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In the software and systems modeling community, research on domain-specific modeling languages (DSMLs) is 

focused on providing technologies for developing languages and tools that allow domain experts to develop system 

solutions efficiently. Unfortunately, the current lack of support for explicitly relating concepts expressed in different 

DSMLs makes it very difficult for software and system engineers to reason about information spread across models 

describing different system aspects. Supporting coordinated use of DSMLs leads to what we call the globalization 

of modeling languages. This article presents a research initiative that broadens the DSML research focus beyond 

the development of independent DSMLs to one that supports globalized DSMLs, that is, DSMLs that facilitate 

coordination of work across different domains of expertise. 

Domain-Specific Modeling Languages 

Model-Driven Engineering (MDE) aims at reducing the accidental complexity associated with developing 

complex software-intensive systems [1]. A primary source of accidental complexity is the wide gap 
between the high-level concepts used by domain experts to express their specific needs and the low-

level abstractions provided by general-purpose programming languages [2]. Manually bridging this gap, 

particularly in the presence of changing requirements, is costly in terms of both time and effort. MDE 
approaches address this problem through the use of modeling techniques that support separation of 

concerns and automated generation of major system artifacts (e.g., test cases, implementations) from 

models. In MDE, a model describes an aspect of a system and is typically created for specific 
development purposes. Separation of concerns is supported through the use of different modeling 

languages, each providing constructs based on abstractions that are specific to an aspect of a system. 

For example, Generalized Stochastic Petri Nets can be used to create performance models, while the 

notation provided by the Simulink tool is adapted to simulation models. MDE technologies also provide 
support for manipulating models; for example, support for querying, transforming, merging, and 

analyzing (including executing) models. Modeling languages are thus at the core of MDE. 

 

Incorporating domain-specific concepts and high-quality development experience into MDE technologies 

can significantly improve developer productivity and system quality. This realization has led to work, 

starting in the late nineties, on MDE language workbenches that support the development of domain-
specific modeling languages (DSMLs) and associated tools (e.g., model editors and code generators). A 

DSML provides a bridge between the (problem) space in which domain experts work and the 

implementation (programming) space. Domains in which DSMLs have been developed and used include 

automotive, avionics, and cyber-physical systems. 
 



Hutchinson et al. provide some indications that DSMLs can pave the way for wider industrial adoption of 
MDE [3]. Research on systematic development of DSMLs has produced a technology base that is robust 

enough to support the integration of DSML development processes into large-scale industrial system 

development environments. Current DSML workbenches support the development of DSMLs to create 

models that play pivotal roles in different development phases. Workbenches such as Microsoft’s DSL 
tools, MetaCase’s MetaEdit+, JetBrains’ MPS, Eclipse Modeling Framework (EMF) and Generic 

Modeling Environment (GME) support the specification of the abstract syntax, concrete syntax and the 

static and dynamic semantics of a DSML. These workbenches address the needs of DSML developers 
in a variety of application domains. 

 

The development of modern complex software-intensive systems often involves the use of multiple 

DSMLs that capture different system aspects. In addition, models of the system aspects are seldom 

manipulated independently of each other. System engineers are thus faced with the difficult task of 

relating information presented in different models. For example, a system engineer may need to analyze 

a system property that requires information scattered in models expressed in different DSMLs. Current 

DSML development workbenches provide good support for developing independent DSMLs, but provide 

little or no support for integrated use of multiple DSMLs. The lack of support for explicitly relating 

concepts expressed in different DSMLs makes it very difficult for developers to reason about information 

spread across different models.  

Globalized DSML Challenge: Looking Ahead 

Past research on modeling languages focused on their use to bridge wide problem-implementation gaps. 

A new generation of complex software-intensive systems, for example, smart health, smart grid, building 

energy management, and intelligent transportation systems, presents new opportunities for leveraging 

modeling languages. The development of these systems requires expertise in a variety of domains. 

Consequently, different types of stakeholders (e.g., scientists, engineers and end-users) must work in a 

coordinated manner on various aspects of the system across multiple development phases. DSMLs can 

be used to support the work of domain experts who focus on a specific system aspect, but they can also 

provide the means for coordinating work across teams specializing in different aspects and across 

development phases.  

 

Supporting coordinated use of DSMLs leads to what we call the globalization of modeling languages, 

that is, the use of multiple modeling languages to support coordinated development of diverse aspects of 

a system. One can make an analogy with world globalization in which relationships are established 

between sovereign countries to regulate interactions (e.g., travel and commerce related interactions) 

while preserving each country’s independent existence. The term “DSML globalization” is used to 

highlight the desire that DSMLs developed in an independent manner to meet the specific needs of 

domain experts, should also have an associated framework that regulates interactions needed to 

support collaboration and work coordination across different system domains. 

 

Globalized DSMLs aim to support the following critical aspects of developing complex systems: 

communication across teams working on different aspects, coordination of work across the teams, and 

control of the teams to ensure product quality. 

 

In the globalized DSML vision, integrated DSMLs support teams working on systems that span many 

domains and concerns to determine how their work on a particular aspect influences work on other 

concerns. The objective is to offer support for communicating relevant information, and for coordinating 



development activities and associated technologies within and across teams, in addition to providing 

support for imposing control over development artifacts produced by multiple teams. 

 

Coordination and related separation of concerns issues have been the focus of software engineering 
since early work on modularizing software. For example, Parnas’ use of the term “work product” to 

denote a module that can be the source of independent development is also a focus of team 

demarcation across design and implementation tasks. Modularity in modern software-intensive systems 
development leads to well-known coordination problems, such as problems associated with coordinating 

work over temporal, geographic or socio-cultural distance [4]. This has also led to the recognition of 

socio-technical coordination, including coordination of the stakeholders and the technologies they use to 
perform their development work, as a major system development challenge [5]. 

 

In this context, DSMLs can be used to support socio-technical coordination by providing the means for 
stakeholders to bridge the gap between how they perceive a problem and its solution, and the 

programming technologies used to implement a solution. DSMLs also support coordination of work 

across multiple teams when they are supported by mechanisms for specifying and managing their 

interactions. In particular, proper support for coordinated use of DSMLs leads to language-based support 
for social translucence, where the relationships between DSMLs are used to extract the information 

needed to make a team working on a system aspect aware of the relevant work performed by teams 

working on other aspects. Such awareness is needed to minimize the counter-productive form of social 
isolation that can occur when work is distributed across different teams. 

On the Globalization of Modeling Languages 

To support globalization, the use of multiple heterogeneous modeling languages will need to be related 

to determine how different aspects of a system influence each other. We identify three forms of 

relationships among modeling languages that can be used to support interactions across different 

system aspects: interoperability, collaboration, and composition. 

  

Interoperable modeling languages provide support for the exchange of information across models 
expressed in the languages. Interoperable DSMLs can be developed in a relatively independent manner, 

but relationships defined across the different DSMLs allow information expressed in one model to be 

related to information contained in models expressed in different DSMLs. These DSML relationships 

facilitate the development of integrated modeling tool chains in which information from a model built for a 
specific purpose (e.g., a SysML model used to describe system architecture) is used to decorate a 

model that serves a different purpose (e.g., a Generalized Stochastic Petri Net used for performance 

analysis). Interoperable DSMLs have the lowest coupling of the three relationships we identified; the 
focus is on supporting coordinated use of modeling tools, as opposed to tightly coupling the 

development of the different models. 

 

Collaboration relationships among modeling languages are used to support coupled development of 

models. DSMLs in a collaboration relationship are referred to as collaborative modeling languages. The 

development of a model expressed in a collaborating modeling language can directly influence the form 

of models created using other collaborating modeling languages. For example, consistency relationships 

defined across the DSMLs can be used by developers to ensure that the different models they create 

are consistent with each other. Model authoring tools for collaborating DSMLs are thus coupled. 

Collaborating DSMLs can be used to support a priori as well as a posteriori global analysis of properties. 

 

Interoperable and collaborating DSMLs support DSML interactions without deriving new forms of 

information from information spread across different models. However, there are situations that call for 

combining information scattered in other models to create new forms; for example, to support generation 



of system documentation, test cases, or to provide support for simulating global system behavior. Model 

composition (e.g., weaving and merging) is thus the third form of interaction that is facilitated by explicit 

definitions of relationships across elements in different DSMLs. 

 

The prior discussion focused on the use of DSMLs to coordinate the work of developers. These ideas 

can be applied at various development life-cycle phases, ranging from early analysis to system runtime. 

Models can also be used to coordinate work done by different components, subsystems, or services. 

The use of DSMLs to coordinate work can potentially have a beneficial impact on the management of 

running systems. Different types of models are currently being used as runtime abstraction layers to 

support reasoning about the system or even adapting it [6]. Explicitly defined relationships across 

DSMLs for runtime models can be leveraged by these model-based runtime environments to coordinate 

the manipulation of models at runtime. 

 

Challenging issues will need to be addressed to realize the above forms of language integration. 

Relationships among the languages will need to be explicitly defined in a form that corresponding tools 

can use to realize the desired interactions. Requirements for tool manipulation are thus another topic 

that will be a focus for future work in the area of DSML globalization. 

 

This grand challenge is currently supported by the GEMOC initiative (see http://gemoc.org). GEMOC is 

an open international initiative that brings together a community to develop software language 

engineering breakthroughs that support interoperable, collaborative, and composable modeling 

languages. The GEMOC initiative provides a framework that facilitates collaborative work on the 

globalization of DSMLs.  
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