRn which are not representative of the training set (Fig.1(b)), illustrating in
this case, the very poor PCA generalization ability.

Now, let us consider the NLPCA modeling. We do not know if there is a parametrization
axis. The translation, which was used to build the set of examples cannot be written as a linear
combination of the coordinates. In order to search for a parametrization axis, the algorithm A′

was used for the index maximization. The resulting axis a1 yields the neighborhood preservation
of 93 points among the 100 initial points. The generalization criterium ((15) in Appendix)
has given an optimal spline smoothing for ν = 29, (Note that the standard cross-validation
criterium (16) gives ν = 18). This generalization criterium was computed using M = 8000
simulated values {ŭk, k = 1, ..., M} on the axis a1 , with respect to the probability density
of the projection of X on this axis. It gives M points Sb(ŭ

k) in IRn located on the manifold
approximating X . Fig.1(d) shows the projection of theses points on the PCA principal plane.
The corresponding simulated curves are very close to the ones of X , (Fig.1(d)). Let us note
that a bad choice of the number of knots (ν = 96) leads to a very poor generalization behavior
(Fig.4).

Second experiment

The object of interest is a lamp for which N = 45 appearances have been obtained by varying
the azimuth and elevation of the viewpoint 1 (Fig.5). This experiment is close to that of Murase
and Nayar [35] who have shown the nonlinear nature of such data. A one dimensional NLPCA
model has been selected. The algorithm A′ used with T0 = 1 and λ = 0.995, has converged after

1Centre for Intelligent Systems, University of Plymouth

http://www.cis.plym.ac.uk/cis/3Darchive.html.
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Figure 4: Simulation with a wrong number of knots.

1000 iterations. It tooks 9 mn on a Pentium 233 Mhz. The axis a1 keeps the neighborhood
of 33 points among the 45 points of X . In Fig.6, the representation of the lamp by NLPCA is
more accurate than the PCA representation which shows blurred contours and detail removing.
In particular the knob of the lamp is not depicted.

Third experiment

X is composed of N = 400 face images from 40 individuals 2 (Fig.7, line 1). Here, the quality
of the representation is measured from the approximation error. To represent faces with 20%
of mean error, the PCA model requires d = 210 whereas the NLPCA model requires d = 89
for ν = 2 and d = 65 for ν = 5. In this experiment, let us note that PCA and NLPCA axes
are close. Fig.7 (lines 2 and 3) show representation by PCA and NLPCA for d = 89 in the two
cases. The mean error is 35% for the PCA representation and 20% for the NLPCA one. As for
the lamp experiment, we see that the NLPCA model keeps many details in contrast to the PCA
model which yield severely blurred faces.

5 Conclusion

We proposed a parametric model to approximate a set of points X which are non-linearly
distributed in a large multidimensional space.

From the geometric point of view, this representation is done using a d-dimensional manifold,
computed by a Projection Pursuit algorithm. The main points of this method are the following :
The axes are obtained by optimizing an index which preserves the neighborhood structure of
X . When the optimized index is large, the smoothing makes sense because the axis provides
a natural order to the points. The second point deals with the ability to control the manifold
dimension using the information ratio. Then, the last point is the determination of the smoothing
rate using a generalization criterion. These operations are fully automatic, they do not ask the
user to adapt some parameters. Finally, when the index and the information values are close to
their maximum value, then the model can be considered as valid.

2Olivetti and Oracle Research Laboratory

http://www.cam-orl.co.uk/face database.html.
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Figure 5: Several appearances of a lamp.

Figure 6: (a) An appearance. (b) PCA representation. (c) NLPCA representation.
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Figure 7: First line: 3 appearances of a face. Second line: PCA representation. Third line:
NLPCA representation.
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Let us note that the modelling process leads to the estimation of a large number of param-
eters : axis parameters and spline parameters. However, there is no over-parametrization but
on the contrary a dimensionality reduction. This appears clearly when the method is used in a
compression framework. Once the model estimated on X , the spline parameters are definitively
saved. A new observation compression x only requires the transmission of d scalars, the projec-
tions of x on the d axes. The restoration is given by the points on the manifold relative to the d
scalars thanks to the model generalization properties. The compression rate is very important.

In fact, our research has been motivated by the need to synthesis artificial observations x.
In this framework, the set X is seen as an observation set of a flexible ”object” and we are more
interested in the simulation of deformation than in the approximation. Precisely, simulating
”object” deformations provides useful prior information to solve some inverse problems [15].

Appendix

Choice of the number of knots. The problem is a classical one, numerous works have dealt with
it. A well-known solution is based on the cross-validation error [50]. As it was said above, our
final goal is to simulate X in order to get simulations that ”look like” the observations X . With
the approximation error alone, the model quality is measured only at the uj points. The use of
the model can lead to unrealistic simulations away from these points, that is to say, very different
from the observations X (see Fig.2(c)). So, we need a criterion which takes into account the
smoothing behavior between the points uj . We propose to use the following generalization error.

Definition 1 Let U be the random variable X projected on the axis a : U = aT X and f(u) its

probability density on IR. The theoretical generalization error is

G(ν) = E[Q2(X , Sbb(ν)
(U))]

where Q2 is the square of a distance, E is the mathematical expectation with respect to f(u) and

b̂ is the least-square solution (11) .

In practice, an empirical version Gemp of G is proposed [48]. Let f̂(t) be an estimation of the
density f(t), (see [43]). In order to define this empirical version, we simulate U according to
the f̂ density. Let ŭ be such a simulation and φ(ŭ) the point uj which is the closest neighbor
of ŭ on the axis a : φ(t̆) = arg minj(ŭ− uj)

2. The empirical generalization error is then defined
using M occurrences (ŭ1, ..., ŭM ) of U as follows :

Gemp(ν) =
1

M

M∑

k=1

‖xφ(t̆k) − Sbb(ν)
(t̆k)‖

2 . (15)

Gemp is a quadratic distance between the simulations {Sbb(ν)
(ŭk)} of X and the initial data X .

(At this point, we can see how X is simulated using the random variable U). We choose the
number of knots ν that minimizes this criterion. (Let us note that when ν is fixed, the knots
are chosen so as to give to each interval defined by two neighbor knots the same probability for
f̂(t)). We could easily show that this criterion can be splitted into a variance term and a bias
term and that the ν choice achieves a trade-off between these two terms [13]: when ν is too
large, the bias is small (good data approximation) but the variance is large (bad generalization).
Finally, let us note that the classical cross-validation criterium C takes also into account the
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smoothing behaviour between the points uj by dropping successively one point uj at a time, as
follows :

C(ν) =
1

N

N∑

j=1

‖xj − Sbb(ν,j)
(uj)‖

2 , (16)

where b̂(ν, j) is the least-square solution based on the data X \ {xj}. However, when X suffers
a curse of dimensionality [25], this criterium seems to be less adapted than the generalization
error (15).
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