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ABSTRACT

Advanced composite materials such as Carbon Fibre Reinforced Polymers (CFRP) tend

to be used in aerospace industry to keep the weight at its minimum and yet retain a great

strength. CFRP have a strong, stiff fibres in a matrix. The resulting material is very strong

as it has the best strength to weight ratio of all construction materials. However, aircraft

structures such as wings can break due to Fluid-Structure Interaction (FSI) oscillations

or material fatigue. Material inspection by piezoelectric induced ultrasonic waves is a

relatively new and an intelligent technique to monitor the health of CFRP for a damage

detection in the Non-Destructive Test (NDT). To design a Structural Health Monitoring

(SHM) system, it is important to understand phenomenologically and quantitatively the

wave propagation in CFRP and the influence of the geomaterial and mechanical proper-

ties of the structures. The principal aim of this research is to explore and understand the

design and operation from safety and economic points of view. To accelerate the design

of SHM systems, the FSI effect on the wave propagation has to be considered. This re-

search will focus on the mathematical modeling and numerical analysis of Navier-Stokes,

elastodynamics and elastic waves equations in the arbitrary Lagrangian-Eulerian (ALE)

framework in order to determine the wave propagation in moving domains and optimum

locations for sensors. Since analytical solutions are only available in special cases, the

equations need to be solved by numerical methods. For the implementation we chose the

finite element library package deal.ii and DOPELIB due to its special characteristics.

KEYWORDS : Finite elements based SHM, interaction between wave/field and

structure/material, elastic wave propagation, fluid-structure interaction, adaptive finite

element method.

1. INTRODUCTION

Separating modeling and numerical errors in the simulated results from the material defects effects

is a very challenging topic. It is of great importance for structural health studies and the design of

appropriate monitoring systems. In this paper, we restrict ourselves to mathematical modeling and

numerical analysis of coupled elastic wave propagation problems with Fluid-Structure Interaction

(FSI) problems in a ALE framework. The main goal of this research is to apply higher order

finite element methods (FEM) for the elastic wave propagation in a composite material under FSI

effect. We present the state-of-the-art in computational methods and techniques of elastic wave

propagation with FSI that go beyond the fundamentals of computational fluid and solid mechanics.

In fact, the fundamental rule require transferring results from the computational fluid dynamics

(CFD) analysis as input into the structural analysis and thus can be time-consuming, tedious and

error-prone. This work consists of mathematical coupling, development of numerical approximation

and solution techniques for elastic wave propagation with FSI problem. We will also consider the

investigation of different time stepping scheme formulations for a elastic wave equation with a
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nonlinear fluid-structure interaction problem coupling the incompressible Navier-Stokes equations

with a hyperelastic solid based on the well established Arbitrary Lagrangian Eulerian (ALE) frame-

work [1–4]. Temporal discretization is based on finite differences and a formulation as one step-θ
scheme, from which we can extract the implicit Euler, Crank-Nicolson, shifted Crank-Nicolson, and

the fractional-step-θ schemes [1–6]. We will analysis variational space-time methods for the wave

equation [7–9]. The ALE approach provides a simple, but powerful procedure to couple fluid flows

with solid deformations by a monolithic solution algorithm. In such a setting, the fluid equations are

transformed to a fixed reference configuration via the ALE mapping. The targets of this work are

the development of concepts for the efficient numerical solution of FSI problem and the analysis of

various fluid-mesh motion techniques, a comparison of different second-order time-stepping schemes.

The time discretization is based on finite difference schemes whereas the spatial discretization is

done with a Galerkin finite element scheme. The nonlinear problem is solved with Newton’s method.

To control computational costs, we apply a simplified version of a posteriori error estimation using

the dual weighted residual (DWR) method. This method is used for the mesh adaption during the

computation. For the implementation, we chose the FE software package DOPELIB [10], which is

a flexible modularized high-level algorithms toolbox based on the finite element library deal.II [11].

DOPELIB, deal.II can be used to solve stationary and non-stationary PDE problems as well

as optimal control problems constrained by PDEs and Dual-Weighted-Resiudal approach for

goal-oriented error estimation. The principal aim of this research is to explore and understand the

behaviour of engineering artefacts in extreme environments. To achieve the main ambition of this

work, we split this research into two parts. The first part will consider the effect of fluid flow over a

sample aircraft and the displacement of a control point under incompressible fluid flow. The second

part will focus on the numerical approximation of wave propagation in composite material. The

anticipated outcome of this research will be: (a) an overview of FSI effect on the sample aircraft

wing, (b) optimum locations for sensors of SHM systems, (c) an outlook on the expected future of

SHM systems and (d) modern techniques for FSI and wave propagation problem optimization [5].

In this project, we aim to solve second order hyperbolic equations coupled with a nonstation-

ary fluid-structure interaction problem in arbitrary Lagrangian-Eulerian coordinates, where the

mesh motion model is based on the solution of a biharmonic equation. To formulate the system of

elasticity, let us assume that Ω ⊂ R
d ,d = 2,3, is a bounded and convex domain at time t = 0 with

the Lipschitzian boundary ∂Ω = ∂ΩD ∪ ∂ΩN , where ∂ΩD, ∂ΩN denote Dirichlet and Neumann

boundaries, respectively. The computational domain Ω := Ω(t) is split into two time-dependent

subdomains Ω f (t) (for a homogeneous, newtonian and incompressible fluid) and Ωs(t) (for a

compressible hyperelastic structure). And the sensors of SHM systems would be optimally located in

Ωs(t). Both domains depend on time and their common boundary ∂Ωi(t) = ∂Ω f (t)∩∂Ωs(t), where

partialΩ f (t) = ∂Ω f D(t)∪∂Ω f N(t)∪∂Ωi(t) and ∂Ωs(t) = ∂ΩsD(t)∪∂ΩsN(t)∪∂Ωi(t).

Notations and Functional spaces

We begin this paper with some basic notation. For d a positive integer representing dimension, let

X ⊂ Rd denote an arbitrary bounded Lipschitz domain with boundary ∂X . As usual, let L2(X) denote

the space of square integrable functions on X and define L2(X) = (L2(X))d . We will also utilize the

standard Lebesgue space Lp(X) where 1 6 p 6 ∞ that consists of measurable functions u, which are

Lebesgue-integrable to the p-th power and their vectorial counterpart Lp(X). The set Lp(X) forms a

Banach space with the norm |u|Lp(X). The Sobolev space W m,p(X), m ∈ N, 1 6 p 6 ∞ is the space

of functions in Lp(X) that have distributional derivatives of order up to m, which belong to Lp(X).
For p = 2,Hm(X) :=W m,2(X) is a Hilbert space equipped with the norm ‖.‖Hm(X) [5, 10, 11]. Finally,

the subspace W m,p(X) of functions indicate with zero trace on ∂X denoted by W
m,p
0 (X). Specifically,
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Hilbert space with zero trace on ∂X defined as H1
0 (X) = {u ∈ H1(X) : u|ΓD

= 0, where ΓD = ∂XD},

where ∂XD is that part of the boundary ∂X at which Dirichlet boundary conditions are imposed. So

for given set X , let us consider the Lebesque space LX := L2(X), and L0
X := L2(X)/R. The functions

in LX with first-order distributional derivatives in LX make up the Sobolev space H1(X). Furthermore,

we can use the function spaces VX := H1(X)d , V 0
X := H1

0 (X)d , and for time-dependent functions

LX := L2[0,T ;LX ], VX := L2[0,T ;VX ]∩H1[0,T ;V ∗
X ],

L
0

X := L2[0,T ;L0
X ], V

0
X := L2[0,T ;V 0

X ]∩H1[0,T ;V ∗
X ],

where, V ∗
X is the dual of VX .

2. MATHEMATICAL MODELS

To formulate the typical wave propagation problem with FSI effect, we consider the following def-

initions: the reference domains are denoted by Ω̂ f and Ω̂s, respectively, with their common inter-

face ∂ Ω̂i at time, t = 0. The fluid external boundaries ∂Ω fin
and ∂Ω fout

are supposed to be fixed.

The corresponding outward normal vectors to the fluid and solid boundaries are denoted by n f and

ns, respectively. The variational ALE formulation of the fluid part is transformed from its Eule-

rian description into an arbitrary Lagrangian framework and stated on the (arbitrary) reference do-

main Ω̂ f , while the structure part is formulated in Lagrangian coordinates on the domain Ω̂s, where

Ω̂ = Ω̂ f ∪ ∂ Ω̂i ∪ Ω̂s. Moreover, here we solve the Laplace equation for the definition of the ALE

mapping. Here, the continuity of velocity v̂ f = v̂s and û f = ûs across the common fluid-structure inter-

face on ∂ Ω̂i(t) = ∂ Ω̂ f (t)∩ ∂ Ω̂s(t). The ALE mapping is denoted by T̂ and transforms the reference

configuration Ω̂ f of the fluid to the physical domain Ω f (t). Furthermore, any function q̂ ∈ Ω̂ can be

defined by:

q(x) = q̂(x̂) with x = T̂ (x̂, t) (1)

In this FSI problem, the principal unknowns are the fluid domain displacement (mesh motion) û f :

Ω̂ f ×R
+ 7→ R

3, the fluid velocity v̂ f : Ω̂ f ×R
+ 7→ R

3, the fluid pressure p̂ : Ω̂ f ×R
+ 7→ R and the

structure displacement ûs : Ω̂s ×R
+ 7→ R

3. Thus û f = Ext(ûs|∂Ωi(t)), the ALE mapping is defined

through the extension of the structural displacement (for large mesh deformations without remeshing)

into the fluid domain and determine by solving following biharmonic equation

∆
2û f = 0 in Ω̂ f ,

û f = ∂nû f = 0 on (∂̂Ω f ,in ∪ ∂̂Ω f ,out),

û f = ûs and ∂nû f = ∂nûs on ∂̂Ωi.

(2)

The ALE map is constructed by solving a mixed formulation of the biharmonic equation, where we

introduce an auxiliary variable ŵ =−∆̂û in Ω̂ and obtain

ŵ =−∆̂û in Ω̂,

−∆̂ŵ = 0 in Ω̂ f ,

û f = ∂nû f = 0 on (∂̂Ω f ,in ∪ ∂̂Ω f ,out),

û f = ûs and ∂nû f = ∂nûs on ∂̂Ωi.

(3)

The ALE approach belongs to interface-tracking methods in which the mesh is moved such that it

fits in all time steps with the FSI-interface. However, this leads to a degeneration of the ALE map.

Methods to circumvent such as degeneration as long as possible are re-meshing techniques or to use
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(as suggested here) a biharmonic mesh motion technique. In this case the deformation gradient and its

determinant become:

F̂ := I + ∇̂û, Ĵ = det(F̂).

In the structure domain, T̂ takes the place of the Lagrangian-Eulerian coordinate transformation, while

in the fluid domain, T̂ has no physical meaning but serves as ALE mapping. The corresponding

equations are stated in the following:

Problem-1: The Navier-Stokes equations in ALE framework

Find v̂ f ∈ v̂D
f + V̂ 0

Ω̂ f

and p̂ f ∈ L̂
Ω̂ f

, such that the initial data satisfiy v f (x,0) = v0
f in Ω f , and for almost

all t ∈ I it holds that:

(
Ĵ f ρ̂ f ∂t v̂ f , φ̂

v
)

Ω̂ f

+
(

Ĵ f ρ̂ f (F̂
−1
f (v̂ f −∂t û f ).∇̂)v̂ f ), φ̂

v
)

Ω̂ f

+
(

Ĵ f σ̂ f F̂
−T
f , ∇̂φ̂ v

)
Ω̂ f

−〈Ĵ f σ̂ f F̂
−T
f , φ̂ v〉

Γ̂i
−
(

Ĵ f ρ̂ f f̂ f , φ̂
v
)

Ω̂ f

−〈ĥ, φ̂ v〉
Γ̂ fN

= 0 ∀φ̂ v ∈ V̂ 0

Ω̂ f(
d̂iv(Ĵ f F̂

−1v̂ f ), φ̂
p
)

Ω̂ f

= 0 ∀φ̂ p ∈ L̂
Ω̂ f

(4)

Problem-2: The Structural equations in Lagrangian framework

Find ûs ∈ ûD
s + V̂ 0

Ω̂s

and v̂s ∈ v̂D
s + V̂ 0

Ω̂s

such that the initial data satisfies ûs(x̂,0) = û0
s (x̂) in Ω̂s, and for

almost all t ∈ I it holds that:

(∂t ûs − v̂s, φ̂
u)

Ω̂s
= 0 ∀φ u ∈ V̂ 0

Ω̂s(
ρ̂s∂t v̂s, φ̂

v
)

Ω̂s

+(Ĵsσ̂sF̂
−T

s , ∇̂φ̂ v)
Ω̂s

−〈Ĵsσ̂sF̂
−T

s , φ̂ v〉
Γ̂i
− (ρ̂s f̂s, φ̂

v)
Ω̂s

= 0 ∀φ v ∈ V̂ 0

Ω̂s

(5)

Let us define the density ρ̂ and the Cauchy stress tensor σ̂ for the whole domain by-

ρ̂(x̂) =





ρ̂ f (x̂), x̂ ∈ Ω̂ f

ρ̂s(x̂), x̂ ∈ Ω̂s ∪∂ Ω̂i

σ̂(x̂) =





σ̂ f (x̂), x̂ ∈ Ω̂ f ,

σ̂s(x̂), x̂ ∈ Ω̂s ∪∂ Ω̂i,

and by using monolithic approach, we get from Problem-1 and 2:

Problem-3: The FSI problem in ALE framework

Find {v̂, û, ŵ, p̂} ∈ {v̂D + V̂ 0

Ω̂
}×{ûD + V̂ 0

Ω̂
}× V̂ × L̂

Ω̂
, such that v̂(0) = v̂0 and û(0) = û0, for almost

all t ∈ I it holds that:

(Ĵρ̂∂t v̂, φ̂
v)

Ω̂ f
+(ρ̂ Ĵ(F̂−1(v̂−∂t û) · ∇̂)v̂), φ̂ v)

Ω̂ f

+(Ĵσ̂ F̂−T , ∇̂φ̂ v)
Ω̂ f

− (Ĵρ̂ f̂ f , φ̂
v)

Ω̂ f
−〈ĥ, φ̂ v〉

Γ̂N

+(ρ̂∂t v̂, φ̂
v)

Ω̂s
+(Ĵσ̂ F̂−T , ∇̂φ̂ v)

Ω̂s
− (ρ̂ f̂s, φ̂

v)
Ω̂s

= 0 ∀φ̂ v ∈ V̂ 0

Ω̂
,

(α̂uŵ, φ̂ w)
Ω̂ f

+(α̂u∇̂û, ∇̂φ̂ w)
Ω̂ f

+(α̂u∇̂ŵ, ∇̂φ̂ w)
Ω̂s

= 0 ∀φ̂ w ∈ V̂
Ω̂
,

ρ̂(∂t û− v̂, φ̂ u)
Ω̂s

+(α̂u∇̂ŵ, ∇̂φ̂ u)
Ω̂ f

= 0 ∀φ̂ u ∈ V̂ 0

Ω̂
,

(d̂iv(ĴF̂−1v̂), φ̂ p)
Ω̂ f

+( p̂s, φ̂
p)

Ω̂s
= 0 ∀φ̂ p ∈ L̂

Ω̂
,

(6)
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The stress tensors for the fluid and structure are implemented by

σ̂ f = −p̂I + ρ̂ f ν f (∇̂v̂F̂−1 + F̂−T
∇̂v̂T ),

σ̂s = Ĵ−1F̂(2µsÊ +λstrÊI)

with the viscosity ν f , the Lamé parameters µs, λs and Ê = 1
2
(F̂T F̂ − I).

Where, we notice that this problem is driven by a Dirichlet inflow condition. In this formula-

tion, for momentum equations, integration by parts in both subdomains yields the boundary term on

Γ̂i as:

(
n̂ f .(Ĵσ̂sF̂

−T ), φ̂ v
)

Γ̂i

+
(

n̂s.(Ĵσ̂ f F̂
−T ), φ̂ v

)
Γ̂i

= 0.

By omitting this boundary integral jump over ∂ Ω̂i the weak continuity of the normal stresses becomes

an implicit condition of the fluid-structure interaction problem.

Our main target is to study the impact of FSI on modelling and simulation of wave propaga-

tion in composite materials, where we need an appropriate treatment of microstructure of composite

material which typically cannot be resolved by finite element meshes. Simulation of the elastic wave

propagation with the FSI effect on an aircraft wing is still in progress. In this project we will focus

mostly on the concurrent numerical coupling techniques of Problem-3 & 4, where we will build a

mathematical model that integrates the coupling methodology. In this case, we will use a monolithic

approach in which all equations are solved simultaneously. Employing strongly coupled approach,

the interface conditions, the continuity of velocity and the normal stresses, are automatically achieved

at each time step. Here, a coupled monolithic variational formulation is an inevitable prerequisite for

gradient based optimization methods, for rigorous goal oriented error estimation and mesh adaptation.

However, this coupling leads to additional nonlinear behavior of the overall system.

Problem-4: The Elastic Waves equations in Lagrangian framework

Find ûw ∈ ûD
w + V̂ 0

Ω̂s

and v̂w ∈ v̂D
w + V̂ 0

Ω̂s

such that the initial data satisfies ûw(x̂,0) = û0
w(x̂) in Ω̂s, and

for almost all t ∈ I it holds that:

(∂t ûw − v̂w, φ̂
u)

Ω̂s
= 0 ∀φ u ∈ V̂ 0

Ω̂s(
ρ̂s∂t v̂w, φ̂

v
)

Ω̂s

+(Ĵsσ̂sF̂
−T

s , ∇̂φ̂ v)
Ω̂s

−〈Ĵsσ̂sF̂
−T

s , φ̂ v〉
Γ̂s
− (ρ̂s f̂w, φ̂

v)
Ω̂s

= 0 ∀φ v ∈ V̂ 0

Ω̂s

(7)

Here Problem-4 is not strongly coupled with Problem-3. To slove the elastic wave equation

in Lagrangian framework, for each time step we will need to consider the boundary conditions,

〈Ĵsσ̂sF̂
−T

s , φ̂ v〉
Γ̂s

from Problem-3.

3. NUMERICAL APPROXIMATION OF FSI PROBLEM

In this paper, we mainly deal with a double wedge airfoil (2D), where the left end of this airfoil is

considered rigid and the control points A(t) are fixed at the trailing edge with A(t)|t=0 = (0.6,0.147).
We observed different behaviors of the double wedge airfoil with different FSI test cases that are

treated with different inflow velocities (see Table-1) [1–4, 6]. The parameters are chosen such that a

visible transient behavior of the double wedge airfoil can be seen. To ensure a ’fair’ comparison of

results, we calculate the comparison values using the ALE method.
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Table 1 : Parameter setting for the FSI test cases

Parameter Test-1 Test-2 Test-3

Structure model STVK STVK STVK

ρ f [kgm−3] 1000 1000 1000

ρs[kgm−3] 2710 2710 2710

ν f [m
−2s−1] 1×10−3 1×10−3 1×10−3

νs 0.33 0.33 0.33

µs[kgm−1s−2] 68.9×106 68.9×106 68.9×106

Um[ms−1] 0.2 1.0 2.0

One of the main issues of this numerical example is the automatic mesh adaptation within the

ALE finite element approximation of the FSI problem. The computations presented below have been

done on three different types of meshes [1–4, 6, 10, 11]:

• globally refined meshes obtained using several steps of uniform refinement of a coarse initial

mesh,

• locally refined meshes obtained using a purely geometry-based criterion by marking all cells for

refinement which have certain prescribed distances from the fluid-structure interface,

• locally refined meshes obtained using a systematic residual-based criteria by marking all cells

for refinement which have error indicators above a certain threshold.

(a) DoFs 37056 (b) DoFs 3265836

Figure 1: A regular mesh after eight cycles of patchwise adaptive refinement.

Finally the target is to apply the Dual Weighted Residual Method (DWR method) for the adaptive

solution of FSI problems. The DWR method provides a general framework for the derivation of a

goal-oriented posteriori error estimates together with criteria of mesh adaptation for the Galerkin

discretization of general linear and nonlinear variational problems, including optimization problems.

In order to incorporate also the time discretization into this framework, we have to use a fully

space-time Galerkin method, i.e., a standard finite element method in space combined with the dis-

continuous Galerkin dG(r) or continuous Galerkin cG(r) method in time. The following discussion

assumes such a space-time Galerkin discretization, though in our test computations, we have used

the fractional-step-θ scheme which is a finite difference scheme. Accordingly, in this paper the

DWR method is used only in its stationary form in computing either steady states or intermediate

quasi-steady states within the time stepping process. We refer to [1–4, 6] for more details about the

DWR method and goal-oriented posteriori error estimates.

The computed values of the test-1, 2 & 3 are summarized in the Table-2. The results of the

test-2 & 3 are displayed in the Figure-2. In test cases FSI-1, the deflection of trailing edge of the

airfoil became steady, while in FSI test-2 and 3, we observed oscillating behavior. Therefore, we
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Figure 2: Variation of displacement (ux, uy), drag force (FD) and lift force (FL) over time (t)
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Table 2 : Results for the test case 1, 2 and 3.

Test-1 Test-2 Test-3

DoFs 3265836 3265836 3265836

Time step size k[s] 0.01 0.001 0.0001

ux(A)[×10−5] 0.16 0.51±0.061 2.68±4.97

uy(A)[×10−5] 0.56 1.75±0.241 9.22±19.22

FD 15.69 61.03±0.96 292.73±84.5

FL 24.99 69.11±5.61 285.01±456.1

conclude that the deflective behavior of structures becomes unsteady under high-speed fluid flow,

which can be cause of massive fatalities.

4. REMARKS

For structural health studies and the design of appropriate monitoring systems it is of a great impor-

tance and a challenging issue to separate modelling and numerical errors in the simulated results from

the material defects effects. Our work on the mathematical coupling of an elastic wave propagation

in anisotropic and composite media with the FSI effect on an aircraft wing is still in progress. This

project will focus mostly on the concurrent coupling techniques of Problem-3 & 4, where we will

build a mathematical model that integrates the coupling methodology. Also part of this project aims to

develop an efficient numerical method to design an integrate SHM systems, which combine modern

techniques from PDE-constrained optimization, adaptive and multigrid simulation methods.
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