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Abstract: Privacy properties such as untraceability, vote secrecy, or anonymity are typically expressed as

behavioural equivalence in a process algebra that models security protocols. In this paper, we study how to

decide one particular relation, namely trace equivalence, for an unbounded number of sessions.

Our first main contribution is to reduce the search space for attacks. Specifically, we show that if there is

an attack then there is one that is well-typed. Our result holds for a large class of typing systems and a

large class of determinate security protocols. Assuming finitely many nonces and keys, we can derive from

this result that trace equivalence is decidable for an unbounded number of sessions for a class of tagged

protocols, yielding one of the first decidability results for the unbounded case. As an intermediate result,

we also provide a novel decision procedure in the case of a bounded number of sessions.
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Typer les messages gratuitement dans les protocoles de

sécurité: le cas des propriétés d’équivalence

Résumé : Les propriétés en lien avec le respect de la vie privée comme l’anonymat

d’un vote, le secret fort, ou les propriétés de non traçabilité sont exprimées à l’aide

d’équivalences observationnelles issues d’une algèbre de processus permettant de mod-

éliser les protocoles de sécurité. Dans ce papier, nous étudions comment décider une

relation d’équivalence particulière, appelée équivalence de traces, dans le cadre d’un

nombre non borné de sessions.

Notre première contribution est de réduire l’espace de recherche. Plus précisément,

nous montrons que si une attaque existe alors il en existe une bien typée. Notre résultat

s’applique pour de nombreux systèmes de typage ainsi qu’une grande classe de pro-

tocoles déterministes. Ensuite, en supposant un nombre borné de nonces et de clefs,

nous montrons que l’équivalence de traces est décidable pour un nombre non borné

de sessions pour une classe de protocoles dits taggués, obtenant ainsi un des premiers

résultats de décidabilité pour le cas non borné. En passant, nous fournissons aussi une

nouvelle procédure de décision pour le cas d’un nombre borné de sessions.

Mots-clés : méthodes formelles, protocoles cryptographiques, équivalence de traces
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1 Introduction

Privacy properties such as untraceability, vote secrecy, or anonymity are typically ex-

pressed as behavioural equivalence (e.g. [9, 5]). For example, the anonymity of Bob

is typically expressed by the fact that an adversary should not distinguish between the

situation where Bob is present and the situation where Alice is present. Formally, the

behaviour of a protocol can be modelled through a process algebra such as CSP or the

pi calculus, enriched with terms to represent cryptographic messages. Then indistin-

guishability can be modelled through various behavioural equivalences. We focus here

on trace equivalence, denoted ≈. Checking for privacy then amounts into checking for

trace equivalence between processes, which is of course undecidable in general. Even

in the case of a bounded number of sessions, there are few decidability results and the

associated decision procedures are complex [6, 21, 11]. In this paper, we study trace

equivalence in the case of an unbounded number of sessions.

Our contribution. Our first main contribution is a simplification result, that reduces

the search space for attacks: if there is an attack, then there exists a well-typed attack.

More formally, we show that if there is a witness (i.e. a trace) that P 6≈ Q then there ex-

ists a witness which is well-typed w.r.t. P or Q, provided that P and Q are determinate

processes (intuitively, messages that are outputted are completely determined by the

interactions of the protocol with the environment, i.e. the attacker). This typing result

holds for an unbounded number of sessions and an unbounded number of nonces, that

is, it holds even if P and Q contain arbitrary replications and NEW operations. It holds

for any typing system provided that any two unifiable encrypted subterms of P (or Q)

are of the same type. It is then up to the user to adjust the typing system such that this

hypothesis holds for the protocols under consideration. For simplicity, we prove this

typing result for the case of symmetric encryption and concatenation but we believe

that our result could be extended to the other standard cryptographic primitives.

The finer the typing system is, the more our typing result restricts the attack search.

In general, our typing result does not yield directly a decidability result since even the

simple property of reachability is undecidable for an unbounded number of sessions

and arbitrary nonces, even if the messages are of bounded size (e.g. [3]). Indeed, our

typing system ensures the existence of a well-typed attack (if any) but the number of

well-typed traces may remain infinite. To obtain decidability, we further assume a finite

number of terms of each type (i.e. in particular a finite number of nonces). Decidability

of trace equivalence then follows from our main typing result, for a class of simple

protocols where each subprocess uses a distinct channel (intuitively, this corresponds

to session identifiers).

As an application, we consider the class of tagged protocols introduced by Blanchet

and Podelski [8]. An easy way to achieve this in practice by labelling encryption and

is actually a good protocol design principle [2, 18]. We show that tagged protocols

induce a typing system for which trace equivalence is decidable, for simple protocols

and for an unbounded number of sessions (but a fixed number of nonces).

Interestingly, the proof of our main typing result involves providing a new decision

procedure for trace equivalence in the case of a bounded number of sessions. This is a

key intermediate result of our proof. Trace equivalence was already shown to be decid-

able for a bounded number of sessions (e.g. [21, 11]) but we propose a novel decision

procedure that further provides a well-typed witness whenever the two processes are

not in trace equivalence. Compared to existing procedures (and in particular [21]), we
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4 Chrétien, Cortier, & Delaune

show that it is only necessary to consider unification between encrypted terms. We

believe that this new decision procedure is of independent interest since it reduces the

number of traces (executions) that need to be considered. Our result could therefore be

used to speed up equivalence checkers like SPEC [21].

Related work. Formal methods have been very successful for the analysis of secu-

rity protocols and many decision procedures and tools (e.g. [20, 19, 15]) have been

proposed. However, most of these results focus on reachability properties such as con-

fidentiality or authentication. Much fewer results exist for behavioural equivalences.

Based on a procedure proposed by Baudet [6], a first decidability result has been pro-

posed for determinate process without else branches, and for equational theories that

capture most standard primitives [12]. Then Tiu and Dawson [21] have designed and

implemented a procedure for open bisimulation, a notion of equivalence stronger than

the standard notion of trace equivalence. Cheval et al [11] have proposed and imple-

mented a procedure for processes with else branches and standard primitives. The tool

AkisS [10] is also dedicated to trace equivalence but is not guaranteed to terminate.

However, all these results focus on a bounded number of sessions. An exception is the

tool ProVerif which can handle observational equivalence for an unbounded number of

sessions [7]. It actually reasons on a stronger notion of equivalence (which may turn to

be too strong in practice) and is again not guaranteed to terminate.

To our knowledge, the only decidability result for an unbounded number of sessions

is [13]. It is shown that trace equivalence can be reduced to the equality of languages

of pushdown automata. A key hypothesis for reducing to pushdown automata is that

protocol rules have at most one variable, that is, at any execution step, any participant

knows already every component of the message he received except for at most one

component (e.g. a nonce received from another participant). Moreover variables shall

not occur in key position, i.e. agents may not use received keys for encryption. This

strongly limits the class of protocols that can be considered and the approach is strictly

bound to this “one-variable” hypothesis. In contrast, we can consider here a much

wider class of protocols, provided that they are tagged (which is easy to implement).

Our proof technique is inspired from the approach developed by Arapinis et al [4]

for bounding the size of messages of an attack for the reachability case. Specifically,

they show for some class of tagged protocols, that whenever there is an attack, there is a

well-typed attack (for a particular typing system). We somehow extend their approach

to trace equivalence and more general typing systems.

2 Model for security protocols

Security protocols are modelled through a process algebra inspired from [1] that ma-

nipulates terms.

2.1 Syntax

Term algebra. We assume an infinite set N of names, which are used to represent

keys and nonces, and two infinite disjoint sets of variables X and W . The variables

in W intuitively refer to variables used to store messages learnt by the attacker. We

assume a signature F , i.e. a set of function symbols together with their arity. We

consider:

Σc = {enc, 〈 〉}, Σd = {dec, proj1, proj2}, and Σ = Σc ∪ Σd.

Inria
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The symbols dec and enc of arity 2 represent symmetric decryption/encryption.

Pairing is modelled using a symbol of arity 2, denoted 〈 〉, and projection functions

are denoted proj1 and proj2. We further assume an infinite set of constant symbols Σ0

to represent atomic data known to the attacker. The symbols in Σc are constructors

whereas those in Σd are destructors. Both represent functions available to the attacker.

Given a set of A of atoms (i.e. names, variables, and constants), and a signature

F ∈ {Σc,Σd,Σ}, we denote by T (F ,A) the set of terms built from symbols in F ,

and atoms in A. The subset of T (Σc,A) which only contains terms with atoms as a

second argument of the symbol enc, is denoted T0(Σc,A). Terms in T0(Σc,Σ0 ∪ N )
are called messages. An attacker builds his own messages by applying functions to

terms he already knows. Formally, a computation done by the attacker is modelled by

a term, called a recipe, built on the signature Σ using (public) constants in Σ0 as well

as variables in W , i.e. a term R ∈ T (Σ,Σ0 ∪ W). Note that such a term does not

contain any name.

We denote vars(u) the set of variables that occur in u. The application of a substi-

tution σ to a term u is written uσ, and we denote dom(σ) its domain. Two terms u1
and u2 are unifiable when there exists σ such that u1σ = u2σ.

The relations between encryption/decryption and pairing/projections are represented

through the three following rewriting rules, yielding a convergent rewrite system:

dec(enc(x, y), y) → x, and proji(〈x1, x2〉) → xi with i ∈ {1, 2}.

Given u ∈ T (Σ,Σ0 ∪ N ∪ X ), we denote by u↓ its normal form. We refer the reader

to [17] for the precise definitions of rewriting systems, convergence, and normal forms.

Example 1 Let s, k ∈ N , and u = enc(s, k). The term dec(u, k) models the applica-

tion of the decryption algorithm on u using k. We have that dec(u, k)↓ = s.

Process algebra. Let Ch be an infinite set of channels. We consider processes built

using the following grammar where u ∈ T (Σc,Σ0 ∪N ∪ X ), n ∈ N , and c, c′ ∈ Ch:

P,Q := 0 | in(c, u).P | out(c, u).P | (P | Q) | !P | new n.P | new c′.out(c, c′).P

The process 0 does nothing. The process “in(c, u).P ” expects a message m of

the form u on channel c and then behaves like Pσ where σ is a substitution such that

m = uσ. The process “out(c, u).P ” emits u on channel c, and then behaves like P .

The variables that occur in u are instantiated when the evaluation takes place. The

process P | Q runs P and Q in parallel. The process !P executes P some arbitrary

number of times. The name restriction “new n” is used to model the creation in a

process of a fresh random number (e.g., a nonce or a key) whereas channel generation

“new c′.out(c, c′).P ” is used to model the creation of a new channel name that shall

immediately be made public. Note that we consider only public channels. It is still

useful to generate fresh (public) channel names to let the attacker identify the different

sessions of a protocol (as it is often the case in practice through sessions identifiers).

We assume that names are implicitly freshly generated, thus new k.out(c, k) and

out(c, k) have exactly the same behaviour. The construction “new” becomes important

in the presence of replication to distinguish whether some value k is generated at each

session, e.g. in !(new k.out(c, k)) or not, e.g. in new k.(!out(c, k)).
For the sake of clarity, we may omit the null process. We also assume that processes

are name and variable distinct, i.e. any name and variable is at most bound once.

For example, in the process in(c, x).in(c, x) the variable x is bound once and thus the

process is name and variable distinct. By contrast, in in(c, x) | in(c, x), one occurrence
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6 Chrétien, Cortier, & Delaune

of the variable xwould need to be renamed. We write fv(P ) for the set of free variables

that occur in P , i.e. the set of variables that are not in the scope of an input.

We assume Ch = Ch0 ⊎ Chfresh where Ch0 and Chfresh are two infinite and dis-

joint sets of channels. Intuitively, channels of Chfresh, denoted ch1, . . . , chi, . . . will be

used in the semantics to instantiate the channels generated during the execution of a

protocol. They shall not be part of its specification.

Definition 1 A protocol P is a process such that P is ground, i.e. fv(P ) = ∅; P is

name and variable distinct; and P does not use channel names from Chfresh.

Example 2 The Otway-Rees protocol [14] is a key distribution protocol using sym-

metric encryption and a trusted server. It can be described informally as follows:

1. A→ B : M,A,B, {Na,M,A,B}Kas

2. B → S : M,A,B, {Na,M,A,B}Kas
, {Nb,M,A,B}Kbs

3. S → B : M, {Na,Kab}Kas
, {Nb,Kab}Kbs

4. B → A : M, {Na,Kab}Kas

where {m}k denotes the symmetric encryption of a messagem with key k,A andB are

agents trying to authenticate each other, S is a trusted server,Kas (resp. Kbs) is a long

term key shared between A and S (resp. B and S), Na and Nb are nonces generated

by A and B, Kab is a session key generated by S, and M is a session identifier.

We propose a modelling of the Otway-Rees protocol in our formalism. We use

restricted channels to model the use of unique session identifiers used along an execu-

tion of the protocol. Below, kas, kbs, m, na, nb, kab are names, whereas a and b are

constants from Σ0. We denote by 〈x1, . . . , xn−1, xn〉 the term 〈x1, 〈. . . 〈xn−1, xn〉〉〉.

POR =! new c1.out(cA, c1).PA | ! new c2.out(cB , c2).PB | ! new c3.out(cS , c3).PS

where the processes PA, PB are given below, and PS can be defined in a similar way.

PA = new m.new na. out(c1, 〈m, a, b, enc(〈na,m, a, b〉, kas)〉).
in(c1, 〈m, enc(〈na, xab〉, kas)〉);

PB = in(c2, 〈ym, a, b, yas〉).new nb.out(c2, 〈ym, a, b, yas, enc(〈nb, ym, a, b〉, kbs)〉).
in(c2, 〈ym, zas, enc(〈nb, yab〉, kbs)〉).out(c2, 〈ym, zas〉)

2.2 Semantics

The operational semantics of a process is defined using a relation over configurations.

A configuration is a pair (P;φ) where:

• P is a multiset of ground processes.

• φ = {w1 ⊲ m1, . . . ,wn ⊲ mn} is a frame, i.e. a substitution where w1, . . . ,wn
are variables in W , and m1, . . . ,mn are messages, i.e. terms in T0(Σc,Σ0∪N ).

We often write P instead of ({P}; ∅), and P ∪ P or P | P instead of {P} ∪ P .

The terms in φ represent the messages that are known by the attacker. The operational

semantics of a process is induced by the relation
α
−→ over configurations defined below.

Inria
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(in(c, u).P ∪ P;φ)
in(c,R)
−−−−→ (Pσ ∪ P;φ) where R is a recipe such that Rφ↓

is a message and Rφ↓ = uσ for some σ with dom(σ) = vars(u)

(out(c, u).P ∪ P;φ)
out(c,wi+1)
−−−−−−−→ (P ∪ P;φ ∪ {wi+1 ⊲ u})

where u is a message and i is the number of elements in φ

(new c′.out(c, c′).P ∪ P;φ)
out(c,chi)
−−−−−−→ (P{chi/c′} ∪ P ;φ)

where chi is the “next” fresh channel name available in Chfresh

(new n.P ∪ P;φ)
τ
−→ (P{n

′

/n} ∪ P ;φ) where n′ is a fresh name in N

(!P ∪ P;φ)
τ
−→ (P ∪ !P ∪ P;φ)

The first rule allows the attacker to send to some process a term built from publicly

available terms and symbols. The second rule corresponds to the output of a term by

some process: the corresponding term is added to the frame of the current configura-

tion, which means that the attacker can now access the sent term. Note that the term

is outputted provided that it is a message. In case the evaluation of the term yields an

encryption with a non atomic key, the evaluation fails and there is no output. The third

rule corresponds to the special case of an output of a freshly generated channel name.

In such a case, the channel is not added to the frame but it is implicitly assumed known

to the attacker, as all the channel names. These three rules are the only observable

actions. The two remaining rules are quite standard and are unobservable (τ action)

from the point of view of the attacker. The relation
α1...αn−−−−−→ between configurations

(where α1 . . . αn is a sequence of actions) is defined as the transitive closure of
α
−→.

Given a sequence of observable actions tr, we write K
tr
==⇒ K ′ when there exists

a sequence α1 . . . αn such that K
α1...αn−−−−−→ K ′ and tr is obtained from α1 . . . αn by

erasing all occurrences of τ . For every protocol P , we define its set of traces as follows:

trace(P ) = {(tr, φ) | P
tr
==⇒ (P;φ) for some configuration (P;φ)}.

Note that, by definition of trace(P ), trφ↓ only contains terms from T0(Σc,Σ0 ∪N ).

Example 3 Consider the following sequence tr:

tr = out(cA, ch1).out(cB , ch2).out(ch1,w1).in(ch2,w1).
out(ch2,w2).in(ch2, R0).out(ch2,w3).in(ch1,w3)

where R0 = 〈proj1/5(w2), proj4/5(w2), proj5/5(w2)〉, and proji/5 is used as a shortcut

to extract the ith component of a 5-uplet. Actually such a sequence of actions allows

one to reach the following frame with tenc = enc(〈na,m, a, b〉, kas):

φ = {w1 ⊲ 〈m, a, b, tenc〉,w2 ⊲ 〈m, a, b, tenc, enc(〈nb,m, a, b〉, kbs)〉,w3 ⊲ 〈m, tenc〉}.

We have that (tr, φ) ∈ trace(POR). The first five actions actually correspond to a

normal execution of the protocol. Then, the agent who plays PB will accept in input the

message built using R0, i.e. u = 〈m, enc(〈na,m, a, b〉, kas), enc(〈nb,m, a, b〉, kbs)〉.
Indeed, this message has the expected form. At this stage, the agent who plays PB is

waiting for a message of the form: u0 = 〈m, zas, enc(〈nb, yab〉, kbs)〉. The substitution

σ = {zas ⊲ tenc, yab ⊲ 〈m, a, b〉} is such that u = u0σ. Once this input has been

done, a message is outputted (action out(ch3,w3)) and given in input to PA (action

in(ch1,w3)).

Note that, at the end of the execution, A and B share a key but it is not the expected

one, i.e. one freshly generated by the trusted server, but 〈m, a, b〉.

RR n° 8546



8 Chrétien, Cortier, & Delaune

2.3 Trace equivalence

Intuitively, two protocols are equivalent if they cannot be distinguished by any attacker.

Trace equivalence can be used to formalise many interesting security properties, in

particular privacy-type properties, such as those studied for instance in [9]. We first

introduce a notion of intruder’s knowledge well-suited to cryptographic primitives for

which the success of decrypting is visible.

Definition 2 Two frames φ1 and φ2 are statically equivalent, φ1 ∼ φ2, when we have

that dom(φ1) = dom(φ2), and:

• for any recipe R, Rφ1↓ ∈ T0(Σc,Σ0 ∪N ) iff Rφ2↓ ∈ T0(Σc,Σ0 ∪N ); and

• for all recipes R1 and R2 such that R1φ1↓, R2φ1↓ ∈ T0(Σc,Σ0 ∪ N ), we have

that R1φ1↓ = R2φ1↓ iff R1φ2↓ = R2φ2↓.

Intuitively, two frames are equivalent if an attacker cannot see the difference be-

tween the two situations they represent. If some computation fails in φ1 for some

recipe R, i.e. Rφ1↓ is not a message, it should fail in φ2 as well. Moreover, φ1 and φ2
should satisfy the same equalities. In other words, the ability of the attacker to distin-

guish whether a recipe R produces a message, or whether two recipes R1, R2 produce

the same message should not depend on the frame.

Example 4 Consider φ1 = φ∪ {w4 ⊲ 〈m, a, b〉}, and φ2 = φ∪ {w4 ⊲ n} where n is a

name. Let R = proj1(w4). We have that Rφ1↓ = m ∈ T0(Σc,Σ0 ∪ N ), but Rφ2↓ =
proj1(n) /∈ T0(Σc,Σ0 ∪ N ), hence φ1 6∼ φ2. This non static equivalence can also be

established considering the recipesR1 = 〈proj1(w3), a, b〉 andR2 = w4. We have that

R1φ1↓, R2φ1↓ ∈ T0(Σc,Σ0 ∪N ), and R1φ1↓ = R2φ1↓ whereas R1φ2↓ 6= R2φ2↓.

Intuitively, two protocols are trace equivalent if, however they behave, the resulting

sequences of messages observed by the attacker are in static equivalence.

Definition 3 A protocolP is trace included in a protocolQ, writtenP ⊑ Q, if for every

(tr, φ) ∈ trace(P ), there exists (tr′, φ′) ∈ trace(Q) such that tr = tr′ and φ ∼ φ′. The

protocols P and Q are trace equivalent, written P ≈ Q, if P ⊑ Q and Q ⊑ P .

As illustrated by the following example, restricting messages to only contain atoms

in key position also provides the adversary with more comparison power when vari-

ables occurred in key position in the protocol.

Example 5 Let n, k ∈ N and consider the protocol P = in(c, x).out(c, enc(n, k))
as well as the protocol Q = in(c, x).out(c, enc(enc(n, x), k)). An attacker may dis-

tinguish between P and Q by sending a non atomic data and observing whether the

process can emit. Q will not be able to emit since its first encryption will fail. This

attack would not have been detected if arbitrary terms were allowed in key position.

In what follows, we consider determinate protocols as defined in [10], i.e., we

consider protocols in which the attacker knowledge is completely determined (up to

static equivalence) by its past interaction with the protocol participants.

Definition 4 A protocol P is determinate if for any tr, and for any (P1, φ1), (P2, φ2)

such that P
tr
==⇒ (P1, φ1), and P

tr
==⇒ (P2, φ2), we have that φ1 ∼ φ2.

Inria



Typing messages for free in security protocols: the case of equivalence properties 9

Assume given two determinate protocols P and Q such that P 6⊑ Q. A witness of

non-inclusion is a trace tr for which there exists φ such that (tr, φ) ∈ trace(P ) and:

• either there does not exist φ′ such that (tr, φ′) ∈ trace(Q),

• or such a φ′ exists and φ 6∼ φ′.

A witness of non-equivalence for determinate protocols P and Q is a trace tr that

is a witness for P 6⊑ Q or Q 6⊑ P . Note that when a protocol P is determinate,

once the sequence tr is fixed, all the frames reachable through tr are actually in static

equivalence, which ensures the unicity of φ′, if it exists, up-to static equivalence.

Example 6 We wish to check strong secrecy of the exchanged key received by the

agent A for the Otway-Rees protocol. A way of doing so is to check that P 1
OR

≈ P 2
OR

where the two protocols are defined as follows:

• P 1
OR

is as POR but we add the instruction out(c1, xab) at the end of the process

PA;

• P 2
OR

is as POR but we add the instruction new n.out(c1, n) at the end of PA.

The idea is to check whether an attacker can see the difference between the session key

obtained by A and a fresh nonce.

As already suggested by the scenario described in Example 3, the secrecy (and so

the strong secrecy) of the key received by A is not preserved. More precisely, con-

sider the sequence tr′ = tr.out(ch1,w4) where tr is as in Example 3. In particular,

(tr′, φ1) ∈ trace(P 1
OR

) and (tr′, φ2) ∈ trace(P 2
OR

) with φ1 = φ∪{w4 ⊲ 〈m, a, b〉} and

φ2 = φ ∪ {w4 ⊲ n}. As described in Example 4, φ1 6∼ φ2 and thus tr′ is a witness of

non-equivalence for P 1
OR

and P 2
OR

. This witness is actually a variant of a known attack

on the Otway-Rees protocol [14].

3 Existence of a well-typed witness of non-equivalence

In this section, we present our first main contribution: a simplification result that re-

duces the search space for attacks. Roughly, when looking for an attack, we can restrict

ourselves to consider well-typed traces. This results holds for a general class of typing

systems and as soon as the protocols under study are determinate and type-compliant.

We first explain these hypotheses and then we state our general simplification result

(see Theorem 1). The proof of this simplification result involves to provide a novel

decision procedure for trace equivalence in the case of a bounded number of sessions.

The novelty of this decision procedure, in comparison to the existing ones, is to provide

a well-typed witness whenever the two processes are not in trace equivalence. This key

intermediate result is stated in Proposition 1.

3.1 Typing system

Our simplification result holds for a general class of typing systems: we simply re-

quire that types are preserved by unification and application of substitutions. These

operations are indeed routinely used in decision procedures.

Definition 5 A typing system is a pair (T , δ) where T is a set of elements called types,

and δ is a function mapping terms t ∈ T (Σc,Σ0 ∪N ∪ X ) to types τ in T such that:
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10 Chrétien, Cortier, & Delaune

• if t is a term of type τ and σ is a well-typed substitution, i.e. every variable of

its domain has the same type as its image, then tσ is of type τ ,

• for any terms t and t′ with the same type, i.e. δ(t) = δ(t′) and which are

unifiable, their most general unifier (mgu(t, t′)) is well-typed.

We further assume the existence of an infinite number of constants in Σ0 (resp. vari-

ables in X , names in N ) of any type.

A straightforward typing system is when all terms are of a unique type, say Msg. Of

course, our typing result would then be useless to reduce the search space for attacks.

Which typing system shall be used typically depends on the protocols under study. We

present in Section 5 a typing system that allows us to reduce the search space (and then

derive decidability) for a large subclass of (tagged) protocols.

3.2 Well-typed trace

Whether or not a trace is well-typed is defined w.r.t. the set of symbolic traces of a

protocol. Formally, we define
trs−−→s to be the transitive closure of the relation

αs−→s

defined between processes as follows:

in(c, u).P ∪ P
in(c,u)
−−−−→s P ∪ P !P ∪ P

τ
−→s P ′ ∪ !P ∪ P

out(c, u).P ∪ P
out(c,u)
−−−−−→s P ∪ P new n.P ∪ P

τ
−→s P{n

′

/n} ∪ P

new c′.out(c, c′).P ∪ P
out(c,chi)
−−−−−−→s P{

chi/c′} ∪ P

where P ′ is equal to P up to renaming of variables that do not occur yet in the trace

with fresh ones (of the same type), n′ is a fresh name (of the same type as n), and chi
is the “next” fresh channel name available in Chfresh.

Then, the set of symbolic traces traces(P ) of a protocol P is defined as follows:

traces(P ) = {trs | P
trs−→s Q for some Q }.

Intuitively, the symbolic traces are simply all possible traces before instantiation of

the variables, with some renaming to avoid unwanted captures.

Example 7 Let P1 = in(c, x).!new k. in(c, enc(〈x, y〉, k)). We have that:

trs = in(c, x).in(c, enc(〈x, y1〉, k1)).in(c, enc(〈x, y2〉), k2) ∈ traces(P1)

Indeed, the variable x is bound before replication.

As stated in the lemma below, any concrete trace is the instance of a symbolic trace.

Lemma 1 Let P be a protocol and (tr, φ) ∈ trace(P ). We have that trφ↓ = trsσ for

some trs ∈ traces(P ) and some substitution σ.

A well-typed trace is simply a trace that is well-typed w.r.t. one of the symbolic

traces. Since keys are atomic, some executions may fail when a protocol is about to

output a term that contains an encryption with a non atomic key. To detect these be-

haviours, we need to consider slightly ill-typed traces. Formally, we consider a special

constant ω ∈ Σ0. Its usefulness is illustrated in Example 8.

Definition 6 A first-order trace of P is a sequence tr = trsσ where trs ∈ traces(P )
and σ is a substitution such that for any io(c, u) that occurs in trs with io ∈ {in, out}
and u not a channel, then uσ ∈ T0(Σc,Σ0 ∪N ∪ X ). The trace tr is said to be:

Inria



Typing messages for free in security protocols: the case of equivalence properties 11

• well-typed w.r.t. a typing system (T , δ) if there exists such a σ that is well-typed;

• pseudo-well-typed w.r.t. a typing system (T , δ) if there exists such σ, as well as

c0 ∈ Σ0 and σ′ such that σ = σ′{〈ω,ω〉/c0} with σ′ well-typed.

Then a trace (tr, φ) ∈ trace(P ) is well-typed (resp. pseudo-well-typed) if trφ↓ is

well-typed (resp. pseudo-well-typed).

Note that Lemma 1 ensures that trφ↓ is a first-order trace of P , and a well-typed

trace is also pseudo-well-typed.

Example 8 Going back to Example 5, let tr = in(c, 〈ω, ω〉).out(c,w1). We have that

(tr, {w1 ⊲ enc(n, k)}) ∈ trace(P ) while there exists no frame ψ such that (tr, ψ) ∈
trace(Q). Consider the typing system (T , δ) such that δ(t) = atom for any atom or

variable t and δ(t) = ¬atom if t is not an atom. We can see there exists no well-

typed witness of P 6≈ Q (while P and Q are type-compliant as defined in Definition 7).

However, the witness (tr, {w1 ⊲ enc(n, k)}) of P 6⊑ Q is pseudo-well-typed (note that

〈ω, ω〉 occurs in tr). Intuitively, pseudo-well-typed traces harness the ability for the

attacker to use the protocol as an oracle to test if some terms (when used in a key

position) are atomic.

3.3 Type compliance

Our main assumption on the typing of protocols is that any two unifiable encrypted

subterms are of the same type. The goal of this part is to state this hypothesis formally.

Due to the presence of replication, we need to consider two copies of protocols in

order to consider different instances of the variables. Given a protocol P with replica-

tion, we define its 2-unfolding unfold2(P ) to be the protocol such that every occurrence

of a process !R in P is replaced by R | R, and some α-renaming is performed on one

copy to ensure names and variables distinctness of the resulting process. Note that if P
is a protocol that does not contain any replication, we have that unfold2(P ) = P .

Example 9 Let P1 be the protocol defined in Example 7. We have that:

unfold2(P1) = in(c, x).(new k1.in(c, enc(〈x, y1〉, k1)) | new k2.in(c, enc(〈x, y2〉, k2)))

We write St(t) for the set of (syntactic) subterms of a term t, and ESt(t) the set of

its encrypted subterms, i.e. ESt(t) = {u ∈ St(t) | u is of the form enc(u1, u2)}. We

extend this notion to sets/sequences of terms, and to protocols as expected.

Definition 7 A protocol P is type-compliant w.r.t. a typing system (T , δ) if for every

t, t′ ∈ ESt(unfold2(P )) we have that: t and t′ unifiable implies that δ(t) = δ(t′).

3.4 Main result

We are now ready to state our first main contribution: if there is an attack, then there

is a pseudo-well-typed attack. This result holds for protocols with replications and

nonces.

Theorem 1 Let P and Q be two determinate protocols type-compliant w.r.t. (T1, δ1)
and (T2, δ2) respectively. We have that P 6≈ Q if, and only if, there exists a witness of

non-equivalence tr such that:
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12 Chrétien, Cortier, & Delaune

• either (tr, φ) ∈ trace(P ) for some φ and (tr, φ) is pseudo-well-typed w.r.t.

(T1, δ1);

• or (tr, ψ) ∈ trace(Q) for some ψ and (tr, ψ) is pseudo-well-typed w.r.t. (T2, δ2).

The key step for proving Theorem 1 is to provide a decision procedure, in the

bounded case (i.e. processes without replication), that returns a pseudo-well-typed

witness of non-equivalence.

Proposition 1 Let P and Q be two determinate protocols without replication. There

exists an algorithm that decides whether P ≈ Q and if not, returns a witness tr of

non-equivalence. Moreover, if P and Q are type-compliant w.r.t. (T1, δ1) and (T2, δ2)
respectively, the witness tr of non-equivalence returned by the algorithm is such that:

• either (tr, φ) ∈ trace(P ) for some φ and (tr, φ) is pseudo-well-typed w.r.t.

(T1, δ1);

• or (tr, ψ) ∈ trace(Q) for some ψ and (tr, ψ) is pseudo-well-typed w.r.t. (T2, δ2).

This algorithm is presented in Appendix A, and its properties are proven in Appen-

dices B and C. The main idea is to assume given a decision procedure (for a bounded

number of sessions) for reachability properties such as those proposed in [19, 15, 22]

and to built on top of it a decision procedure for trace equivalence. Our procedure is

carefully design to only allow unification between encrypted subterms. To achieve this,

1. we use as a reachability blackbox one that satisfies this requirement. Most of

the existing algorithms (e.g. [19, 15, 22]) were not designed with such a goal in

mind. However, in the case of the algorithm given in [15], it has already been

shown how it can be turned into one that satisfies this requirement [16].

2. we design carefully the remaining of our algorithm to only consider unification

between encrypted subterms.

This design allows us to provide a pseudo-well-typed witness when the protocols

under study are type-compliant and not trace equivalent.

Then, relying on Proposition 1, the proof of Theorem 1 is almost immediate. In-

deed, whenever two determinate type-compliant protocols P and Q are not in trace

equivalence, there exists a witness of non-inclusion for P ⊑ Q (or Q ⊑ P ) for a

bounded version of P and Q (unfolding the replications).

4 Decidability result

Now, assuming finitely many terms of each type, and in particular finitely many nonces,

we obtain a new decidability result for trace equivalence, for an unbounded number of

sessions. Compared to [13], we no longer need to restrict the number of variables per

transition (to one), we allow variables in key positions, and we are more flexible in the

control-flow of the program (we may have arbitrary sequences of in and out actions).

Inria



Typing messages for free in security protocols: the case of equivalence properties 13

4.1 Simple processes

To establish decidability, we consider the class of simple protocols as given in [12] but

we do not allow name restriction. Intuitively, simple protocols are protocols such that

each copy of a replicated process has its own channel. This reflects the fact that due to

IP addresses and sessions identifiers, an attacker can identify which process and which

session he is sending messages to (or receiving messages from).

Definition 8 A simple protocol P is a protocol of the form PU | PB where:

• PU =!new c′1.out(c1, c
′
1).B1 | ... | !new c′m.out(cm, c

′
m).Bm; and

• PB = Bm+1 | . . . | Bm+n.

Each Bi with 1 ≤ i ≤ m (resp. m < i ≤ m + n) is a ground process on channel c′i
(resp. ci) built using the following grammar:

B := 0 | in(c′i, u).B | out(c′i, u).B where u ∈ T0(Σc,Σ0 ∪N ∪ X ).
Moreover, we assume that c1, . . . , cn, cn+1, . . . , cn+m are pairwise distinct.

Example 10 The protocol presented in Example 2 is not simple yet: we need to con-

sider only finitely many nonces. To achieve this, we may remove all the instructions

”new n” with n ∈ N that occur in the process. Note that removing for instance

”new na” from the process PA means that na is still modelled as a name, and thus it

is unknown to the attacker. However, we do not assume anymore that a fresh nonce is

generated at each session.

Simple protocols form a large class of protocols that are determinate: the attacker

knows exactly who is sending a message or from whom he is receiving a message.

Actually, given a simple protocol P and a sequence of observable actions tr, there is

a unique configuration (P;φ) (up to some internal reduction steps) such that P
tr
==⇒

(P;φ).

Lemma 2 A simple protocol is determinate.

4.2 Main result

Our decidability result relies on the assumption that there are finitely many terms of

each type (of the protocol), once the number of constants is bound for each type.

Formally, we say that a typing system (T , δ) is finite if, for any set A ⊆ N ∪
Σ0 such that there is a finite number of names/constants of each type, then there are

finitely many terms of each type, that is, for any τ ∈ T , the following set is finite and

computable:

{t ∈ T (Σc,A) | δ(t) = τ}.

Theorem 2 The problem of deciding whether two simple protocols P and Q, type-

compliant w.r.t. some finite typing systems (T1, δ1) and (T2, δ2) are trace equivalent

(i.e. P ≈ Q) is decidable.

Proof. (Sketch) Since simple protocols are determinate (see Lemma 2), we obtain,

thanks to our typing result (Theorem 1), the existence of well-typed witness of non-

equivalence when such a witness exists. We further show that we can bound the number

of useful constants in the witness trace. We then derive from the finiteness of the typing

system that the witness trace uses finitely many distinct terms. Therefore, after some

point, the trace only reproduces already existing transitions. Using the form of simple

protocols, we can then show how to shorten the length of the witness trace. �
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5 Application: tagged protocols

In this section, we instantiate our general results (Theorems 1 and 2) by exhibiting a

class of protocols that is type-compliant for rather fine-grained typing systems. We con-

sider tagged protocols, for a notion of tagging similar to one introduced by Blanchet [8].

Assume given a protocol P and an unfolding P ′ of it (remember that when com-

puting unfold2(P ) names and variables are renamed to avoid clashes). Let u be a term

in T (Σc,ΣP ∪N ′
P ∪ X ′

P ) where ΣP , N ′
P , X ′

P are the constants, names, and variables

occurring in P ′, we denote by u the transformation that replaces any name and variable

occurring in u by its representative in NP and XP where NP and XP are the names

and variables occurring in P .

Definition 9 A protocol P is tagged if there exists a substitution σP such that for any

s1, s2 ∈ ESt(unfold2(P )) with s1 and s2 unifiable, we have that s1σP = s2σP .

Tagging can easily be enforced by labelling encrypted terms, as proposed in [8].

Definition 10 A protocol P is strongly tagged if:

1. any term in ESt(P ) is of the form enc(〈c,m〉, k) for some c ∈ Σ0; and

2. there exists σP such that for any s, t ∈ ESt(P ) with s = enc(〈c0, s1〉, s2) and

t = enc(〈c0, t1〉, t2) for some c0 ∈ Σ0, we have that sσP = tσP .

The second condition requires that there is a a substitution that unifies any two

tagged terms unless their tags differ. This condition is easy to achieve for executable

protocols. More precisely, assume a protocol admits an execution where each protocol

step (in and out) is executed once (i.e. there is one honest execution). This protocol

can be easily strongly tagged by adding a distinct tag in each encrypted term.

Lemma 3 Let P be a protocol. If P is strongly tagged then P is tagged.

Example 11 In our modelling of the Otway-Rees protocol, the protocols P 1
OR

and P 2
OR

(as described in Example 6) are not tagged. For instance, consider the terms s1 =
enc(〈na,m, a, b〉, kas) and s2 = enc(〈na, xab〉, kas). Both are encrypted subterms

of PA (and thus of unfold2(P 1
OR

) and unfold2(P 2
OR

)) and s1 and s2 are unifiable. Now,

let s3 = enc(〈za, kab〉, kas). Actually, s3 is an encrypted subterm of PS which is

unifiable with s2. However, there exists no substitution σ such that s1σ = s2σ = s3σ.

We can consider a tagged, and safer, version of the Otway-Rees protocol by intro-

ducing 4 different tags, denoted 1,2,3 and 4, that are modelled using constants from Σ0.

P ′
OR

=! new c1.out(cA, c1).P
′
A | ! new c2.out(cB , c2).P

′
B | ! new c3.out(cS , c3).P

′
S

P ′
A = new m.new na. out(c1, 〈m, a, b, enc(〈1, na,m, a, b〉, kas)〉).

in(c1, 〈m, enc(〈2, na, xab〉, kas)〉)

P ′
B = in(c2, 〈ym, a, b, yas〉).

new nb. out(c2, 〈ym, a, b, yas, enc(〈3, nb, ym, a, b〉, kbs)〉).
in(c2, 〈ym, zas, enc(〈4, nb, yab〉, kbs)〉).out(c2, 〈ym, zas〉)

P ′
S = in(c3, 〈zm, a, b, enc(〈1, za, zm, a, b〉, kas), enc(〈3, zb, zm, a, b〉, kbs)〉).

new kab. out(c3, 〈zm, enc(〈2, za, kab〉, kas), enc(〈4, zb, kab〉, kbs)〉)

and P ′1
OR

and P ′2
OR

are defined similarly as P 1
OR

and P 2
OR

relying on P ′
OR

instead of

POR. Note that tr′ is no longer a witness of P ′1
OR

6≈ P ′2
OR

as the attack has been removed
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Typing messages for free in security protocols: the case of equivalence properties 15

by this tagging scheme. We can show that P ′
OR

is strongly tagged: consider the natural

execution of P ′
OR

, matching inputs and outputs as intended. From this execution we

can define:

σP = {xab ⊲ kab, ym ⊲ m, yas ⊲ enc(〈1, na,m, a, b〉, kas)〉,
zas ⊲ enc(〈2, na, kab〉, kas), zm ⊲ m, za ⊲ na, zb ⊲ nb}.

It is then easy to check that for any two terms s1 and s2 that are unifiable, their in-

stances by σP are actually identical.

For any tagged protocol, we can infer a finite typing system, and show the type-

compliance of the tagged protocol w.r.t. this typing system. Thus, relying on Theo-

rem 2, we derive the following decidability result for simple and tagged protocols.

Corollary 1 The problem of deciding whether two simple and tagged protocols P
and Q are trace equivalent (i.e. P ≈ Q) is decidable.

Proof. (Sketch) The first step of the proof consists in associating to a tagged protocol P ,

a typing system (TP , δP ) such that P is type-compliant w.r.t. (TP , δP ). Intuitively,

(TP , δP ) is simply induced by σP , the substitution ensuring the tagged condition in

Definition 9. For example, the type of a closed term t is t itself while the type of a

variable x in P is simply xσP . This definition is then propagated to any term. With

such typing systems, we can show that the size of a term (i.e. number of function

symbols) is smaller than the size “indicated” by its type (i.e. the size of the type,

viewed as a term). Thus the typing system (TP , δP ) is finite. We then conclude by

applying Theorem 2. �

Example 12 Consider the protocols P ′1
OR

and P ′2
OR

obtained from P ′1
OR

and P ′2
OR

by

removing the instructions corresponding to a name restriction. These protocols are

still strongly tagged and are now simple. Thus, our algorithm can be used to check

whether these two protocols are in trace equivalence or not. This equivalence actually

models a notion of strong secrecy of the key received by A. Since we have bounded

the number of nonces, this equivalence does not require that the key is renewed at each

session but it requires the key to be indistinguishable from a (private) name, n in our

setting.

6 Conclusion

Decidability results for unbounded nonces are rare and complex, even in the reachabil-

ity case. One of the only results has been established by Ramanujam and Suresh [20],

assuming a particular tagging scheme (which itself involves nonces). We plan to ex-

plore whether our typing result could be applied to the tagging scheme defined in [20],

to derive decidability of trace equivalence in the presence of nonces.

Our main typing result relies on the design of a new procedure in the case of a

bounded number of sessions, that preserves typing. Specifically, we show that it is

sufficient to consider only unification between encrypted (sub)terms. We think that

this result can be applied to existing decision procedures (in particular SPEC [21] and

also APTE [11], with some more work) to speed up their corresponding tools. As

future work, we plan to implement this optimisation and measure its benefit.
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Section A aims at introducing the decision procedure needed to prove Proposition

1 and Theorem 1. Section B will focus on the proof of completeness of the said pro-

cedure, as stated in Proposition 4 later in the appendix. Section C will provide the

complete proofs of Proposition 1 and Theorem 1. Section D will prove Theorem 2 and

Section E will finally prove Corollary 1.

In the following, the application of a substitution σ to a term u will be written uσ.

We denote dom(σ) its domain, and img(σ) its image. A ground substitution is a

substitution such that vars(u) = ∅ for each u ∈ img(σ).

A A type preserving decision algorithm for bounded

processes

In this section, we provide a new decision procedure for trace equivalence in the case

of a bounded number of sessions to prove Proposition 1, and is thus pivotal in proving

Theorem 1. The novelty of this procedure is to provide a well-typed witness whenever

the two protocols are not in trace equivalence. A bounded number of sessions means

formally that we consider the case of bounded protocols, namely determinate protocols

without replication and thus without name restriction.

A.1 Reachability blackbox

The main idea is to assume given a decision procedure (for a bounded number of ses-

sions) for reachability properties. Several decision procedures have already been pro-

posed [19, 15, 22]. They are based on constraint solving techniques and even if they

differ on the way the constraints are solved, the basic ideas are actually the same. These

decision procedures actually do not simply say whether some state is reachable or not.

They also provide a finite representation of all possible executions. More precisely,

these algorithms compute a finite set of first-order (symbolic) traces that are in solved

form, i.e. such that these traces are actually valid first-order traces when the variables

are interpreted as constants.

Definition 11 Let trs = io1(c1, u1) . . . ion(cn, un) be a first-order trace of P . Its

associated frame is

φs = {w1 ⊲ ui1 , . . . ,wℓ ⊲ uiℓ}.

where i1 . . . iℓ is the increasing sequence of indices that captures all the outputs of

terms of the trace trs, i.e. such that

{i1, . . . , iℓ} = {j | ioj = out and uj is not a channel}

Definition 12 A first-order trace trs = io1, . . . , ion is valid if for all 1 ≤ i ≤ n,

whenever, ioi = in(ci, ui), we have that Rφs↓ = ui for some R ∈ T (Σ,Σ0 ∪W ∪X )
where φs is the frame associated to the first-order trace io1 . . . ioi (i.e. trs up to the

index i).

Executions, i.e. traces of trace(P ), are exactly valid instances of symbolic traces

(i.e., valid instances of traces(P )).
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Lemma 4 Let P be a bounded protocol. We have that:

{tr | tr is a ground and valid first-order trace of P}
=

{trφ↓ | (tr, φ) ∈ trace(P )}

Proof. The inclusion

{trφ↓ | (tr, φ) ∈ trace(P )} ⊆ {trσ | tr ∈ traces(P ), σ ground and trσ is valid}

comes from Lemma 1 which is recalled and proven below. We need to prove that σ
is ground, which can be seen in its proof, as θ is ground; and moreover trσ is valid as

trσ = trφ↓.

Next, we need to show that {trσ | tr ∈ traces(P ), σ ground and trσ is valid} ⊆
{trφ↓ | (tr, φ) ∈ trace(P )}. Once again a similar induction as the one performed

in the proof of Lemma 1 defines a trace (tr, φ) ∈ trace(P ), the validity hypothesis

ensuring that each transition in the concrete semantics is indeed possible. �

Lemma 1 Let P be a protocol and (tr, φ) ∈ trace(P ). We have that trφ↓ = trsσ for

some trs ∈ traces(P ) and some substitution σ.

Proof. As the symbolic semantics defined in Section 3.2 closely match the semantics

described in Section 2.2, as (tr, φ) ∈ trace(P ) we can define an execution for this trace

for the → relation which easily corresponds to an execution trs for the →s relation. A

substitution σ can then be defined inductively on the length of tr: σ0 = id if tr is of

length 0, and, assuming we defined σn, we extend σn+1 as follows:

• if the next action in tr is in(c, R) and in(c, u) in trS : there exists a substitution θ
such that Rφ↓ = uσnθ as (tr, φ) ∈ trace(P ). Then σn+1 = σn ∪ θ. Note that

because variables are always assumed to be independently renamed, if u binds a

variable x, x /∈ dom(σn). We moreover have that Rφ↓ = uσn+1.

• if the next action in tr is out(c,w) and out(c, u) in trS : then σn+1 = σn. wφ = u
comes directly from the output rule in Section 2.2.

• if the next action in tr is out(c, chi) and out(c, chi) in trS : then σn+1 = σn, as

both rules, concrete and symbolic, are identical.

�

Definition 13 An algorithm B is a reachability blackbox if it takes as input a first-

order trace tr (issued from a bounded protocol P ), and returns as output a finite set of

substitutions σ1, ..., σn (with dom(σi) ⊆ vars(tr)) such that:

• for each i, the first-order trace trσi is valid; and

• if σ is such that trσ is a valid first-order trace of P then there exists i, and a

substitution τ such that (i) trσ = trσiτ , and (ii) for every x ∈ vars(trσi) there

exists Rx ∈ T (Σ,Σ0 ∪ {w1, ...,windx}) such that Rxφ↓ = xτ where φ is the

frame associated to trσ and indx is the number of outputs that occur in trsσi
before the first occurrence of an input that contains the variable x.

All the three decision procedures proposed in [19, 15, 22] are actually reachability

blackboxes.
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A.2 Our algorithm for trace equivalence

Our algorithm AB makes use of a reachability blackbox B. It takes as input two

bounded protocols P and Q and returns yes when P ≈ Q; and a minimal (in term

of number of actions) witness tr of non-equivalence otherwise.

Our algorithm AB(P,Q) It consists of the following steps starting at level 1 until ℓ
where ℓ denotes the maximal length (i.e. number of actions) of a trace in traces(P ) or

traces(Q). Note that since P and Q are bounded, traces(P ) and traces(Q) are finite.

If nothing has been returned yet (i.e. when the iteration steps for level ℓ has been done),

then it returns yes, i.e. P and Q are trace equivalent.

Iteration steps for level n:

1. Consider every symbolic trace tr0 in traces(P ) of length n and apply B to it.

Consider any substitution σ0 returned by B. We have that tr1 = tr0σ0 is a valid

first-order trace.

2. For any s, t ∈ ESt(tr1) that are unifiable and such that tr1σ1 is a first-order trace

of P where σ1 = mgu(s, t), apply B to tr2 = tr1σ1. Consider any substitution

σ2 returned by B: tr2σ2 is a valid first-order trace.

3. Consider a bijective renaming ρ from vars(tr2σ2) towards “fresh” public con-

stants. Build a trace (tr, φ) ∈ trace(P ) such that trφ↓ = (tr2σ2)ρ. Its existence

is ensured by Lemma 4

4. Check whether there exists ψ such that (tr, ψ) ∈ trace(Q). If such a frame does

not exist, then return tr. Otherwise, let ψ be a resulting frame.

5. LetKφ (resp. Kψ) be the subset of img(ρ) of constants occurring in key position

in φ (resp. ψ). Check whether Kψ ⊆ Kφ. If there exists c0 ∈ Kψ r Kφ then

return tr{〈ω,ω〉/c0}. Otherwise, perform step 6.

6. Check whether φ ∼ ψ. If the frames are not in static equivalence then return tr.

Otherwise, perform steps 1 to 6 by swapping the role of P and Q.

A.3 Termination, soundness, and completeness

Deducibility and static equivalence are well known to be decidable for standard primi-

tives.These two decidability results can easily be adapted in our setting. It is therefore

easy to establish termination.

Proposition 2 (termination) Let P and Q be two bounded protocols. The algorithm

AB applied on P and Q terminates.

Proof. Termination is ensured by the termination of the blackbox and the decidability

of static equivalence. �

A trace returned by our algorithm is indeed a witness of non-equivalence.

Proposition 3 (soundness) Let P and Q be two bounded protocols. If the algorithm

AB applied on P and Q returns a witness tr of non-equivalence, then we have that

P 6≈ Q.
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Proof. Step 4 clearly returns a witness of non equivalence. At step 5, AB returns a trace

that is executable in P but which fails inQ since some key becomes non atomic, which

yields again a witness of non equivalence. For step 6, note that checking static equiv-

alence for only one resulting frame ψ is actually sufficient thanks to the determinacy

hypothesis. �

Establishing completeness is more involved. The main difficulty is to ensure that

unification performed at step 2 of the algorithm is sufficient to produce all possible

relevant equalities. In particular, to capture static equivalence, we have to ensure that

this is sufficient to consider tests R, R′ that reduce to some encrypted subterms. The

fact that we consider only unification between encrypted subterms is a key element

for proving that our algorithm indeed returns a well-typed witness when P and Q are

non-equivalent (cf. Section A.4).

Proposition 4 (completeness) Let P and Q be two bounded protocols such that P 6≈
Q. The algorithm AB applied on P and Q returns a minimal (in term of number of

actions) witness tr of non-equivalence.

Proof. (Sketch) Since protocols are determinate, it is sufficient to check static inclusion

instead of static equivalence [10]. Static inclusion, denoted φ ⊑s ψ, is when ψ satisfies

all the equalities of φ, and Rψ↓ is a message as soon as Rφ↓ is a message. So if

P 6≈ Q, there exists a witness trace tr such that (tr, φ) ∈ trace(P ) for some φ and

1. either (tr, ψ) 6∈ trace(Q) for any ψ;

2. or for every ψ such that (tr, ψ) ∈ trace(Q), we have that φ 6⊑s ψ.

(or the contrary swapping the role of P and Q.)

In the first case, using Lemma 4, the procedure B would output a valid trace tr′

such that trφ↓ = tr′σ for some σ. We can then play tr′ in Q and show that if it were a

valid trace in Q, tr would also be a valid trace in Q, contradiction. We deduce that AB

would output tr′ (at step 4 or 5), a witness of non-equivalence.

In the second case, following the notation of the previous case, we have that (tr′, ψ′) ∈
trace(Q) for some ψ′ (the choice of the frame is not relevant since they are all in static

equivalence due to determinacy of Q). The proof then involves a fine analysis of the

relevant equalities that may yield to non static equivalence. We show that whenever

there is a witness of non static inclusion for tr (this witness can be an equality test or

a test checking whether a given recipe yields a message or not), then there is indeed a

trace tr considered at step 2 for which we can exhibit a transformed test that witnesses

non static inclusion for tr′. �

The full proof is provided in Section B.2.

A.4 Type-preservation

The specificity of the algorithm we proposed in the previous section is that it further

provides a pseudo-well-typed witness whenever the two processes are not in trace

equivalence. This can not be achieved using any arbitrary blackbox B. We have to

require that the blackbox B is type-preserving.

Definition 14 A reachability blackbox B is type-preserving if: for any typing system

(T , δ), for any protocol P type-compliant w.r.t. (T , δ), for any well-typed first-order

trace trs of P given as input, it outputs well-typed substitutions σ1, . . . , σn such that:
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ESt(trsσi) ⊆ ESt(trs)σi for any i ∈ {1, . . . , n}.

Lemma 5 A type-preserving reachability blackbox exists.

Most of the existing algorithms (e.g. [19, 15, 22]) are actually not type-preserving

(since they were not designed with such a goal in mind). However, in the case of the

algorithm given in [15], it has already been shown how it can be turned into a type-

preserving reachability blackbox [16].

Theorem 3 Let P and Q be two bounded protocols type-compliant w.r.t. (T1, δ1)
and (T2, δ2) respectively, and such that P 6≈ Q. Assume the algorithm AB uses a

type-preserving reachability blackbox B and a well-typed renaming ρ at step 3. Then

AB(P,Q) returns a trace tr such that

• either (tr, φ) ∈ trace(P ) for some φ and (tr, φ) is pseudo-well-typed w.r.t.

(T1, δ1);

• or (tr, ψ) ∈ trace(Q) for some ψ and (tr, ψ) is pseudo-well-typed w.r.t. (T2, δ2).

The proof of Theorem 3 follows from the fact that AB(P,Q) only manipulates

well-typed traces. Indeed, it starts from traces provided by B, which are well-typed

since B is type-preserving. Then AB considers only unification between encrypted

subterms (which are instances of the encrypted subterms of the protocols). Since P are

Q are type-compliant, the resulting traces are well-typed. Actually, AB will output a

well-typed trace when a failure occurs at step 4 or at step 6, and a pseudo-well-typed

trace when failure occurs at step 5. The complete proof is provided in Section C.

B Proof of Proposition 4

The proof of Proposition 4 requires a number of technicalities so as to reduce a concrete

witness of non-equivalence between two protocols into a valid output of the algorithm

described in Section A. In particular, recipes used by the attacker to discriminate be-

tween two frames need to be modified to be proper tests in the symbolic frames intro-

duced by the said algorithm. Section B.1 will deal with this aspect; while Section B.2

will define a more operational notion of static equivalence and formally link symbolic

traces from the algorithm to concrete executions of the protocols, which will be needed

to finally prove Proposition 4.

B.1 Simplifying recipes

In this section, we present how equalities between arbitrary recipes can be transformed

into a set of equalities between recipes sharing interesting properties, defined in the next

definitions. In the following, φ and ψ represent two (concrete) frames, while φS and

ψS are two symbolic frames such that φ = φSλP and ψ = ψSλQ, where λP = (θφ)↓
and λQ = (θψ)↓ and θ is a substitution such that (vars(φS) ∪ vars(ψS)) ⊆ dom(θ)
and img(θ) ⊆ T0(Σ,Σ0 ∪ W). These relations are justified later by Lemmas 19 and

21 in Section B.2.

The notions of precompact and compact recipes restrict the tests that can be made

by the attacker when trying to distinguish between two frames. Lemma 18 in Section

B.2 will prove later this is not, in our setting, an actual restriction.
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Definition 15 (precompact recipe) Given a frame φ, a recipeR is said to be φ-precompact

if:

• Rφ↓ is a message

• R contains only destructors

• Rφ↓ is neither a pair nor an encryption by a key deducible in φ

We now introduce the notion of symbolic second-order trace, which is helpful to

reason on the objects generated in the decision algorithm of Section A.

Definition 16 (trS , φS) is a symbolic second-order trace of a protocol P if there exists

a bijective renaming ρ from vars(trSφS↓) such that (trSρ, φSρ) ∈ trace(P ). In that

case, φS is called a symbolic frame.

Definition 17 (compact recipe) Given a symbolic frame φS ,R is said to be φS-compact

if R is φS-precompact and RφS↓ is not a variable.

A recipe R is said to be destructor-only if R ∈ T (Σd,Σ0 ∪W ∪ X ), i.e. contains no

constructor.

We introduce a new predicate on recipe, msg, with the natural semantics: φ |=
msg(R) if Rφ↓ is a message (with or without variables, i.e. an element of T0(Σc,Σ0 ∪
N ∪ X )). Given a term, we introduce a rightmost-first order on its positions, which

corresponds to the anti-lexicographic order on positions in a term, denoted by <. ≪
denotes the order on positions such that p ≪ q iff q is a strict prefix of p. Note that:

p ≪ q ⇒ p < q. We will sometimes refer to a term as the rightmost term verifying

a property, i.e. the term verifying this property whose position is the lowest by the <
order.

Definition 18 (transformation of concrete recipes for φ) Given φ, a destructor-only

recipe R, φS and θ as introduced earlier, we define this transformation T as follows:

• if there exists R′ ∈ st(R) such that R = C[R′] and R′ is the rightmost recipe

verifying one the following two conditions:

1. if R′ = dec(R1, R2) and there exists a variable x such that R1φS↓ =
enc(t, x) andR2 6= x for some term t, then T (R,R) = (C[dec(R1, x)],R∪
{msg(dec(R1, x))})

2. else, and if there exists a variable y such that R′φS↓ = y and R′ 6= y, then

T (R,R) = (C[yθ]⇓,R∪ {R′ = y})

• if no such recipe exists, T (R,R) = (R,R);

where ⇓ is the normal form associated to the rewriting rules πi(〈x1, x2〉) → xi and

dec(enc(x, y), z) → x.

We denote the iterated application of T to (R, ∅) by T ∗(R) or T m(R) (when iter-

ated m times).

The iterated transformation T ∗ aims at transforming a φ-precompact recipe (which

is still a quite general class of recipes) into a φS-compact recipe, i.e. a recipe which

can reduce properly in a symbolic frame and will satisfy somewhat similar equalities.

The next lemmas will gradually prove the properties we need for T ∗, ultimately ending

with Lemmas 15, 16 and 17.
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Lemma 6 (consistency of R) Let R be a destructor-only recipe, T ∗(R) = (R∗,R):
if Rφ↓ is a message, φS |= R.

Proof. A test msg(dec(R, x)) or R = x is added to R in Definition 18 only if RφS↓ =
enc(t, x) where t is a term (in the first case) or if RφS↓ = x (in the second case). As

φS only contains symbolic messages in its image; t has to be a symbolic message. �

This lemma witnesses the fact that the equalities we insert in R, which correspond

to equalities holding in the concrete frame, actually hold in its symbolic version. Lem-

mas 7 and 8 witness rather general properties of destructor-only recipes and of the ⇓
reduction.

Lemma 7 If R is a recipe such that Rφ↓ is a message, then R⇓φ↓ = Rφ↓

Proof. If Rφ↓ is a message, every reduction step of the form dec(enc(x, y), z) ⇒ x in

an innermost derivation in R⇓ happens with yφ = zφ and is then actually a reduction

step of the form dec(enc(x, y), y) → x in Rφ. �

Lemma 8 If R is a destructor-only recipe and φ a frame such that Rφ↓ is a message,

then for every subterm R′ of R, R′φ↓ is a message.

Proof. Suppose there exists a highest (in terms of position, i.e. closest to the root)

subterm R′ of R such that R′φ↓ is not a message and R = C[R′] (and C is linear). Let

us proceed by induction on C to show that C[R′]φ↓ is not a message either. Note that,

because R is destructor-only, we only consider C to be destructor-only.

• C = _: then R = R′ and Rφ↓ is not a message.

• C = proji(C
′) and C ′[R′]φ↓ is not a message: then proji(C

′[R′])φ↓ will not be

a message either.

• C = dec(R′′, C ′), C ′[R′]φ↓ and C ′[R′]φ↓ is not a message. For C[R′]φ↓ to be

a message, it would require R′′φ↓ = enc(s, C ′[R′]φ↓) for some message s. As

φ only contains messages in its image and enc(s, C ′[R′]φ↓) is not one (C ′[R′]φ↓
is not a message) the enc function symbol would need to appear in C, which is

destructor-only: contradiction. Hence C[R′]φ↓ is not a message.

• C = dec(C ′, R′′), C ′[R′]φ↓ is not a message: C[R′]φ↓ being a message would

imply C ′[R′]φ↓ = enc(s,R′′φ↓) for some term s. As before, because φ contains

only messages in its image and C ′[R′]φ↓ is not, the enc symbol need to occur in

C ′[R′] which is destructor-only, as a subterm of R.

Thus every subterm R′ of R is such that R′φ↓ is a message. �

Lemma 9 (preservation of normal forms) If R is a destructor-only recipe, (Rθ)φ↓
is a message, (R̄,R) = T (R), then (Rθ)φ↓ = (R̄θ)φ↓.

Proof. Using the notations introduced in Definition 18, R = C[R′], R′ is the rightmost

subterm of R verifying one of the two conditions of T .

1. if R′ = dec(R1, R2), R1φS↓ = enc(t, x) and R2 6= x: R̄ = C[dec(R1, x)]. We

have that R̄θ = C[dec(R1θ, xθ)]θ. And thus (R̄θ)φ↓ = (C[dec(R1θ, xθ)]θ)φ↓ =
(C[tθ]θ)φ↓. As R1φS↓ = enc(t, x) and (Rθ)φ↓ is a message, (R′θ)φ↓ is a

message too (Lemma 8) and (R′θ)φ↓ = (R1θφ)↓ = tθφ. Hence (C[tθ]θ)φ↓ =
(C[R′]θ)φ↓ = (Rθ)φ↓, giving the result.
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2. else, and if R′φS↓ = y and R′ 6= y: R̄ = C[yθ]⇓. We have yθφ↓ = (R′θ)φ↓.

Indeed, as R′φS↓ = y, R′φS↓θφ↓ = yθφ↓. Then (R′θ)φ↓ = yθφ↓, as φ =
φSλP (works with ψ = ψSλQ too, thanks to Lemma 21). To conclude, we show

that (Rθ)φ↓ = (C[(R′θ)φ↓]θ)φ↓, and as (Rθ)φ↓ is a message and by Lemma

s7, this is equal to (C[yθφ↓]θ)φ↓ = (C[yθ]θ)φ↓ = (C[yθ]⇓θ)φ↓ = (R̄θ)φ↓.

�

This lemma proves that the transformation T , from the point of view of the con-

crete frame, does not alter the normal form of tests (up to a particular substitution θ).

Previous lemmas are stated with φ and φS , but can be symmetrically applied with ψ
and ψS . When the context is not obvious, we will denote by Tφ the transformation

introduced at Definition 18 when applied with φS , and Tψ when applied with ψS .

Lemma 10 (termination of T ∗) T is deterministic and T ∗(R) is well-defined.

Proof. Introduce an ordering on variables based on how soon they appear in the trace

(trS , φS) and consider the induced multi-set order <var. The second item in Defi-

nition 18 strictly reduces this measure. Now consider the number of destructor of a

(destructor-only) recipe R, plus the number of variables in dom(φ) (without counting

the variables in dom(θ)). Let<size be the order induced by this measure. The first item

in Definition 18 strictly reduces this measure. Finally, let < be the lexicographical

order built on (<var, <size). The transformation T decreases its induced measure. �

Lemmas 11, 12 and Corollary 2 provide the general invariants for the transfor-

mation T : mostly that it operates locally, does not introduce new constructors and

preserves the fact for a subterm of being a message.

Lemma 11 If R is φ-precompact, then for every n ∈ N, T n
φ (R) is destructor-only.

Proof. Suppose there exists n0 ∈ N such that Rn0
= T n0(R) contains a constructor

c at position p. Let us further assume p is the highest position where a constructor

occurs.

• if p = ǫ: as (Rn0
θ)φ↓ = Rφ↓ by Lemma 9, R cannot be φ-precompact,

• if p > ǫ and c = 〈_, _〉: c occurs below a destructor d (as p is the highest position

a constructor can appear).

– If d = proji for i ∈ {1, 2}: as R is destructor-only, c is introduced by a

replacement C[yθ]⇓ and because proji(〈x1, x2〉) ⇒ xi, c would have been

reduced.

– If d = dec and c is in plaintext position of d: if c is not reduced, (Rn0
θ)φ↓

is not a message, then (Rn0
θ)φ↓ = Rφ↓, by Lemma 9, implies Rφ↓ is not

a message either, and thus not φ-precompact.

– Else, if d = dec and c is in key position of d: the key is not atomic, and

similarly Rφ↓ is not a message, and thus not φ-precompact.

• if p > ǫ and c = enc(_, _): the same reasoning as the previous case can be

applied (interverting the first two subcases).

Hence Rn0
cannot contain constructors if R is φ-precompact. �

Lemma 12 LetRinit be a destructor-only recipe andR = T n
φ (Rinit). IfR = C[R′]p,R

is destructor-only, (R′θ)φ↓ is a message and p is lesser w.r.t. < than the next position

where Tφ is applied on R, then R|qφS↓ is a message for any q ≪ p or q = p.
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Proof. We prove by induction that R|qφS↓ is a message.

• if R|q = w, wφS is a message,

• if R|q = x, xφS = x is a message,

• if R|q = enc(R1, R2) or R|q = 〈R1, R2〉, R1φS↓ and R2φS↓ are messages by

induction hypothesis, then R|qφS↓ is a message too,

• if R|q = proji(R
′′) and R′′φS↓ is a message:

– ifR′′φS↓ = x for some variable x: a variable inR′′ can only be introduced

in key position of a dec, not a proji, impossible.

– if R′′φS↓ = 〈R1, R2〉: then proji(〈R1, R2〉)φS↓ is a message,

– if R′′φS↓ = enc(u, v): as (R′′θ)(φSλP )↓ = (R′′θ)φ↓, there exist u′, v′

two terms such that (R′′θ)φ↓ = enc(u′, v′). Thus (proji(R
′′)θ)φ↓ is not

a message, and (R′θ)φ↓ is not a message either, by Lemma 8 as R is

destructor-only. Contradiction.

• if R|q = dec(R1, R2), R1φS↓ and R2φS↓ are messages:

– if R1φS↓ = x for some variable x: a variable can only occur in a key po-

sition, impossible. Either R1 = x, which can only occur in a key position,

impossible; or R1 6= x and R1φS↓ = x, in which case T would be applied

at position q.1 < p

– if R1φS↓ = 〈u, v〉: see the third point of the previous case.

– if R1φS↓ = enc(u, x) for some term u and some variable x. By Defini-

tion 18, as T was applied at position q, R2 = x and dec(R1, x)φS↓ is a

message.

– if R1φS↓ = enc(u, k) for some term u and some non-variable atom k:

then R2φS↓ 6= x for any variable x, as R2 is a position lesser than p. Thus

R2φS↓ = k′ for some atom k′, and R2φ↓ = k′ as k′ is not a variable. Sim-

ilarly R1φ↓ = enc(u′, k) for some term u′. (Rθ)φ↓ is a message implies

(asR is destructor-only and by Lemma 8) k = k′ and that dec(R1, R2)φS↓
is a message too.

�

Corollary 2 Let Rinit be a destructor-only recipe and R = T n
φ (Rinit). If R = C[R′]p,

R is destructor-only, (R′θ)φ↓ is a message and Tφ(R) = (R,R) then R|qφS↓ is a

message for any q ≪ p or q = p.

Proof. Same proof as Lemma 12, except we invoke the fact the transformation does

not alter R any more in cases where we derive an impossibility. �

The following lemma intends to show that equalities between transformed test

T ∗(R) actually correspond to the unification performed by the algorithm at step 2.

Indeed, the normal forms of φS-compact recipes are encrypted subterms that can be

unified in this step.

Lemma 13 (compacification effect of T ∗) With previous notations, if T ∗(R) = (R∗,R):
if R is φ-precompact then R∗ is φS-compact.
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Proof. As R is φ-precompact, by Lemma 11, any (iterated) application of Tφ to R
yields a destructor-only recipe. We then use Lemma 12 repeatedly and finally Corollary

2 with p = ǫ (the root position) and for q = p to conclude R∗φS↓ is a message. Invok-

ing Lemma 9 at each step finally gets us Rφ↓ = (R∗θ)φ↓. As (R∗θ)φ↓ = R∗φS↓λP ,

we can conclude that R∗φS↓ is not a pair nor an encryption with a deducible key (for

the latter, consider the case where R∗φS↓ = enc(u1, u2): as R is φ-precompact, u2λP
is not deducible in φ; but if u2 were deducible in φS , u2λP would be in φ ∪ λP , and

thus in φ. Contradiction). �

Lemma 14 (uniformity of T ) Let φ, φS , ψ, ψS be as introduced, R be a destructor-

only recipe, T ∗
φ (R) = (R∗

1,R1) and T ∗
ψ (R) = (R∗

2,R2). If ψS |= R1 and φS |= R2,

then R∗
1 = R∗

2.

Proof. Let (Rk1 ,R
k
1) = T k

φ (R) and (Rk2 ,R
k
2) = T k

ψ (R) be the iterated application of

T with both symbolic frames. We will prove inductively that Rk1 = Rk2 and Rk
1 = Rk

2 .

• for k = 0, the initial recipe, R, is identical in both cases and R0
1 = ∅ = R0

2.

• Let us assume we obtained the result up to some k: Rk1 = Rk2 = Rk. Note that

Rk
i ⊆ Ri for i ∈ {1, 2} implies φS |= Rk

2 and ψS |= Rk
1 . Suppose now that

Rk = C[R′]|p and p is the lowest position w.r.t. < such that any of the two rules

in Definition 18 can apply with either φS or ψS . For instance, suppose it is true

for φS :

1. if R′ = dec(R1, R2), there exist a variable x and a term t such that

R1φS↓ = enc(t, x), R2 6= x, then Rk+1
1 = C[dec(R1, x)]p and Rk+1

1 =
Rk∪{msg(dec(R1, x))}. AsψS |= R1 and Rk+1

1 ⊆ R1, ψS |= msg(dec(R1, x)).
Hence R1ψS↓ = enc(s, x) for some term s and the same rule of Tψ can be

applied at the same position, and will, as p is the lowest position where a

rule of T is applicable for both symbolic frames, and then: Rk+1
2 = Rk+1

1

and Rk+1
2 = Rk+1

1 .

2. If there exists a variable y such that R′φS↓ = y and R′ 6= y, then Rk+1
1 =

C[yθ]⇓ and Rk+1
1 = Rk ∪ {R′ = y}. As ψS |= R1 and Rk+1

1 ⊆ R1,

ψS |= R′ = y, i.e. R′ψS↓ = y. The same rule of Tψ can thus be applied

at the same position, and will, as p is the lowest position where a rule of

T is applicable for both symbolic frames, and then: Rk+1
2 = Rk+1

1 and

Rk+1
2 = Rk+1

1 .

The case where p corresponds to a position w.r.t. ψS is handled symmetrically.

Applying that result for n such that T ∗
φ (R) = T n

φ (R) leads to the final result. �

The next two lemmas finally ensure T ∗ does not alter the equalities in any nefarious

way. Together they demonstrate that if a test holds in a concrete concrete frame, the

transformed equality, up to a unification performed at step 2 of the algorithm, will hold

in the symbolic frame.

Lemma 15 (soundness of T ∗) Let R1, R2 be two destructor-only recipes, ψ, ψS , λQ
be as expected, (R∗

1,R1) = T ∗
ψ (R1) and (R∗

2,R2) = T ∗
ψ (R2). Then, for any i ∈

{1, 2}, Riψ↓ = R∗
iψSλQ↓; and thus R∗

1ψS↓ = R∗
2ψS↓ implies R1ψ↓ = R2ψ↓.

Proof. Iteration of Lemma 9 gives Riψ↓ = (R∗
i θ)ψ↓; and we assumed ψ = ψSλQ

with λQ = (θψ)↓. Hence, R∗
iψSλQ↓ = (R∗

i θ)ψS(θψ)↓ = (R∗
i θ)ψ↓ = Riψ↓. �
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Lemma 16 (completeness of T ∗) Let R1, R2 be two φ-precompact recipes, φ, φS ,

λP be as expected, (R∗
1,R1) = T ∗

φ (R1) and (R∗
2,R2) = T ∗

φ (R2). Then: R1φ↓ =
R2φ↓ implies there exists σ which is a mgu of two φS-compact recipes in φS such that

R∗
1φSσ↓ = R∗

2φSσ↓.

Proof. Iteration of Lemma 9 gives Riφ↓ = R∗
i φ↓; and we assumed that φ = φSλP .

Then,R1φ↓ = R2φ↓ is the same asR∗
1φSλP ↓ = R∗

2φSλP ↓. Thus σ = mgu(R∗
1φS , R

∗
2φS) 6=

⊥. As R∗
1 and R∗

2 are φS-compact (Lemma 13), we are done. �

Unfortunately, the transformation T may, in some cases, transform a recipe re-

ducing to a term which was not a message into a new recipe reducing to a symbolic

message. The next lemma ensures these special case can be handled in the main proof

of completeness of the algorithm.

Lemma 17 (preservation of messages) Let φ, φS , ψ, ψS be as expected, R a φ-

precompact recipe such that T ∗
φ (R) = (R∗,R1), ψS |= R1, T ∗

ψ (R) = (R∗,R2) and

φS |= R2. IfRφ↓,R∗φS↓,R∗ψS↓ are messages butRψ↓ is not, then there either exist

R0
1 and R0

2 two φ-precompact recipes such that R0
1φ↓ = R0

2φ↓ and R0
1ψ↓ 6= R0

2ψ↓ or

there exists a φS-compact recipe R0 such that R0φS↓ is a message but R0ψS↓ is not.

Proof. Let p be the minimal position in R of a destructor d which is not reduced in

Rψ↓. Suppose T ∗(R) = T n(R) (note that Lemma 14 guarantees that Tψ = Tφ when

applied on R). Let Ri be a shortcut for the first argument of T i(R). Let q1, q2, . . . , qn
be the successive positions where T is applied; and i0 ∈ {1, . . . , n} such that ∀0 ≤
j < i0, (Rjθ)ψ↓ contains d at position p and (Ri0θ)ψ↓ does not. Let P be the set of

positions in R. We define a partition of P as follows:

P = {p} ∪ P1 ∪ P2 ∪ P3 ∪ P4 ∪ P5

where:

• P1 is the set of positions on the "plaintext line" of p (always-leftmost children of

p),

• P2 is the set of positions q such that q < p and q /∈ P1,

• P3 is the set of strict parents of p,

• P4 is the set of always-leftmost children of elements of P3 which are not in

P3 ∪ P1 ∪ {p},

• P5 is the set of positions greater than p w.r.t. < which are not in P3 nor P4.

The core argument of this proof relies on a disjunction on the nature of qi0 :

• if qi0 ∈ P2 ∪ P5: impossible, as any transformation by T at these positions

cannot affect anything at position p. Indeed all these elements appears below a

key position, i.e. a position which is the key of some dec.

• qi0 = p: impossible, as if T were applied at this position, it would require

Ri0−1|pψS↓ to be some variable x, and thus (Ri0−1θ)ψ↓ would not contain d
(as ψ = ψSλQ).
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• qi0 ∈ P1: by definition of i0, (Ri0−1θ)ψ↓ contains d at position pwhile (Ri0θ)ψ↓
does not and qi0 < p (by definition of P1). Let Ri0−1 = C[R′]qi0 . Because T is

applied at qi0 and d deleted at this step, necessarilyR′ψS↓ = x for some variable

x and Ri0 = C[xθ]qi0⇓; and d is deleted through the ⇓-reduction. Two cases

can occur a priori:

– d = proji. In that case, the same reductions appear with φ: hence xθ has

to contain the pair which is deleted by d, and as recipes are the same no

matter the frame we consider, the same reduction could occur in ψ, hence

d would not occur in Rψ↓ (We use Lemma 9 to get the preservation of

normal forms through the process). Impossibility.

– d = dec. Then there exists a recipe in the key position of d at position

p.2 < p: R′0
2 . Because (R′0

2 θ)ψ↓ is a message (minimality of p) and

Lemma 12 (third item, p.2 < qi0 ), R′0
2 ψS↓ is a message. As R is φ-

precompact and by Lemma 11, R′0
2 is destructor-only. Note that R′0

2 may

contain variables in key positions, due to the first item of Definition 18.

Because keys are atomic, for each variable in key position x, xλP and xλQ
are atomic, thus there exist destructor-only recipe Rx for each of them.

So we define R0
2 = R′0

2 [Rx/x]. R
0
2 is now φ-precompact, (R′0

2 θ)ψ↓ =
R0

2↓ψ and (R′0
2 θ)φ↓ = R0

2↓φ. As ⇓-reduction only occurs at recipe level,

there also exists a recipe R0
1 for the encryption key used by the constructor

reduced by d. Because keys are atomic, we also can always assume R0
1 to

be φ-precompact in this setting. We now show that R0
1ψ↓ 6= R0

2ψ↓ and

R0
1φ↓ = R0

2φ↓. These equalities are derived from the fact that Rψ↓ still

contains d but Rφ↓ is a message. Hence we obtain two recipes as in the

statement of the lemma.

• qi0 ∈ P3: then Ri0−1|qi0 .1ψS↓ = enc(t, x) for some term t and variable x, and

p ≪ qi0 .2 (or else Ri0−1|qi0 .1ψS↓ would not reduce if it included d). We get

that Ri0 = C[dec(Ri0−1|qi0 .1, x)]qi0 . Let R0 = Ri0−1|qi0 .2. In particular, p
is a position of R0. As qi0 .2 < qi0 , R0 is φS-compact (Lemmas 11 and 12).

We now want to show that R0ψS↓ is not a message: as (R0θ)ψ↓ contains d by

definition, if R0ψS↓ did not, R0ψS↓λQ↓ = (R0θ)ψ↓ would not either, which

contradicts our hypothesis. Hence we get our recipe R0 as in the second case of

the statement of the lemma.

• qi0 ∈ P4: we apply the same reasoning as if qi0 ∈ P3, except for the fact it

is now the second rule of Definition 18 which is applied at qj0 , where qj0 the

longest common prefix of qi0 and p, and necessarily Ri0−1|qj0 = dec(Rl, Rr).
If it were a proji, j0 would not be the longest common prefix.

Thus the result for any position qi0 , and the existence of such recipes in general. �

B.2 Decision for bounded protocols

Here we detail how symbolic traces can be formally linked to the concrete executions

of the protocol so as to properly prove Proposition 4.

First, rather than deal with the usual notion of static equivalence or inclusion (i.e.

only the direct implications in Definition 2), we use a variation which we prove to be

equivalent in the next lemma.
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Lemma 18 (alternative definition of static inclusion) We say that φ1 ⊑′ φ2 if:

• for every φ1-precompact recipe M , if Mφ1↓ is an atom, then Mφ2↓ is an atom,

• for every φ1-precompact recipe M , Mφ2↓ is a message,

• for every φ1-precompact recipe M and N , if Mφ1↓ = Nφ1↓ then Mφ2↓ =
Nφ2↓.

and similarly, φ1 ∼′ φ2 if φ1 ⊑′ φ2 and φ2 ⊑′ φ1.

Then φS ⊑ φ2 if, and only if, φ1 ⊑′ φ2.

Proof. We need to show that φ1 ⊑ φ2 if, and only if, φ1 ⊑′ φ2, where ⊑ denotes

the static inclusion, i.e. only the direct implications in Definition 2. The implication

φ1 ⊑ φ2 ⇒ φ1 ⊑′ φ2 is direct, as this definition only examine fewer tests than the

original one and the ability for the attacker to test whether a recipe R reduces to an

atom is already ensured by tests of the form dec(enc(w1, R)) = w1. So let us consider

the converse implication, and assume that φ1 ⊑′ φ2 and suppose φ1 6⊑ φ2. We proceed

by induction on recipes, proving our transformation of a single recipe or a pair of

recipes strictly decreases the number of constructors (in the single recipe or the sum

for pairs). We claim that if we have a witness of static non-inclusion, there is a recipe

or a pair of recipes which are destructor-only witnessing that. In the following, M will

denote a recipe such that Mφ1↓ is a message but Mφ2↓ is not; M1 and M2 will denote

two recipes such that Miφj↓ is a message for i, j ∈ {1, 2}, M1φ1↓ = M2φ2↓ but

M1φ2↓ 6=M2φ2↓; and C will be a linear destructor-only context. Let n be the number

of constructors in M or the sum of the number of constructors in M1 and M2.

• If n = 0: M (resp. M1 and M2) is destructor-only,

• M contains pairing:

1. M = C[dec(〈M0
1 ,M

0
2 〉,M

0
3 )]: impossible, as Mφ1↓ would not be a mes-

sage,

2. M = C[proji(〈M
0
1 ,M

0
2 〉)]: then M ′ = C[M0

i ] has strictly less than n
constructors, is a message in φ1 but still not in φ2,

3. M = 〈M0
1 ,M

0
2 〉: then there exists i ∈ {1, 2} such that M0

i is a message in

φ1 while not in φ2; and M0
i contains strictly less than n constructors,

• M contains encryption:

1. M = enc(M0
1 ,M

0
2 ): three subcases must be examined:

(a) if M0
2φ2↓ is a message and is not an atom: then M0

2 contains strictly

less than n constructors; and M0
2φ1↓ is an atom (as M reduces to a

message in φ1),

(b) else, if M0
2φ2↓ is not a message: M0

2 contains strictly less than that n
constructors,

(c) else, if M0
2φ2↓ is an atom: then M0

1 is a message in φ1 but not in φ2
and contains strictly less than n constructors,

2. M = C[proji(enc(M
0
1 ,M

0
2 ))]: impossible, as Mφ1↓ would not be a mes-

sage,
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3. M = C[dec(enc(M0
1 ,M

0
2 ),M

0
3 )]: in particular, M0

2φ1↓ = M0
3φ1↓. If

M0
2 and M0

3 are both messages in φ2 and M0
2φ2↓ 6= M0

2φ2↓: the pair

(M0
2 ,M

0
3 ) contains n − 1 constructors and is a witness of non-inclusion.

Else, if M0
i φ2↓ is not a message for some i ∈ {2, 3}, then it contains

strictly less than n constructors. In the remaining case, M0
1φ2↓ is not a

message, and contains strictly less than n constructors,

• M1 contains pairing (or symmetrically, M2 contains pairing), using the same

numbering as the case where M did contain pairing:

1. this case cannot happen,

2. C[M0
i ]φj↓ =M1φj↓ for j ∈ {1, 2}, and C[M0

i ] contains strictly less than

n constructors,

3. M0
i φ2↓ = proji(M1)φ2↓ andM1φ2↓ 6=M2φ2↓ implies that either proji(M2)φ2↓

is not a message, or M0
i φ2↓ 6= proji(M2)φ2↓; which in both cases counts

strictly less than n constructors,

• M1 contains encryption (or symmetrically, M2 contains encryption), using the

same numbering as the case where M did contain encryption:

1. M0
2φ1↓ and M0

2φ2↓ are both messages and atom and M1φ2↓ 6= M2φ2↓
implies that either dec(M2,M

0
2 )φ2↓ is not a message or that M0

1φ2↓ 6=
dec(M2,M

0
2 )φ2↓; which in both cases counts strictly less than n construc-

tors,

2. this case cannot happen,

3. M1φ2↓ is a message implies M0
2φ2↓ = M0

3φ2↓ and M0
1φ2↓ is a message.

ThenM0
1 contains strictly less constructors thanM1, and we getM0

1φ1↓ =
M2φ1↓ while M0

1φ2↓ 6=M2φ2↓.

At this point, we proved that we can only consider destructor-only witnesses of φ1 6⊑
φ2. Suppose now M , M1 and M2 are destructor-only: we need to prove they are φ1-

precompact, i.e. we show they do not reduce to a pair or an encryption with a deducible

key.

• if Mφ1↓ = 〈s, t〉: there exists i ∈ {1, 2} such that proji(M) is still a message in

φ1 but not in φ2,

• if Mφ1↓ = enc(s, k) and k is deducible in φ1, which implies there exists a

destructor-only recipe R such that Rφ1↓ = k (consider the ⇓ normalisation of

any recipe reducing to k). dec(M,R) is a message in φ1 while not in φ2,

• if M1φ1↓ = 〈s, t〉 = M2φ1↓: there exists i ∈ {1, 2} such that proji(M1)φ1↓ =
proji(M2)φ1↓ but proji(M1)φ2↓ 6= proji(M2)φ2↓ or proji(Mj)φ2↓ is not a mes-

sage for some j ∈ {1, 2}.

• if M1φ1↓ = enc(s, k) = M2φ1↓, and k is deducible: as previously, there exists

a destructor-only recipe R such that Rφ1↓ = k. In that case dec(M1, R)φ1↓ =
dec(M2, R)φ1↓. Then either dec(Mi, R)φ2↓ is not a message for some i ∈
{1, 2} or dec(M1, R)φ2↓ 6= dec(M2, R)φ2↓.
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Note that this last transformation does not introduce any constructor and strictly de-

creases the normal forms of M , M1 and M2 in φ1. Hence, if φ1 6⊑ φ2, then φ1 6⊑′ φ2.

�

Lemmas 19 and 21 provide the link between any concrete second-order trace, as

the attacker can build, and the second-order traces which are generated at step 3 of our

algorithm. They also provide the relations between concrete and symbolic frames we

needed at the beginning of Section B.1.

Step 3 in the algorithm induces a renaming ρ. As this renaming is bijective, and

only meant to provide concrete traces of P and Q, in the following statements and

proofs, we will omit it and refer to the non-renamed trace in the algorithm by (trS , φS),
which will then by symbolic.

Lemma 19 (existence of a symbolic trace) For any (tr, φ) ∈ trace(P ), there exists

a symbolic second-order trace (trS , φS) of P generated by AB(P,Q), a first-order

substitution λP and a second-order substitution θ such that trφ↓ = trSφSλP ↓ (in

particular: φ = φSλP ), trSθφ↓ = trφ↓ (the first-order input terms are identical), and

such that for every x 7→ Rx ∈ θ, Rx is built from the initial knowledge of the attacker

and the outputs which preceded the introduction of x in trS , RxφS↓ is a message and

for every variable x occurring in key position in trSφS↓, RxφS↓ is an atom,

Proof. For (tr, φ) we can derive the existence of tr0 ∈ traces(P ) and a substitution σ
such that trφ↓ = tr0σ (Lemma 1 ). Using Definition 13 we get there exists a first-order

substitution σ1 generated by B applied to tr0 and a first-order substitution τ such that

tr0σ = tr1τ , where tr1 = tr0σ1. (trS , φS) is obtained by lifting tr1 to second-order

with arbitrary valid recipes (i.e progressively constructible by the attacker) and storing

the outputs of tr1 in φS . A fortiori then, φSτ = φ. Let λP = τ . To define θ we choose

for every x ∈ vars(trS) a recipe Rx of xλP , then θ = {x 7→ Rx for x ∈ vars(trS)}.

Finding such a recipe is always possible thanks to Definition 13. We can moreover

assume RxφS↓ is a symbolic message and if x appears in key position inside trSφS↓,

then xθφS↓ is an atom. Indeed, let us order variables in trS with their order of ap-

parition (variables introduced simultaneously in an input can be ordered arbitrarily) in

trS , and define θk inductively. If no variables was introduced, θ0 = id . By induction,

suppose θk defined up to the k first variables in trS such that yθkφS↓ is a message if y
is one of these k first variables. Let us prove that RxφS↓ can be chosen so that RxφS↓
is a message. Without loss of generality, as keys are atomic, we can choose a recipe R
of xλP such that R = C[R1, . . . , Rm], C is a constructor-only context and for every

i ∈ {1, . . . ,m}, Ri is destructor-only. As both ↓-reduction and ⇓-reduction contain

only rules with destructors on top, we get that T ∗
φ (R) = C[T ∗

φ (R1), . . . , T
∗
φ (Rm)].

As Rφ↓ and C is constructor-only, for any i, Riφ↓ is a message. By Lemmas 9

and 12 and Corollary 2, if T ∗
φ (Ri) = (R∗

i ,Ri), Riφ↓ = (R∗
i θk)φ↓ and R∗

i φS↓ is

a message. By induction hypothesis, we deduce (R∗
i θk)φS↓ is a message. Taking

Rx = C[R∗
1θk, . . . , R

∗
mθk] ensures the result, and θk+1 = θk ∪ {x 7→ Rx}. Then,

suppose x appears in a key position inside trSφS↓ but xθφS↓ is not an atom. As

φ = φSλP , we would get that xλP would appear in key position inside trφ↓ and

xλP would not be atomic, absurd as (tr, φ) ∈ trace(P ) and keys are atomic. Finally:

(trSθ)φ↓ = (trSφ)↓λP ↓, as trSφ = tr1, (trSθ)φ↓ = tr1λP = tr1τ = tr0σ and finally

(trSθ)φ↓ = trφ↓. �

Lemma 19 aimed at linking any concrete second-order trace of P to the valid

second-order trace generated by the algorithm. The next ones, Lemmas 20 and 21

ensure similar properties for (trS , ψS) when it exists.
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Lemma 20 (instances of valid symbolic traces) If (trS , ψS) is a symbolic second-order

trace of Q, then for every valid second-order substitution θ, i.e. such that for every

x 7→ Rx ∈ θ, Rx is built from the initial knowledge of the attacker and the outputs

which preceded the introduction of x in trS , RxψS↓ is a message and for every vari-

able x occurring in key position in trSψS↓, RxψS↓ is an atom, then there exists ψ′

such that (trSθ, ψ
′) ∈ trace(Q) and trSθψ

′↓ = trSψS↓(θψ
′)↓ and ψ′ = ψS(θψ

′)↓.

Proof. Let us proceed by induction on n the length of trnS and prove the following

statements: (trnSθ, ψ
n) ∈ trace(Q), trnSθψ

n↓ = trnSψ
n
S↓(θψ

n)↓, ψn = ψnS(θψ
n)↓

(which is a particular case of the previous item) and σn = σnS(θψ
n)↓; where

σn = mgu((R1θψ
n−1↓, u1ρ1), . . . , (Rmθψ

n−1↓, umρm))
σnS = mgu((R1ψ

n−1
S ↓, u1ρ1) . . . , (Rmψ

n−1
S ↓, umρm))

and:

• trn denotes the truncation of tr at length n, m corresponds to the number of

inputs in trn and ψn is the adequate subframe of ψ.

• the ui are the input patterns of Q filtering the inputs of trS ,

• ρi is the substitution applied to the remaining process after an input (θ in the

description of our semantics rules). In particular, ρ1 = id and

ρk+1 = mgu((R1θψ
n−1↓, u1ρ1), . . . , (Rkθψ

n−1↓, ukρk))

We can first note that

σn = mgu((R1θψ
n−1↓, u1ρ1), . . . , (Rmθψ

n−1↓, umρm))
= mgu((R1θψ

n−1↓, u1), . . . , (Rmθψ
n−1↓, um))

by defining of the ρi and the unification algorithms for sets of pairs. Similarly,

σnS = mgu((R1ψ
n−1
S ↓, u1ρ1) . . . , (Rmψ

n−1
S ↓, umρm))

= mgu((R1ψ
n−1
S ↓, u1) . . . , (Rmψ

n−1
S ↓, um))

The induction itself:

• n=0: We consider only the initial knowledge of the attacker. As initial frames

contain no variables, ψ0 = ψ0
S ; because no input has been made, σ0 = σ0

S = ∅;

tr0Sθψ
0↓ = tr0Sψ

0
S↓(θψ

0)↓; and finally, (tr0θ, ψ0) ∈ trace(Q) as it has length

zero.

• Suppose we get the result up to some n: we make a disjunction on the n + 1-th

action in trS .

– If trn+1
S ends by an output w (stored in ψn+1

S ) on some channel c. As

trS is a valid symbolic trace, any variable occurring in wψnS was first in-

troduced in former inputs. (trnSθ, ψ
n) ∈ trace(Q) by induction hypoth-

esis; σn+1 = σn and σn+1
S = σnS as there is no new input; and finally,

according to the input rule in our semantics, if vn+1 is the output pat-

tern of the protocol specification being instantiated, wψn+1
S = vn+1σ

n
S

and wψn+1 = vn+1σ
n. Hence wψn+1

S (θψn↓) = wψn+1, and ψn+1 =
ψn+1
S (θψn)↓ = ψn+1

S (θψn+1)↓ by induction hypothesis (and as the out-

put does not introduce new variables in ψn+1). And thus trn+1
S θψn+1↓ =

trn+1
S ψn+1

S ↓(θψn+1)↓, as the new action of the trace is the output for which

the equality has been proved with the new frames ψn+1
S and ψn+1.
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– If trn+1
S ends by an output of a channel c: c does not contain any vari-

able and its value only depends on the number of channel outputted so far.

As trnSθψ
n↓ = trnSψ

n
S↓(θψ

n)↓ by induction hypothesis, no substitution is

computed in the semantics nor any element added to the frame, we directly

derive trn+1
S θψn+1↓ = trn+1

S ψn+1
S ↓(θψn+1)↓, ψn+1 = ψn, σn+1 = σn

(and similarly with their symbolic counterparts).

– If trn+1
S ends by an input with recipe Rn+1 on some channel c. According

to the input rule semantics, let um+1 be the pattern to be match against

Rm+1 (in trn+1
S ) and against Rm+1θ (in trn+1

S θ). Let σn+1
S (resp. σn+1)

be the substitution introduced by the rule for trn+1
S (resp. trn+1

S θ). We have

that:
σn+1
S = mgu((R1ψ

n
S↓, u1) . . . , (Rmψ

n
S↓, um),

(Rm+1ψ
n
S↓, um+1))

σn+1 = mgu((R1θψ
n↓, u1) . . . , (Rmθψ

n↓, um),
(Rm+1θψ

n↓, um+1))

These equalities can be rewritten as:

σn+1
S = mgu(mgu((R1ψ

n
S↓, u1) . . . ,

(Rmψ
n
S↓, um)), (Rm+1ψ

n
S↓, um+1))

σn+1 = mgu(mgu((R1θψ
n↓, u1) . . . ,

(Rmθψ
n↓, um)), (Rm+1θψ

n↓, um+1))

Note that ψn is actually equal to ψn−1 on their common domain. Hence

we get:

σn+1
S = mgu(σnS ,mgu(Rm+1ψ

n
S↓, um+1))

σn+1 = mgu(σn,mgu(Rm+1θψ
n↓, um+1))

We now need to show that:

mgu(Rm+1θψ
n↓, um+1) = mgu(Rm+1ψ

n
S↓, um+1)(θψ

n↓)

Indeed,Rm+1θψ
n↓ = (Rm+1ψ

n)↓(θψn)↓ and as dom(um+1)∩dom(θ) =
∅:

mgu((Rm+1ψ
n
S)↓(θψ

n)↓, um+1)
= mgu(Rm+1ψ

n
S↓, um+1)(θψ

n↓)

Hence, as σn = σnS(θψ
n)↓, we end up with σn+1 = σn+1

S (θψn)↓, and

because the last action of trS is an input, ψn = ψn+1, we get that σn+1 =
σn+1
S (θψn+1)↓, as intended. Thus trn+1

S θψn+1↓ = trn+1
S ψn+1

S ↓(θψn+1)↓.

In particular, mgu(Rm+1θψ
n↓, um+1) 6= ⊥, so (trn+1

S θ, ψn+1) ∈ trace(Q)
and ψn+1 = ψn+1

S (θψn+1)↓.

Thus our induction is complete, and for n equal to the length of trS , naming ψ′ = ψn,

we prove the desired result. �

Let ⊑k denotes the trace inclusion up to length k i.e.: P ⊑k Q if for any trace

(tr, φ) ∈ trace(P ) of length (in term of number of actions) lesser than or equal to k,

there exits (tr, ψ) ∈ trace(Q) such that φ ∼′ ψ.

Lemma 21 (from φ to ψ) Let n ∈ N
∗. If P ⊑n−1 Q, given (tr, φ) ∈ trace(P ) of

length k ≤ n, (tr, ψ) ∈ trace(Q), trS and θ as defined in Lemma 19 and ψS such that

(trS , ψS) is a symbolic second-order trace, then trψ↓ = trSψSλQ↓ and ψ = ψSλQ
where λQ = (θψ)↓.
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Proof. By definition of θ, for every recipe R of tr and its corresponding recipe RS in

trS , Rφ↓ = RSθφ↓. As P ⊑n−1 Q, it implies Rψ↓ = RSθψ↓ (if the last action is an

output of a term, the variables are identical, if the last action is an input, their recipes

are built on recipes from the frame generated from tr minus its last action, if the last

action is the output of a channel, the channels are identical). By induction on tr and

trS , we show both traces can share the same execution, thus leading to trSθψ↓ = trψ↓.

From Lemma 20, as there exists ψ′ such that (trSθ, ψ
′) is also a second-order trace of

Q and by induction on tr and trS , we show both traces can share the same execution,

thus leading to ψ = ψ′; and setting λQ = θψ↓, we get that ψ = ψSλQ. Hence we

finally get that trψ↓ = trSψSλQ↓. �

We are now able to prove Proposition 4 as stated in Section A.3.

Proposition 4 (completeness) Let P and Q be two bounded protocols such that P 6≈
Q. The algorithm AB applied on P and Q returns a minimal (in term of number of

actions) witness tr of non-equivalence.

Proof. The proof is by induction on the length of traces. We suppose trace equivalence

has been proved up to some length n− 1 and consider a witness (tr, φ) ∈ trace(P ) of

P 6≈t Q of length n. Then we consider for instance the case where P 6⊑t Q, i.e. (tr, ψ)
cannot belong in trace(Q) and the case where φ 6∼′ ψ. The other cases are handled

symmetrically.

From Lemma 19, we get the existence of (trS , φS) a symbolic second-order trace

of P along with their substitutions λP and θ.

In the first case, suppose that (tr, ψ) /∈ trace(Q). If for every frame ψS , (trS , ψS)
is not a symbolic trace of Q we have a witness. Otherwise let us assume that there

exists ψS such that (trS , ψS) is a valid second-order symbolic trace of Q. For every

x ∈ dom(θ), xθφS↓ is a message implies that xθψS↓ is a message, as equivalence

between P and Q has been proved up to length n − 1 (and xθ must be a recipe built

from the frame after tr−1
S ). Now, if θ does not satisfy the property that for every variable

x occurring in key position in trSψS↓, xθψS↓ is an atom and thus there would exist

a variable x such that x appears in key position in trSψS↓ while xθψS↓ is not an

atom. Equivalence up to length n − 1 ensures xθφS↓ is not an atom. Thus, x should

not occur in a key position in trSφS↓, meaning x ∈ KψS
r KφS

. Step 5 in the

algorithm would then ensures that if λ = {〈ω,ω〉/x}, trSλ is a witness of P 6⊑ Q, as

(trSλ, φSλ) is valid symbolic trace of P but not of Q, as 〈ω, ω〉 would appear in key

position in (trSλ)(ψSλ)↓. In the following we will then assume θ satisfy this property.

Using Lemma 20, we get that (trSθ, ψ
′) ∈ trace(Q) and trSθψ

′↓ = trSψS↓(θψ
′↓).

Because P ⊑n−1 Q, there exists ψ′′ such that (tr−1, ψ′′) ∈ trace(Q) and tr−1
S θψ′′↓ =

tr−1ψ′′↓. Indeed, by definition of θ, for every recipe R of tr and its corresponding

recipe RS in trS , Rφ↓ = RSθφ↓. As P ⊑n−1 Q, it implies Rψ′′↓ = RSθψ
′′↓ (if

the last action is an output of a term, the variables are identical, if the last action is

an input, their recipes are built on recipes from the frame generated from tr minus

its last action, if the last action is the output of a channel, the channels are identical).

By induction on tr−1 and tr−1
S , we show both traces can share the same execution,

thus leading to tr−1
S θψ′′↓ = tr−1ψ′′↓. Moreover after executing tr−1

S θ and tr−1, Q
ends up in the same configuration (by following the same execution). Then, if tr’s last

action is an output of a term, because (trSθ, ψ
′) ∈ trace(Q), there exists ψ such that

(tr, ψ) ∈ trace(Q), contradiction. If its last action is an input on some channel c with a

recipe R, as we already established that RSθψ
′′↓ = Rψ′′↓ and their configurations are

identical, there exists ψ such that (tr, ψ) ∈ trace(Q), also reaching a contradiction. If
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the last action is an output of channel, (trS , θ
′) ∈ trace(Q) directly implies (tr, ψ′′) ∈

trace(Q), which is also a contradiction. Hence (trS , ψS) is not a valid second-order

trace of Q if (tr, ψ) /∈ trace(Q) for any frame ψ.

Assume (tr, ψ) ∈ trace(Q) for some ψ and φ 6∼′ ψ for any such ψ. In the second

case, we need to prove either that if there is a recipe leading to a message in P but not

inQ the algorithm will yield an attack; or that if an equality holds in P but not inQ, the

algorithm can derive two equalities which will hold in P and not inQ; or that if a recipe

leads to an atom in φ but not in ψ, the algorithm witnesses it. As (trS , ψS) ∈ trace(Q)
in this case, from Lemma 21 and becauseQ is determinate, we can derive the existence

of λQ such that ψ = ψSλQ, which is a required hypothesis of Lemma 15.

In the first subcase, let R be a φ-precompact recipe such that Rφ↓ is a message

but Rψ↓ is not. Let us then define (R∗,R1) = T ∗
φ (R) and (R′∗,R2) = T ∗

ψ (R). We

operate the following disjunction:

1. ψS 6|= R1 or φS 6|= R2. By Lemma 6, φS |= R1. Consider for example an

equality in R1 witnessing ψS 6|= R1: this equality is captured by the algorithm

at step 6, hence leading to a witness of non-equivalence. The other case is treated

symmetrically.

2. else, if ψS |= R1 and φS |= R2: we can apply Lemma 14, thus R∗ = R′∗. If

R∗ψS↓ is not a message, as R∗ is φS-compact (because R is φ-precompact and

of Lemma 13), we have a witness of non-inclusion provided by the algorithm.

So let us assume that R∗ψS↓ is a message. We can now apply Lemma 17. With

the same notations, either there exists a φS-compact recipe R0 such that R0φS↓
is a message while R0ψS↓ is not, in which case we directly get a witness of

non-inclusion; or we can consider the next case.

We now deal with the subcase where an equality holds in φ but not in ψ. Let R1

and R2 be two φ-precompact recipes such that R1φ↓ = R2φ↓ and R1ψ↓ 6= R2ψ↓.

Let us define (R∗
1,R1) = T ∗

φ (R1), (R
∗
2,R2) = T ∗

φ (R2), (R
′∗
1 ,R

′
1) = T ∗

ψ (R1) and

(R′∗
2 ,R

′
2) = T ∗

ψ (R2). As previously, we can operate the following disjunction:

1. ψS 6|= R1 or ψS 6|= R2 or φS 6|= R′
1 or φS 6|= R′

2: see the previous subcase, we

can directly create a witness of non-equivalence.

2. ψS |= R1, ψS |= R2, φS |= R′
1 and φS |= R′

2: we can now apply Lemma 14

twice and get that R′∗
1 = R∗

1 and R′∗
2 = R∗

2. From that we apply Lemma 16

and get that there exists σ mgu of two φS-compact recipes such that such that

R∗
1φSσ↓ = R∗

2φSσ↓. Thus we can choose σ1 = σ at step 2 in the algorithm.

And if, for the sake of clarity, we name trE , φE and ψE the trace and frames

(respectively) introduced at step 3 of the algorithm, it ensures that R∗
1φE↓ =

R∗
2φE↓. From Lemmas 19 and 21, we get new first-order substitutions λ′P (for

(trE , φE)) and λ′Q (for (trE , ψE)). From there, we apply the same reasoning as

before, as an equality still holds in φ but not in ψ, using T ∗ and making three

separate cases. The first two are identical. In the third one, we now have that we

can once again apply Lemma 14, followed by Lemma 16. In this case, σ = id

(by construction of φE), and thus we get an equalityR∗
1 = R∗

2 of compact recipes

in φE and an inequality in ψE (Lemma 15).

We finally deal with the case of testing atomicity of a term: suppose there exists R
a φ-precompact recipe such that Rφ↓ is an atom while Rψ↓ is not. Let (R∗,R1) =
T ∗
φ (R) and (R′∗,R2) = T ∗

ψ (R).
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• if φS 6|= R2 or ψS 6|= R1: as before, we get a witness of non-equivalence in our

algorithm,

• else, if φS |= R2 and ψS |= R1, by Lemma 14, R∗ = R′∗. As R∗ is φS-

compact (Lemma 13), RφS↓ is not a variable, and in particular R∗φS↓ = Rφ↓
(by Lemma 9). Hence R∗φS↓ is an atom. Now, if R∗ψS↓ is a variable, R∗ = x
holds in ψS for some variable x but not in φS , yielding a witness of non static

equivalence. Else, if R∗ψS↓ is a composed term, we get a witness of non static

inclusion as R∗ψS↓ would not be an atom. Finally, if RψS↓ is an ground atom,

as in that case R∗ψS↓ = Rψ↓ (by Lemma 9), but Rψ↓ is not an atom which

cannot happen as it would contradict our hypothesis.

In conclusion, we found a witness of length n of P 6≈t Q assuming trace equiva-

lence up to length n− 1: hence we the algorithm derived a shortest witness in terms of

number of actions. �

C Proofs of Theorem 1 and Proposition 1

In Section B, we proved the completeness of the procedure described in Section A. To

prove Theorem 3, and thus Proposition 1, we still need to prove this algorithm actually

preserves types. Once done, we will be able to finally prove Theorem 1. Section ??

will focus on these results while Section E will provide the proof of Corollary 1 for

tagged protocols.

A stronger version of Proposition 1 is actually proven with Theorem 3: not only

there exists such an algorithm, but the algorithm described in Section A.2 does satisfy

all the necessary conditions.

Theorem 3 Let P and Q be two bounded protocols type-compliant w.r.t. (T1, δ1)
and (T2, δ2) respectively, and such that P 6≈ Q. Assume the algorithm AB uses a

type-preserving reachability blackbox B and a well-typed renaming ρ at step 3. Then

AB(P,Q) returns a trace tr such that

• either (tr, φ) ∈ trace(P ) for some φ and (tr, φ) is pseudo-well-typed w.r.t.

(T1, δ1);

• or (tr, ψ) ∈ trace(Q) for some ψ and (tr, ψ) is pseudo-well-typed w.r.t. (T2, δ2).

Proof. Assume here the witness of non-equivalence is a trace of P . Because the reach-

ability blackbox preserves types, the trace tr1 at step 1 is well-typed. At step 2, unifi-

cation can only happen on a pair (s, t) of ciphertexts with variables: s, t ∈ ESt(tr1) ⊆
ESt(tr)σ1. Thus there exists two terms s′, t′ ∈ ESt(P ) such that s = s′σ1 and

t = t′σ1. Since P is type-compliant w.r.t. (T1, δ1), δ1(s
′) = δ1(t

′). By definition

of a typing system, σ1 is well-typed and then δ1(t) = δ1(s) and thus their unifier is

well-typed. Hence tr1σ1 is well-typed, and applying the reachability blackbox and a

well-typed renaming leads to (tr, φ) being well-typed. If AB(P,Q) outputs a witness

tr at step 5 and c0 is the constant replaced by 〈ω, ω〉, as (tr, φ) is well-typed and thus

(trλ, φλ) ∈ trace(P ), where λ = {〈ω,ω〉/c0} is pseudo-well-typed. The symmetric

case with traces of Q is handled similarly, as Q is type-compliant w.r.t. (T2, δ2). �

The proof of Proposition 1 is then a direct consequence of Theorem 3.
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Theorem 1 Let P and Q be two determinate protocols type-compliant w.r.t. (T1, δ1)
and (T2, δ2) respectively. We have that P 6≈ Q if, and only if, there exists a witness of

non-equivalence tr such that:

• either (tr, φ) ∈ trace(P ) for some φ and (tr, φ) is pseudo-well-typed w.r.t.

(T1, δ1);

• or (tr, ψ) ∈ trace(Q) for some ψ and (tr, ψ) is pseudo-well-typed w.r.t. (T2, δ2).

Proof. If P or Q contain replication and P 6≈t Q, there exists a minimal witness tr

of length n of this non-equivalence. Consider P ′ (resp. Q′) the unfolding of P where

every occurrence of a subprocess !R is replaced by R| . . . |R (n + 1 times), with α-

renaming to avoid name and variable capture. Because tr is of length n, A(P ′, Q′) or

A(Q′, P ′) would yield a witness of P ′ 6≈t Q
′ of length lesser than n, as Proposition

4 ensures the algorithm returns the shortest witness of non-equivalence. Then, as P ′

and Q′ were unfolded n + 1 times, this witness is also a witness of P 6≈t Q. We now

need to prove that P ′ is type-compliant w.r.t. (T1, δ1) and Q′ is type-compliant w.r.t.

(T2, δ2). For instance, let s′, t′ ∈ ESt(P ′) and σ′ such that t′σ′ = s′σ′. Because

P ′ can be α-renamed so as to use common variable and names with unfold2(P ), there

exist s, t ∈ ESt(unfold2(P )), renamings of s′ and t′ respectively, and σ, renaming of

σ′, such that sσ = tσ, δ1(s) = δ1(s
′) and δ1(t) = δ1(t

′) (as α-renaming preserves

types). By definition of type-compliant we can conclude that δ1(t) = δ1(s) and thus P ′

is type-compliant w.r.t. (T1, δ1). The same reasoning also applies to Q′ w.r.t. (T2, δ2).
Hence P ′ and Q′ are both type-compliant w.r.t. to their respective typing systems and

without replication. Hence we only need to deal with the case where P and Q do

not use replication. Theorem 3 and Proposition 4 ensure that P 6≈t Q if, and only

if, A(P,Q) yields a witness, which is well-typed for at least one of these protocols

according to Theorem 3. �

D Proof of Theorem 2

In this section, we prove the Lemmas introduced in Section 4 and ultimately Theorem

2 itself.

Lemma 2 A simple protocol is determinate.

Proof. We prove by induction that if P is a simple protocol, for any sequence tr of

actions, there exists at most one configuration (P;φ) up to τ transitions such that

(P ; ∅)
tr
==⇒ (P, φ), i.e. if (P ; ∅)

tr
==⇒ (P1, φ1) and (P ; ∅)

tr
==⇒ (P2, φ2) then there ex-

ists configuration (P3, φ1) such that (P1, φ1)
τ
−→∗ (P3, φ1) and (P2, φ2)

τ
−→∗ (P3, φ1).

Thus, a fortiori, P is determinate. Let us proceed with the induction:

• if tr is empty, (P, φ) = (P, ∅),

• suppose there exists a unique configuration up to τ transitions (P ′, φ′) such that

(P, ∅)
tr

′

==⇒ (P ′, φ′) (if (P ′, φ′) does not exits, the results holds directly). If tr =

tr′.α for some action α and there exists (P, φ) such that (P ′, φ′)
α
==⇒ (P, φ), let

us show that (P, φ) is unique up to τ transitions.

– if α = out(cj , chi): as P is simple, the only process able to fire that

transition is new c.out(cj , c).Bj for some c. Hence (P, φ) = (P ′ ∪
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{Bj [c/chi]}r{new c.out(cj , c).Bj}) up to new occurrences of new c.out(ck, c).Bk
achieved by τ transitions (replication rule).

– if α = out(chi,wj): because Bi is a sequence of actions and chi is unique

for every use of the output channel rule, the number of occurrences of chi
in tr′ pinpoints to exactly one output in Bi that can be fired. Because our

semantics is deterministic (wφ = t depends only on P ′), up to replication

of branches of P , (P, φ′ ∪ {w ⊲ t}) is unique.

– if α = in(chi, R)): once again, Bi is a sequence of actions and chi is

unique for every use of the output channel rule, the number of occurrences

of chi in tr′ pinpoints to exactly one input in(chi, u) in Bi that can be

fired. As in that case φ = φ′, by unicity of φ′, and as our semantics is

deterministic (there exists only one substitution θ such that Rφ′↓ = uθ),

up to replication of branches of P , (P, φ′) is unique.

�

Proposition 5 There exists a set of constants and name with finitely many elements of

any type such that if P andQ are well-formed and simple and P 6≈t Q then there exists

a pseudo-well-typed witness tr of non-equivalence which uses only those constants and

names.

Proof. By Lemma 2 and Theorem 1, there exists a well-typed witness ¯tr1 of non-

equivalence.

In the following, we assume that t̄r1 has been discovered when applying the equiv-

alence algorithm AB(P,Q). The symmetric case is handled in the same fashion. More-

over, we can also assume the blackbox B used does not introduce new variables or con-

stants as the procedure described [16], so that we can also assume that any constant in

t̄r1φ0↓ (where (t̄r1, φ0) ∈ trace(P )) is either an element of ΣP0 ∪N
P (the constants and

names in P ) or a constant introduced at step 3 of our algorithm. LetA = {α1, . . . , αn}
be the set of such constants. We also consider a set of special constant C =

⋃

τ∈T P

Cτ

where Cτ = {cτ1 , c
τ
2 , c

τ
3} and δ1(c

τ
i ) = τ . Note that T0(Σc,∪Σ

P
0 ∪NP ∪

⋃

τ
Cτ ) is such

that there are only finitely many terms of any given type.

Claim: there exists a (total) renaming ρ from A to
⋃

τ
Cτ such that t̄r1ρ is a well-

typed witness of P 6≈ Q and for any term t of t̄r1ρφ0↓, t ∈ T0(Σc,∪Σ
P
0 ∪NP ∪

⋃

τ
Cτ );

where φ0 is such that (t̄r1, φ0) ∈ trace(P ).
Let ρ0 be the special renaming such that for any i, if δ1(αi) = τi, αiρ0 = cτi1 .

t̄r1 being a witness of P̄ 6≈ Q̄, several cases can occur:

• there exists φ and ψ such that (t̄r1, φ) ∈ trace(P ) and (t̄r1, ψ) ∈ trace(Q); φ 6∼
ψ and, for instance, there exist two recipes R1 and R2 such that R1φ↓ = R2φ↓
but R1ψ↓ 6= R2ψ↓ and all of them are messages. Let us examine R1ψ↓ and

R2ψ↓. If the two terms do not share the same constructors, then R1(ψρ0)↓ 6=
R2(ψρ0)↓, but R1(φρ0)↓ = R2(φρ0)↓ (as the collapsing of variables only add

equalities to the frame). Now, if the two terms share the same constructors,

there must exist a leaf position p in them such that R1ψ↓|p 6= R2ψ↓|p. Let

us call t and s these terms respectively. If s or t is not an αi for some i, then

sρ0 6= tρ0 as the constants in
⋃

τ
Cτ are fresh. As in the previous case, we get that

R1(ψρ0)↓ 6= R2(ψρ0)↓, but R1(φρ0)↓ = R2(φρ0)↓. Else, assume s = α1 and
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t = α2, consider the renaming ρ such that, if for any i, δ1(αi) = τi, α1ρ = cτ11 ,

α2ρ = cτ22 and αjρ = c
τj
3 for any j > 2. Thus sρ 6= tρ as the constants in⋃

τ
Cτ are fresh, and finally we get that R1(ψρ)↓ 6= R2(ψρ)↓, but R1(φρ)↓ =

R2(φρ)↓.

• Or there exists φ and ψ such that (t̄r1, φ) ∈ trace(P ) and (t̄r1, ψ) ∈ trace(Q);
φ 6∼ ψ and there exists a minimal (in term of size) recipe R such that, for in-

stance, Rφ↓ is message while Rψ↓ is not. If Rψ↓ contains a element dec(〈s, t〉)
or proji(enc(s, t)), then R(ψρ0)↓ is not a message either, while R(φρ0)↓ still is.

Else, Rψ↓ = dec(enc(u, v), w) for some terms u, v and w (by minimality) with

v 6= w: as keys are atomic, v and w are atoms. As in the case with equalities,

we can define ρ such that vρ 6= wρ, and thus R(ψρ)↓ is not a message, while

R(φρ)↓ is (as ρ only introduces new equalities).

• Or, finally, there exists φ such that (t̄r1, φ) ∈ trace(P ) but for every ψ, (t̄r1, ψ) /∈
trace(Q) (the symmetric case is handled identically). If t̄r1 end with an out-

put, the renaming ρ0 is adequate. So let us assume that the last action of t̄r1
is in(c, R). Because protocols are simple, there exists at most one term uP
in the execution of t̄r1 in P , and at most one term uQ in the same execu-

tion in Q such that there exists ∃θ(Rφ↓ = uP θ), but ∀θ′(Rψ↓ 6= uQθ
′).

As uQ may contain several occurrences of variables, we need to be careful

to define a renaming ρ. If there exists a position p in uQ which is not a leaf

such that uQ|p 6= Rψ↓|p, then R(ψρ0)↓ and uQρ0 are not unifiable (they dis-

agree on already present constructors). Else if there exists a position p in uQ
which is a leaf but not a variable such that uQ|p 6= Rψ↓|p: we define ρ as

in the first subcase when dealing with an inequality without variable. Finally,

if mgu(R(ψρ0)↓, uQ) = ⊥ we are done and can just take ρ = ρ0; else, i.e.

mgu(Rψ↓, uQ) = ⊥ and mgu(R(ψρ0)↓, uQ) 6= ⊥, there exist two leaves with

positions p1 and p2 in Rψ↓ which corresponds to positions below variables in

uQ such that Rψ↓|p1 6= Rψ↓|p2 but R(ψρ0)↓|p1 = R(ψρ0)↓|p2 : thus we can

assume Rψ↓|p1 = α1 and Rψ↓|p2 = α2. We can now define ρ such that,

if for any i, δ1(αi) = τi, α1ρ = cτ11 , α2ρ = cτ22 and αjρ = c
τj
3 for any

j > 2. Then R(ψρ)↓|p1 6= R(ψρ)↓|p2 and mgu(R(ψρ)↓, uQ) = ⊥, while

mgu(R(φρ)↓, uQ) 6= ⊥ as ρ only introduces new equalities.

In every case, t̄r1ρ is valid trace of P̄ , and t̄r1ρ is a trace of P with frame φ0 which is

well-typed (ρ is well-typed) and for any term t of t̄r1ρφ0↓, t ∈ T0(Σc,∪Σ
P
0 ∪ NP ∪⋃

τ
Cτ ). �

Theorem 2 The problem of deciding whether two simple protocols P and Q, type-

compliant w.r.t. some finite typing systems (T1, δ1) and (T2, δ2) are trace equivalent

(i.e. P ≈ Q) is decidable.

Proof. By Proposition 5, if P 6≈t Q there exists a well-typed witness of this non-

equivalence built on a special set of terms. Let for instance (tr0, φ0) ∈ trace(P ) be

a minimal such witness and define tr = tr0−1 and φ the frame such that (tr, φ) ∈
trace(P ). The minimality of tr0 implies there exists ψ such that (tr, ψ) ∈ trace(Q)
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and φ ∼s ψ.

P = !new c′1.out(c1, c
′
1).B1 | ... | !new c′m.out(cm, c

′
m).Bm

| Bm+1 | . . . | Bm+n

Q = !new c′1.out(c1, c
′
1).B

′
1 | ... | !new c′m.out(cm, c

′
m).B′

m

| B′
m+1 | . . . | B′

m+n′

(We can safely assume the same number of restricted channels (m) in P and Q, as

non-equivalence would trivially hold otherwise.) We define a function projP which

takes a channel ci and returns {tr|ci,c′i}c′i the set of subtraces of tr corresponding of

actions on channel c′i and the action new c′i.out(ci, c
′
i) which originated it. It can be

extended naturally to channels cm+1 to cm+n (in that case, in absence of replication,

each set is a singleton, which, for the sake of uniformity, we will denote by {tr|ci,c′i}c′i
for i ∈ {m+ 1, . . . ,m+ n} too). We can similarly define projQ. We now claim:

Claim 1: (tr, ψ) ∈ trace(Q) ⇒ projP = projQ, as subprocesses Bi and B′
i use public

fresh channels such that each c′i is spawned from a unique channel ci.

Moreover we define a relation RP on elements of img(projP ). We say that tr|ci,c′i �P
tr|ci,c′i if, and only if, tr|ci,c′iφ↓ is a prefix of (tr|ci,c′iφ↓){

ci/c′
i
}. RP is then the sym-

metric closure of �P ; and is an equivalence relation. Symmetrically, we can define a

relation RQ with ψ and make the following claim:

Claim 2: RP = RQ = R, as tr0 is a minimal witness of P 6≈ Q.

Given an action α we map it to β(α) its occurrence index in tr. Consequently

we can define min(α, α′) as the action with the lowest occurrence index; and lift

it to sequences of actions and sets of sequences: min(α1, . . . , αn, α
′
1, . . . , α

′
n) =

min(α1, α
′
1). . . . .min(αn, α

′
n). Moreover, if ǫ denotes the empty sequence, min(A, ǫ) =

min(ǫ, A) = A for any sequenceA, and we are thus able to define min for sequences of

different lengths. We define quite differently the maximum of two sequences A and A′

by max(A,A′) = A.A′
rmin(A,A′), i.e. the (ordered) sequence of actions of A and

A′ which are not minimal. We finally define a function merge taking as arguments any

subtrace tr0 of tr and tow sequences of actions A and A′ such that AR A′ and maps it

to merge(tr0, A,A
′) = (tr0 rmax(A,A′))σmin where σmin is the substitution which

maps any w ∈ dom(φ)∩(out(A)∪out(A′)) to the w′ ∈ dom(φ)∩out(min(A,A′)) at

the same position i.e such that out(c,w′) = min(out(c,w), out(c,w′)), where out(A)
denotes the set of variables in outputs of A. In particular, if tr′ = merge(tr0, A,A

′),
then there exist φ′ and ψ′ such that (tr′, φ′) ∈ trace(P ), (tr′, ψ′) ∈ trace(Q), tr′φ′↓ =
(tr0 rmax(A,A′))φ↓ and tr′ψ′↓ = (tr0 rmax(A,A′))ψ↓.

Let [tr1], . . . , [trM ] be the equivalence classes of R, then, by minimality of tr0,

each class has at exactly one element. If some class [tri] were to have two elements A
and A′, merge(tr, A,A′).(ασmin) would provide a shorter witness of P 6≈ Q, where

α is the last action of tr0 (which was excluded in tr) and σmin renames its variable if

needed, to ensure being a trace.

From Proposition 5, we know there exists a set of atoms such that there exists

only finitely element of the same type and such that any pseudo-well-typed trace only

uses those. As the type systems we consider are finite, there exists only finitely many

terms of each type. And finally, as the trace is pseudo-well-typed, each type in tr0φ0↓
appears in P . Hence there are only finitely types and finitely many terms that can

occur in any pseudo-well-typed trace of P : let T be that number. Thus we claim that

M ≤ (n+m)×TB whereB is the maximal length (in terms of number of actions) of a

parallel branch in P , i.e. maxi |tri|. Indeed a class is defined by its sequence of actions

(bounded by the maximum number of actions in any branch of P ) and the first-order
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terms it contains (which is bounded by the total number of existing eligible terms). As

there are n branches in P , of length at most M , there are at most (n+m)TB different

first-order sequences in P (up to prefixes). Then, as |tr+| ≤ M × B (tr+ contains

exactly one representative for each equivalence class, each being of length at most B),

we finally get |tr| ≤ (n +m) × B × TB . Hence, the maximal length of a well-typed

witness of P 6≈t Q is N = (n + m)BTB + 1, and the number of such traces in

trace(P ) is bounded by
N∑

i=0

T i, which provides a straightforward algorithm to decide

trace equivalence. �

E Proof of Corollary 1

For every tagged protocol, we can define a induced typing system which is useful to

prove Corollary 1.

Definition 19 Let P be a tagged protocol, and σP the substitution witnessing this fact.

Let ΣP , NP , XP be respectively the constants, names, and variables occurring in P .

We consider the function δP , inductively defined on T (Σc,ΣP ∪NP ∪XP ) as follows:

• δP (x) = xσP for any variable that occurs in P ;

• δP (a) = a for any name, constant that occurs in P .

• δ(f(t1, t2)) = f(δ(t1), δ(t2)) for f ∈ {enc, 〈 〉}.

The image of δP is a set of types, denoted Tp. The function δP is then extended arbi-

trarily to the remaining names, variables, constants such that there is an infinite set of

names, variables, constants of each type in Tp. This extends δP on T (Σc,Σ0∪N ∪X )
using the recursive definition: δ(f(t1, t2)) = f(δ(t1), δ(t2)) when f ∈ {enc, 〈 〉}.

Any tagged protocol is actually type-compliant w.r.t. its induced typing system.

Proposition 6 Let P be a tagged protocol and let (TP , δP ) as defined in Definition 19.

1. (TP , δP ) is a typing system. We say that it is the typing system induced by P .

2. P is type-compliant w.r.t. (TP , δP ).

Proof. First we prove by induction on terms t and t′ in Definition 5 that (TP , δP )
as introduced in Definition 19 is a typing system. Then we prove that if P is tagged

then P is type-compliant w.r.t. (TP , δP ). Indeed, let s, t ∈ ESt(unfold2(P )) and a

substitution σ such that sσ = tσ. We need to prove that δP (s) = δP (t). Because P
is tagged, sσP = tσP . Moreover, δP (s) = δP (sσP ) and δP (t) = δ1(tσP ). Hence

δP (s) = δP (sσP ) = δP (tσP ) = δP (t). �

Corollary 1 The problem of deciding whether two simple and tagged protocols P
and Q are trace equivalent (i.e. P ≈ Q) is decidable.

Proof. Since P (resp. Q) is tagged, thanks to Proposition 6, we know that P (resp. Q)

is type-compliant w.r.t. (TP , δP ) (resp. (TQ, δQ)), the typing system associated to P
(resp. Q) as defined in Definition 19. With such typing systems, we have that the size

of a term (i.e. number of function symbols) is smaller that the size “indicated” by its

type (i.e. the size of the type, viewed as a term). Thus, it is then easy to see that the set:
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{t ∈ T (Σc,A) | δ(t) = τ}

is finite for any τ ∈ TP (and similarly for Q) as soon as A is a set of names and con-

stants that contains only a finite number of names/constants of each type. We conclude

by applying Theorem 2. �

Finally, for the special case of strongly tagged protocols, we provide Lemma 3.

Lemma 3 Let P be a protocol. If P is strongly tagged then P is tagged.

Proof. Let us assume P is a strongly tagged protocol and σP be the substitution as in

Definition 10. Let s1, s2 ∈ ESt(unfold2(P )) such that there exists σ with s1σ = s2σ.

As both terms are of the form enc(〈c, ui〉, vi) for some ui and vi and are unifiable, they

share the same tagging constant c. Then s1σP = s2σP by Definition 10, and thus, a

fortiori, s1σ1 = s2σ2. �
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