
HAL Id: hal-00994551
https://inria.hal.science/hal-00994551

Submitted on 21 May 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Globalizing Modeling Languages
Benoit Combemale, Julien Deantoni, Benoit Baudry, Robert B. France,

Jean-Marc Jézéquel, Jeff Gray

To cite this version:
Benoit Combemale, Julien Deantoni, Benoit Baudry, Robert B. France, Jean-Marc Jézéquel, et al..
Globalizing Modeling Languages. Computer, 2014, pp.10-13. �hal-00994551�

https://inria.hal.science/hal-00994551
https://hal.archives-ouvertes.fr

Globalizing Modeling Languages

Supporting Language Heterogeneity in the Development and

Runtime Management of Software-Intensive Systems

Benoit Combemale*
,
ª, Julien DeAntoni**, Benoit Baudryª, Robert B. France***, Jean-Marc Jézéquel*, Jeff Gray****

ª Inria, France

* University of Rennes 1, France

** University of Nice Sophia-Antipolis, France

*** Colorado State University, USA

**** University of Alabama, USA

In the software and systems modeling community, research on domain-specific modeling languages (DSMLs) is

focused on providing technologies for developing languages and tools that allow domain experts to develop system

solutions efficiently. Unfortunately, the current lack of support for explicitly relating concepts expressed in different

DSMLs makes it very difficult for software and system engineers to reason about information spread across models

describing different system aspects. Supporting coordinated use of DSMLs leads to what we call the globalization

of modeling languages. This article presents a research initiative that broadens the DSML research focus beyond

the development of independent DSMLs to one that supports globalized DSMLs, that is, DSMLs that facilitate

coordination of work across different domains of expertise.

Domain-Specific Modeling Languages

Model-Driven Engineering (MDE) aims at reducing the accidental complexity associated with developing

complex software-intensive systems [1]. A primary source of accidental complexity is the wide gap
between the high-level concepts used by domain experts to express their specific needs and the low-

level abstractions provided by general-purpose programming languages [2]. Manually bridging this gap,

particularly in the presence of changing requirements, is costly in terms of both time and effort. MDE
approaches address this problem through the use of modeling techniques that support separation of

concerns and automated generation of major system artifacts (e.g., test cases, implementations) from

models. In MDE, a model describes an aspect of a system and is typically created for specific
development purposes. Separation of concerns is supported through the use of different modeling

languages, each providing constructs based on abstractions that are specific to an aspect of a system.

For example, Generalized Stochastic Petri Nets can be used to create performance models, while the

notation provided by the Simulink tool is adapted to simulation models. MDE technologies also provide
support for manipulating models; for example, support for querying, transforming, merging, and

analyzing (including executing) models. Modeling languages are thus at the core of MDE.

Incorporating domain-specific concepts and high-quality development experience into MDE technologies

can significantly improve developer productivity and system quality. This realization has led to work,

starting in the late nineties, on MDE language workbenches that support the development of domain-
specific modeling languages (DSMLs) and associated tools (e.g., model editors and code generators). A

DSML provides a bridge between the (problem) space in which domain experts work and the

implementation (programming) space. Domains in which DSMLs have been developed and used include

automotive, avionics, and cyber-physical systems.

Hutchinson et al. provide some indications that DSMLs can pave the way for wider industrial adoption of
MDE [3]. Research on systematic development of DSMLs has produced a technology base that is robust

enough to support the integration of DSML development processes into large-scale industrial system

development environments. Current DSML workbenches support the development of DSMLs to create

models that play pivotal roles in different development phases. Workbenches such as Microsoft’s DSL
tools, MetaCase’s MetaEdit+, JetBrains’ MPS, Eclipse Modeling Framework (EMF) and Generic

Modeling Environment (GME) support the specification of the abstract syntax, concrete syntax and the

static and dynamic semantics of a DSML. These workbenches address the needs of DSML developers
in a variety of application domains.

The development of modern complex software-intensive systems often involves the use of multiple

DSMLs that capture different system aspects. In addition, models of the system aspects are seldom

manipulated independently of each other. System engineers are thus faced with the difficult task of

relating information presented in different models. For example, a system engineer may need to analyze

a system property that requires information scattered in models expressed in different DSMLs. Current

DSML development workbenches provide good support for developing independent DSMLs, but provide

little or no support for integrated use of multiple DSMLs. The lack of support for explicitly relating

concepts expressed in different DSMLs makes it very difficult for developers to reason about information

spread across different models.

Globalized DSML Challenge: Looking Ahead

Past research on modeling languages focused on their use to bridge wide problem-implementation gaps.

A new generation of complex software-intensive systems, for example, smart health, smart grid, building

energy management, and intelligent transportation systems, presents new opportunities for leveraging

modeling languages. The development of these systems requires expertise in a variety of domains.

Consequently, different types of stakeholders (e.g., scientists, engineers and end-users) must work in a

coordinated manner on various aspects of the system across multiple development phases. DSMLs can

be used to support the work of domain experts who focus on a specific system aspect, but they can also

provide the means for coordinating work across teams specializing in different aspects and across

development phases.

Supporting coordinated use of DSMLs leads to what we call the globalization of modeling languages,

that is, the use of multiple modeling languages to support coordinated development of diverse aspects of

a system. One can make an analogy with world globalization in which relationships are established

between sovereign countries to regulate interactions (e.g., travel and commerce related interactions)

while preserving each country’s independent existence. The term “DSML globalization” is used to

highlight the desire that DSMLs developed in an independent manner to meet the specific needs of

domain experts, should also have an associated framework that regulates interactions needed to

support collaboration and work coordination across different system domains.

Globalized DSMLs aim to support the following critical aspects of developing complex systems:

communication across teams working on different aspects, coordination of work across the teams, and

control of the teams to ensure product quality.

In the globalized DSML vision, integrated DSMLs support teams working on systems that span many

domains and concerns to determine how their work on a particular aspect influences work on other

concerns. The objective is to offer support for communicating relevant information, and for coordinating

development activities and associated technologies within and across teams, in addition to providing

support for imposing control over development artifacts produced by multiple teams.

Coordination and related separation of concerns issues have been the focus of software engineering
since early work on modularizing software. For example, Parnas’ use of the term “work product” to

denote a module that can be the source of independent development is also a focus of team

demarcation across design and implementation tasks. Modularity in modern software-intensive systems
development leads to well-known coordination problems, such as problems associated with coordinating

work over temporal, geographic or socio-cultural distance [4]. This has also led to the recognition of

socio-technical coordination, including coordination of the stakeholders and the technologies they use to
perform their development work, as a major system development challenge [5].

In this context, DSMLs can be used to support socio-technical coordination by providing the means for
stakeholders to bridge the gap between how they perceive a problem and its solution, and the

programming technologies used to implement a solution. DSMLs also support coordination of work

across multiple teams when they are supported by mechanisms for specifying and managing their

interactions. In particular, proper support for coordinated use of DSMLs leads to language-based support
for social translucence, where the relationships between DSMLs are used to extract the information

needed to make a team working on a system aspect aware of the relevant work performed by teams

working on other aspects. Such awareness is needed to minimize the counter-productive form of social
isolation that can occur when work is distributed across different teams.

On the Globalization of Modeling Languages

To support globalization, the use of multiple heterogeneous modeling languages will need to be related

to determine how different aspects of a system influence each other. We identify three forms of

relationships among modeling languages that can be used to support interactions across different

system aspects: interoperability, collaboration, and composition.

Interoperable modeling languages provide support for the exchange of information across models
expressed in the languages. Interoperable DSMLs can be developed in a relatively independent manner,

but relationships defined across the different DSMLs allow information expressed in one model to be

related to information contained in models expressed in different DSMLs. These DSML relationships

facilitate the development of integrated modeling tool chains in which information from a model built for a
specific purpose (e.g., a SysML model used to describe system architecture) is used to decorate a

model that serves a different purpose (e.g., a Generalized Stochastic Petri Net used for performance

analysis). Interoperable DSMLs have the lowest coupling of the three relationships we identified; the
focus is on supporting coordinated use of modeling tools, as opposed to tightly coupling the

development of the different models.

Collaboration relationships among modeling languages are used to support coupled development of

models. DSMLs in a collaboration relationship are referred to as collaborative modeling languages. The

development of a model expressed in a collaborating modeling language can directly influence the form

of models created using other collaborating modeling languages. For example, consistency relationships

defined across the DSMLs can be used by developers to ensure that the different models they create

are consistent with each other. Model authoring tools for collaborating DSMLs are thus coupled.

Collaborating DSMLs can be used to support a priori as well as a posteriori global analysis of properties.

Interoperable and collaborating DSMLs support DSML interactions without deriving new forms of

information from information spread across different models. However, there are situations that call for

combining information scattered in other models to create new forms; for example, to support generation

of system documentation, test cases, or to provide support for simulating global system behavior. Model

composition (e.g., weaving and merging) is thus the third form of interaction that is facilitated by explicit

definitions of relationships across elements in different DSMLs.

The prior discussion focused on the use of DSMLs to coordinate the work of developers. These ideas

can be applied at various development life-cycle phases, ranging from early analysis to system runtime.

Models can also be used to coordinate work done by different components, subsystems, or services.

The use of DSMLs to coordinate work can potentially have a beneficial impact on the management of

running systems. Different types of models are currently being used as runtime abstraction layers to

support reasoning about the system or even adapting it [6]. Explicitly defined relationships across

DSMLs for runtime models can be leveraged by these model-based runtime environments to coordinate

the manipulation of models at runtime.

Challenging issues will need to be addressed to realize the above forms of language integration.

Relationships among the languages will need to be explicitly defined in a form that corresponding tools

can use to realize the desired interactions. Requirements for tool manipulation are thus another topic

that will be a focus for future work in the area of DSML globalization.

This grand challenge is currently supported by the GEMOC initiative (see http://gemoc.org). GEMOC is

an open international initiative that brings together a community to develop software language

engineering breakthroughs that support interoperable, collaborative, and composable modeling

languages. The GEMOC initiative provides a framework that facilitates collaborative work on the

globalization of DSMLs.

[1] Schmidt, Douglas C. Guest editor's introduction: Model-driven engineering. Computer, IEEE, 2006,

vol.39, n°2, p.25-31

[2] France, Robert and Rumpe, Bernhard. Model-driven development of complex software: A research

roadmap. In: Future of Software Engineering. IEEE Computer Society, 2007. p.37-54

[3] Hutchinson, John, Whittle, Jon, Rouncefield, Mark, et al. Empirical assessment of MDE in industry.

In: 33rd International Conference on Software Engineering. ACM, 2011. p.471-480

[4] Herbsleb, James D. and Grinter, Rebecca E. Architectures, coordination, and distance: Conway's law

and beyond. Software, IEEE, 1999, vol. 16, n° 5, p.63-70

[5] Herbsleb, James D. Global software engineering: The future of socio-technical coordination. In:

Future of Software Engineering. IEEE Computer Society, 2007. p.188-198

[6] Blair, Gordon, Bencomo, Nelly, and France, Robert B. Models@ run.time. Computer, IEEE, 2009, vol.

42, n°10, p.22-27

Benoit Combemale is an associate professor at the University of Rennes and a research scientist at Inria. His

research interests include model-driven software engineering, software language engineering, domain-specific

languages and Validation & Verification. Contact him at benoit.combemale@inria.fr

Julien Deantoni is an associate professor in the Department of Computer Science at the University of Nice Sophia

Antipolis. His research focuses on the connection between model driven engineering and concurrency theory by

using the notion of logical time. Contact him at julien.deantoni@inria.fr

Benoit Baudry is a research scientist at Inria. His research interests include metamodeling and model-based

software analysis and testing. Contact him at benoit.baudry@inria.fr

Robert B. France is a professor in the Department of Computer Science at Colorado State University. His

research focuses on model-driven development, models at runtime, software-product lines, domain-specific

languages and formal methods. Contact him at france@cs.colostate.edu

Jean-Marc Jézéquel is a professor at the University of Rennes and director of IRISA. His research focuses on the

theory and practice of Model Driven Engineering. Contact him at jezequel@irisa.fr

Jeff Gray is a professor in the Department of Computer Science at the University of Alabama. His research
focuses on model transformation, domain-specific languages, and computer science education. Contact him at
gray@cs.ua.edu

