
HAL Id: hal-01057530
https://inria.hal.science/hal-01057530

Submitted on 23 Aug 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Service-Oriented Middleware for the Mobile Internet of
Things: A Scalable Solution

Sara Hachem, Animesh Pathak, Valérie Issarny

To cite this version:
Sara Hachem, Animesh Pathak, Valérie Issarny. Service-Oriented Middleware for the Mobile Internet
of Things: A Scalable Solution. IEEE GLOBECOM: Global Communications Conference (Accepted),
Dec 2014, Austin, United States. �hal-01057530�

https://inria.hal.science/hal-01057530
https://hal.archives-ouvertes.fr

1

Service-Oriented Middleware for the Mobile

Internet of Things: A Scalable Solution
Sara Hachem, Animesh Pathak, Valerie Issarny

Inria Paris-Rocquencourt, France

{sara.hachem, animesh.pathak, valerie.issarny}@inria.fr

Abstract—The Internet of Things (IoT) is characterized by a
wide penetration in the regular user’s life through an increas-
ing number of mobile Things, such as mobile phones hosting
sensors and actuators. However, the shift to the mobile IoT
does not come without challenges, as many already existing
issues remain unresolved and are amplified by the IoT scale
and the mobility of its Things. The most challenging issues
are handling the abundance of users and Things, providing
interoperability across the heterogeneous Things, and overcoming
the unknown dynamic environment due to the mobility of Things.
This paper addresses the above challenges as we revisit the
commonly used Service-Oriented Architecture (SOA). This leads
to the design, implementation and evaluation of MobIoT, a new
service-oriented middleware. MobIoT modifies standard SOA
functionalities, namely service discovery, composition and access,
to better address the challenges posed by the IoT, especially
its scale. Specifically, MobIoT adopts probabilistic methods to
decrease the number of involved devices, while building on
semantic knowledge to support interoperability and fulfill users’
queries for Thing-based measurements/actions.

I. INTRODUCTION

The Internet of today is shifting towards a larger and smarter

Internet known as the Future Internet [13], [15] with an

essential component being the Internet of Things (IoT). The

IoT is characterized by a large number of Things (e.g., phones

hosting sensors and actuators, sensor-equipped vehicles, etc.),

involved in every aspect of our lives, that cooperate in order

to provide, among others, knowledge about the real world.

The IoT is defined as a global network infrastructure,

linking physical and virtual objects through the exploitation of

data capture and communication capabilities1. A considerable

portion of those objects, is Things endowed with the ability

to change their location either autonomously or, for instance,

with human involvement (e.g., mobile phones, vehicles, etc.).

Those mobile Things are no longer a vision for the future

and they are here, within everyone’s reach. For instance, all

mobile phones nowadays host at least two sensors, a camera

and a microphone. As of 2011, there are 5.3 billion phones

users of whom more than 1 billion own a smartphone2 with

other sensors such as gyroscopes and barometers. Another

example is the increasing integration of sensors and actuators

in vehicles (cars with speedometers, parking sensors, etc.).

This work has been partly supported by the European Community’s Sev-
enth Framework Programme FP7/2007-2013 under grant agreement number
257178 (project CHOReOS - Large Scale Choreographies for the Future
Internet - http://www.choreos.eu).

1RFIDGlobal: www.rfidglobal.eu.
2US Strategy Analytics: www.strategyanalytics.com.

With this wide adoption of mobile technologies, we focus

our work on the mobile portion of the IoT as it introduces

several benefits [17]. Firstly, with mobile devices hosting an

increasing number of sensors and actuators, there is no need to

spend large amounts of money on static sensor deployments.

Secondly, mobile sensors can cover/sense more areas than

their static counterpart. Finally, unlike static sensors, which, in

many cases, are placed in remote areas, mobile Things such as

mobile phones or cars are regularly recharged. It should also

be noted that, given that static Things can be considered as a

special class of mobile objects that are not moving, our work

can be easily extended to support the IoT as a whole.

Consequently, many research efforts were directed towards

building a scalable reliable mobile IoT [8], [9], [14]. Yet, as

we identified in earlier work [21], many challenges remain

unresolved, among which:

• Unknown topology: The (mobile) IoT is characterized by

a network topology that is unknown and highly dynamic,

due to the mobility of Things or their short life span. As

a consequence, services required by an IoT application

may suddenly become unavailable, because the host ran

out of battery or just changed its location abruptly.

• Heterogeneity: The (mobile) IoT comprises sensors and

actuators that are highly heterogeneous with different

operating characteristics (e.g., operating platforms, sam-

pling rates and error distributions) and different hard-

ware characteristics (e.g., sensor chip type), hosted on

diverse Things (e.g., mobile phones, vehicles, clothing,

etc.) integrating many of those components. As a result,

ensuring interoperability between all the Things cannot

be considered as a straightforward task.

• Scale: To accurately represent the real world, a sens-

ing/actuating task will most often require the cooperation

and coordination of numerous (mobile) Things (within

an Internet of billions). For instance, even a single appli-

cation, such as calculating daily temperature variations

around the globe, can require the use of millions of

mobile Things resulting in an amount of information that

will grow unmanageable. This is problematic due to time,

memory, processing, and energy constraints.

An adequate solution towards addressing the heterogeneity

and the unknown network topology issues is through a middle-

ware that adopts a Service-Oriented Architecture (SOA) [16].

SOA is commonly used in IoT solutions [8], [9], [13], [19], to

abstract Things or their measurements as services. The service-

2

oriented paradigm decouples the functionalities of Things

from their hardware information or other technical details.

Resulting services have functional attributes such as the type

of measurements they provide (e.g., temperature measurement

service), and non-functional attributes to specify Quality of

Service information (e.g., measurement accuracy).

Traditional SOA involves three main actors that interact

directly with one another (shown in Figure 1): a service

provider (the Thing hosting the service), a service consumer

(any IoT application), and a Registry for services. Moreover,

any service-oriented middleware adopting this architecture

supports three core functionalities: Discovery, Composition of,

and Access to services (Figure 1). Specifically, Discovery

Registry

Service
consumer

Service
providers

2
1

3

1

2

3

Discovery

Composition

Access

temp wind
speed

wind-
chill

Fig. 1: The interactions in the Mobile Internet of Things.

is used to publish (register) services in registries that hold

service metadata and to look for services that can satisfy

a sensing/actuating request. Composition of services is used

when discovered services are unable to fulfill the request. In

such case, other existing services are combined to provide a

new or more convenient functionality. The composed services

can further be used for more complex compositions. Finally,

Access enables the interaction with the discovered services.

Typically, in SOA, even if millions of services are registered,

there is no need to select and access them all simultaneously.

However, in the IoT, discovery, composition and access are

undoubtedly more complicated. In fact, it is unlikely for a

single or even a few services to be sufficient when provid-

ing real-world measurements. In most cases, to accurately

represent a real-world feature, a large number of services

are selected to provide their measurements, and subsequently,

all acquired values should be properly aggregated. As a

consequence, discovery will return a large set of accessible

services, many of which can provide redundant functionalities.

Consumers are then expected to access the numerous providers

to acquire their measurements, over which they should know

the exact aggregation/fusion logic to apply. Furthermore, such

logic requires precise knowledge and understanding of the

real world and its governing physics and mathematics laws.

Clearly, performing discovery, composition and access tasks as

presented above incurs high communication and computation

costs and is thus not realistic within the large scale IoT.

In light of the above issues, our first contribution lies in re-

visiting the SOA interaction patterns to support better scalabil-

ity and exempt consumers from the burden of interacting with

providers. Specifically, we introduce a Thing-based SOA that

wraps all cumbersome tasks internally in a middleware that,

unlike traditional service-oriented middleware, is aware of the

real world, its physics and its mathematics rules. To be inline

with the new architecture and its objectives, functionalities of

the middleware itself are also to be revised. To that end, we

present our second contribution, MobIoT, a service-oriented

middleware with a novel discovery protocol, which builds on

a previous work on probabilistic service registration published

in [10] and a novel composition protocol. MobIoT decouples

the sensing/actuating tasks from the querying for measure-

ments and requests for actions. The query should at least

contain the concept to measure and the location of interest. An

example of such queries would be “What is the noise level at

the Colosseum in Rome?”. It is important to mention that we

focus on real-time discrete request/response sensing/actuation

scenarios, with special interest in environment monitoring.

We proceed in the following sections to detail the proposed

Thing-Based SOA and MobIoT. We start in Section II by

surveying the literature for existing IoT middleware solutions.

In Section III we describe the Thing-based SOA architecture,

followed by Section IV where the MobIoT components are

presented. We then present the evaluation of MobIoT in

Section V. Finally, Section VI concludes the paper with a

summary of our contributions.

II. BACKGROUND

There have been extensive efforts in the literature to provide

middleware solutions to realize the IoT vision. A common

approach in many of those solutions is to adopt the service-

oriented paradigm to support a network topology that is both

unknown and dynamic, and to decouple the physical aspect

of the IoT (i.e., Thing level) from its functional aspect (i.e.,

Thing-based service level) thus enabling better interoperability.

The latter is achieved by abstracting the physical Thing in

the network as a service (such as in HYDRA [8], [25],

SENSEI [19] and SOCRADES [9]), or by abstracting the

virtual Thing as a service (e.g. GSN [1]). With the former

abstraction, consumers have access to the data/action sources

directly while the latter provides consumers with access to

processed data thus decoupling between the Thing itself and

the data it generates. However, as elaborated below, there is

no common approach to addressing together all the challenges

we identified, and none of the solutions regards the scale issue

as the central point that aggravates all other challenges.

Firstly, the unknown topology of the environment is ad-

dressed through discovery methods that are largely based on

the traditional service/resource discovery approaches of ubiq-

uitous environments [8], [9], [14]. By traditional discovery, we

mean discovery of all appropriate devices that are reachable.

For instance, authors in [14] provide a DHT-based discovery

technique that accelerates the search process. Authors in [6]

focus on a geographical-location based discovery where nodes

publish their location, then federations are created by a man-

aging node based on neighboring nodes. While these solutions

are appropriate for small to medium scale networks, adopting

traditional discovery and access within the large scale mobile

IoT, involving billions of Things, is inadequate and thus, those

techniques must be revisited.

Secondly, to address heterogeneity challenges, it is standard

practice to use ontologies to model devices and their meta-

3

Service
Consumer

Service
Provider

Registry
Look-up

Register

access

Service
Consumer

Service
Provider

Registry look-up

registration
request

query

MobIoT
access

register

Fig. 2: a) Traditional SOA b) Thing-based SOA.

data [7], [18], context information [3], [19], or services [7],

[8], [25]. Authors in [6] further model location of nodes as

they consider it a very important parameter when searching for

information in the IoT. Some solutions introduce the concept

of virtual/semantic sensors [8], [18], [25], i.e., entities that

abstract several aggregated Things under a single service as

a form of composition specification. However, the semantic

models they provide either model sensors, their data, their

services, etc., or they model sensors and their relation to the

real world (i.e., the features they measure). Yet, not much

effort was directed towards providing connected ontologies

that present this information on top of knowledge that goes

beyond concepts measured by sensors, to include physics laws,

mathematics, etc., which are at the core of the IoT.

Last but not least, regarding scalability, most IoT-specific

solutions address this challenge by revisiting the underlying

network topology (DHT-based discovery [14], geographically

distributed nodes federation [6], etc.). This process can indeed

render data routing, discovery, or communication more effi-

cient. However, in our view, such modifications are not fit for

the complex weave of interactions in the IoT, as the number

of simultaneously active devices requesting/providing services

remains too high. Consequently, a large number of requests

will involve intricate coordination among millions of Things

and services. In such environment, performing even a simple

service discovery or composition may exceed acceptable time,

communication costs and resource consumption.

To overcome the above challenges, we revisit the SOA itself

along with the functionalities of traditional service-oriented

middleware. Specifically, we present a Thing-based SOA that

relieves service consumers from heavy communications and

computations. The architecture is concretized by MobIoT, a

middleware that amends conventional discovery and composi-

tion techniques to support larger numbers of Things, and be

fully aware of the real world and its laws.

III. THING-BASED SOA

SOA is defined as a logical way of designing a software

system to provide services via published and discoverable

interfaces [16]. In SOA, the provider, the registry and the con-

sumer interact directly as shown in Figure 2(a). The provider

hosts a software module that is the service implementation

and publishes the descriptions (metadata) of its hosted service

to the registry through which services are made discoverable.

The consumer finds and selects a service description matching

its requirements from the registry, and accesses the provider

hosting the matching service. The interactions, involving reg-

istration, look-up and access, have the following properties:

• During registration, all willing service providers are able

to register (publish) the descriptions of their services.

• During look-up, all registered services with attributes that

match a request are looked-up and can be accessed.

• Aggregations/compositions are applied by consumer(s).

• Access to services is done directly by consumer(s).

The application of SOA to the mobile IoT results in some

apparent contradictions. On the one hand, all tasks in SOA

revolve around a business logic that can be satisfied by one or

several services. On the other hand, in mobile IoT, all tasks and

interactions revolve around what we refer to as a Thing-based

query. The latter is a request sent by a consumer for real-world

measurement/actuation tasks with the following entities:

1) Physical concept: real world feature to measure/actuate.

2) Unit: each measured concept should have a unit, other-

wise the result will not be meaningful.

3) Location: the coordinates or name of the location of the

concept to measure. It can be a point in space or an area.

With such queries, it is unlikely to have only one or just a

few services that can provide accurate answers to represent

a real-world feature. Hence, expecting the service consumer

to interact with the numerous service providers individually

to access their services and acquire their measurements, then

know how to treat each and every value (with different possible

formats, types, units, etc.), in addition to the aggregation

logic to apply, requires high communication and computation

capabilities that the consumer will most likely not possess.

As an alternative, our approach [11], depicted in Figure 2(b)

revisits the SOA and renders most interactions and heavy

computations transparent to the consumer that is only expected

to know the sought after measurement, as follows:

• Probabilistic Registration: The registration of a provider’s

service is probabilistic. The goal is to allow only a subset

of willing providers to register their services depending

on how well registered ones can substitute it. Precisely,

the decision is based on whether or not the mobility path

to be followed by the new Thing will be covered by

other mobile Things, i.e., whether or not other registered

Things with similar sensing/actuating services will be

present at its future locations when it crosses them.

• Probabilistic Look-up: The look-up is also probabilistic

and it returns only a subset of services based on the

total area coverage they can provide. We adopt the same

logic as in intrusion detection solutions [23], [24] where

the spatial distribution of sensors has a major effect on

the performance of the sensing system. Based on those

solutions, when measuring a feature over some area (e.g.,

temperature in Rome), we sample sensors from a Uniform

distribution in space so that sensors from all over that

area have the same likelihood of being selected. However,

when the concept of interest is at a specific point in space,

a better distribution would be Normal as it selects more

sensors around that point and less as we move farther.

• Thing-based Composition: All aggregations/compositions

are executed transparently by the middleware based on

accurate physics and mathematics knowledge encoded

in a supporting ontology. The middleware identifies al-

ternative concepts (real-world features) that should be

provided as input to a mathematical formula whose output

4

Composition
& Estimation

MobIoT

service consumer

Registry
service provider

query

Registration
Look-up

Register

Access

Look-up
Request

Expansion
Request

Store service
metadata

Search for
services

Probabilistic
Discovery

MobIoT ontology

Fig. 3: MobIoT Architecture

is an estimate of the value of the concept of interest.

It is of utmost importance when either no Thing in

the network hosts services that can directly measure the

required concept, or when more accuracy and therefore

more data sources are required.

IV. MOBIOT DESIGN

MobIoT was designed to transparently provide the function-

alities required by the proposed Thing-based SOA. The core

components of the middleware are depicted in Figure 3.

A. IoT ontology

A key piece to our middleware is a comprehensive ontology,

describing sensors, actuators, physical concepts, etc., as well

as spatio-temporal and statistical correlation models of their

data. We build our ontology on top of a set of NASA’s

SWEET ontologies (http://sweet.jpl.nasa.gov/ontology/.), used

to model real world information, mathematics and physics, etc.

For details on our ontology we refer the reader to [12].

B. Discovery

Discovery is the component that wraps probabilistic Regis-

tration and Look-up functionalities as follows:

• The Registration component generates the decision to

allow or prevent the new Thing from registering its ser-

vices. The component estimates whether or not the path

of the new Thing can be covered by other mobile Things.

To that end, the component computes the probability that

any of them be present at each of the locations on the path

of the new Thing, after which it compares the resulting

probability value to a required sensing coverage. We con-

sider that the coverage requirement (threshold) depends

on the sensor and can be specified in our ontology. Only

if the resulting probability is lower than the threshold,

can the Thing register its service. We use the Truncated

Lévy Walk mobility model [20] to estimate the mobility

of registered Things and compute the probabilities above.

The component can use any other mobility model as long

as the corresponding mathematical formulas to compute

the probabilities are provided. As shown in [10], our

registration solution successfully limits the registration of

redundant services.

• The Look-up component is in charge of returning a

subset of services to access that can satisfy the Thing-

based query. Based on the requested measurement and

the location of interest, the component determines the

most adequate probability distribution and the number of

needed services. This number is computed based on a

percentage of the area of interest to be sensed/acted on

by the selected subset. The result is then forwarded to

the registry to determine the actual Things to sample.

C. Composition & Estimation

The service composition in MobIoT consists of three steps:

1) Expansion: This step recursively replaces each concept

in the user query with a set of equivalent concepts that

together can provide an estimate of the value of the

initial requested concept. The estimate is computed by

mathematical formulas modeled in our ontology.

2) Mapping: This step takes the set of expansion concepts

as input and determines, through the Look-up com-

ponent, the potential providers that can measure those

concepts and the addresses of their hosted services to

be able to access them. The output of the mapping step

is the set of service addresses.

3) Execution: In the execution step, the services are actually

accessed and the individual results are returned. All

measurements over the same concept are aggregated

based on an appropriate fusion function defined in our

ontology for each concept. Results are then passed as

parameters to the mathematical functions found by the

expansion step, and the final result is returned to the user.

This phase also handles the actual access to services.

D. Registry

The Registry is not a simple storage service that holds the

metadata and descriptions of services. In fact, it is designed

to assist the probabilistic look-up component as it performs

the heavy computations and holds information on the loca-

tions of Things when they register their services. Using this

information, the registry can estimate their location at the time

of look-up requests and know which of them best fits in the

required spatial probability distribution.

V. MOBIOT IMPLEMENTATION & EVALUATION

MobIoT is implemented as a library using Java 1.6 and

deployed on Android phones and personal computers. The

Registry is implemented as a RESTful Web service. For

the ontology, we use Jena (http://jena.apache.org/) for lap-

top deployments and Androjena (http://code.google.com/p/

androjena/) for Android deployments. The code was in par-

ticular used as part of the CHOReOS European project on

choreographies for the Future Internet (http://www.choreos.eu)

and assessed by project partners through use case studies [4],

[5], more details can be found in [11]. Our code is available

as open source at http://forge.ow2.org/projects/choreos/.

A. Experimental Setup

Our objective for the evaluations below is twofold: assess

MobIoT’s usability, and scalability. For the former, we created

a proof-of-concept base noise sensing application deployed on

Samsung Galaxy S3 phones, meant to illustrate the benefits of

5

exploiting MobIoT when integrating sensing/actuation services

in mobile applications. For scalability evaluations, we simu-

late concurrent requests for noise measurements at the same

location for 100 to 1, 000 requests per second. To simulate

mobile Things, we use a synthetic mobility trace generated

with SUMO [2], which generates traces (15, 000) based on real

data in the city of Cologne [22]. We executed the simulation

in a cluster of 40 machines with Scientific Linux 5.5, Intel

Xeon X5650 dual processors and 48 GB RAM.

B. MobIoT Usability

The mobile application we created can be used to: i)

register noise sensing services hosted on mobile devices;

and ii) acquire noise level information at a location of

interest. It comprises two components: i) a GUI allowing

users to choose between registering their sensing services at

their current location or acquiring noise estimations at some

location; and ii) MobIoT, through which the composition,

discovery and access to mobile Things take place. While

writing the application code, the developer is only required to

call execRegQuery() to request a registration decision for

the base noise sensing service (Listing 1) and getData()

to request noise data (Listing 2). Consequently, MobIoT

alleviates a large portion of programming efforts by wrapping

the logic specific to the IoT domain.

boolean t r y T o R e g i s t e r (long l o c a t i o n L o n g , long l o c a t i o n L a t){
re turn execRegQuery (ThingID , ‘ ‘ g e t n o i s e ’ , ‘ ‘

n o i s e s e r v i c e ’ ’ , ‘ ‘ n o i s e s e n s o r ’ ’ , ‘ ‘

n o i s e ’ ’ , ‘ ‘ h t t p : / / a r l e s . r ocq . i n r i a . f r

: 8 0 8 0 / 1 2 3 4 / g e t n o i s e ’ , l o c a t i o n L o n g ,

l o c a t i o n L a t , myPath , ‘ ‘ dB ’ ’) ;}

Listing 1: Code snippet for execRegQuery() method call.

To execute the tryToRegister() method, the only

information required is the coordinates of the register-

ing Thing. The developer is required to provide, in the

execRegQuery() method, the Thing ID, service name,

sensor name and concept to measure, in addition to the

accessible address of the service, the future mobility path of

the Thing and the noise unit (dB).

S e n s o r D a t a g e t N o i s e (S t r i n g locName , long l a t i t u d e , long
l o n g i t u d e) {

Query myQr = new Query (new S e l e c t o r (new Concept (”

n o i s e l e v e l ”)) , new C o n s t r a i n t (new Where (”

n o i s e l e v e l . u n i t . e q u a l s =dB”)) , new L o c a t i o n (

locName , l a t i t u d e , l o n g i t u d e)) ;

re turn g e t D a t a (myQr , C o n s t a n t s . DOUBLENOISE) ;}}) ;}

Listing 2: Code snippet for getData() method call.

To execute the getNoise() method, the only information

required is the name and coordinates of the location of

interest. The developer should specify that the Query is over

noise (the concept), with a constraint being that the unit of

measurement should be in dB and the location of interest being

the location name and coordinates passed as parameters to the

getNoise() method. Afterwards, the created query and the

desired datatype should be passed to the getData() method.

C. MobIoT Scalability Evaluation Results

In order to assess the scalability and illustrate the benefits

introduced by MobIoT, we conducted a set of experiments that

0

2000

4000

6000

8000

10000

12000

0 2000 4000 6000 8000 10000 12000

N
u
m
b
e
r
o
f
R
e
g
is
te
re
d
 S
e
rv
ic
e
s

Total Number of Services

Service Registra<on

Probabilis)c Registra)on SOA‐Based Registra)on

Fig. 4: A comparison of the number of registered services following
the SOA and Thing-based SOA approaches.

can be divided into two categories: i) the first set compares

MobIoT’s probabilistic registration, in terms of the number of

registered services to SOA-based registration, and ii) the sec-

ond set compares MobIoT’s probabilistic look-up and access

to standard SOA, look-up and access. The performances in

the latter are evaluated with respect to one metric: the Query

Response Time (QRT). The QRT for registration is the time

taken for MobIoT to compute the registration decision and

if allowed, register the Thing’s service. The QRT for look-

up and access is the time needed for MobIoT to execute

a user query, including finding and accessing services (with

no composition). It should be noted that if composition was

needed, it takes place transparently and automatically without

involving developers in the process.

a) Registration scalability.: We evaluated the benefits

of employing the probabilistic registration by comparing the

number of registered services following standard SOA to the

number of registered services following our Thing-based SOA.

As illustrated in Figure 4, while all 10000 Things register

sequentially in the deterministic approach, our introduced

approach leads to at least 60% less Things registering their

services and consequently less communication and computa-

tion costs, especially upon lookup and access. The number

of successfully registered services is presented on the Y-axis,

while the total number of services to register is presented

on the X-axis. Note that at the beginning of the registration

evaluation, the first 5000 Things that attempt to register are

located in each other’s vicinity, explaining the low registration

rate illustrated by the probabilistic registration curve between

0 and 5000 services on the X-axis. Afterwards, the Things

start to show up in more sparse areas, which leads to a higher

registration rate illustrated by the portion of the probabilistic

registration curve between 5000 and 10000 services on the

X-axis.

b) Look-up and access scalability.: We also measured

the response times for concurrent queries with both stan-

dard SOA registration, look-up and access and probabilistic

registration, look-up and access. The benefits of our proba-

bilistic look-up are clearly illustrated in Figure 5 depicting

the distribution of response times for both approaches with

1, 000 concurrent user queries. Figure 5(a) shows that most

occurrences of QRT for the SOA approach are between 0 and

10 seconds while Figure 5(b) shows that most occurrences

of QRTs for the probabilistic approach are between 0 and

3 seconds. On the one hand, in the SOA approach, MobIoT

retrieves all registered services at each query and attempts to

access them all in order to provide a result. On the other hand,

6

0 20 40 60 80 100

0
20

40
60

80
10

0

Response Time (s)

N
um

be
r

of
 O

cc
ur

re
nc

es

0 20 40 60 80 100 120

0
50

10
0

20
0

30
0

Response Time (s)

N
um

be
r

of
 O

cc
ur

re
nc

es

Fig. 5: The QRT time distribution for 1, 000 queries with a) SOA
registration, look-up b) probabilistic registration, look-up.

for the probabilistic approach, response times are lower as the

system retrieves a small subset of registered services to access.

In conclusion, the experiments performed in this section

illustrate the usability and scalability of MobIoT with the

easy-to-implement methods provided by the middleware and

the strongly decreased registration rate and response times

when answering a user query as compared to standard SOA

discovery and access.

VI. CONCLUSION

We presented in this paper a Thing-based SOA and a

middleware designed to address the large scale, heterogene-

ity and unknown environment issues of the mobile IoT. To

that end, the Thing-based SOA revisits traditional SOA to

wrap cumbersome tasks in a smart middleware, MobIoT,

rendering them transparent to the consumer. Unlike existing

SOA solutions, MobIoT exploits knowledge of the real world,

and its mathematics and physics laws. It relies on semantic

technologies to address the heterogeneous nature of Things, in

addition to specifying compositions. We address the large scale

issue through a novel twofold probabilistic discovery approach

that controls the participation of Things in a sensing/actuation

task. Firstly, the service registration is probabilistic. It builds

on the fact that paths of mobile Things in dense networks are

bound to cross and can substitute one another based on the

services they host. Secondly, look-up is probabilistic, and only

a subset of registered services is selected based on their hosts’

distribution in space and the type of the event. Our approach

also allows the substitution of a service by a composition

of the functionality of other types of registered services. We

implemented our middleware and evaluated its performance

to illustrated its introduced benefits, assess its usability and

demonstrate its scalability. Additionally, as part of our future

work, we plan on comparing the performance of MobIoT to

that of existing SOA middleware solutions.

REFERENCES

[1] Aberer, K., Hauswirth, M., Salehi, A.: Infrastructure for data processing
in large-scale interconnected sensor networks. In: International Confer-
ence on Mobile Data Management. pp. 198–205 (2007)

[2] Behrisch, M., Bieker, L., Erdmann, J., Krajzewicz, D.: SUMO - Sim-
ulation of Urban Mobility: An Overview. In: The Third International
Conference on Advances in System Simulation, (SIMUL). Spain (2011)

[3] Chen, Y., Chen, Y.: Context-Oriented Data Acquisition and Integration
Platform for Internet of Things. In: Technologies and Applications of
Artificial Intelligence (TAAI), Conference on. pp. 103–108. IEEE (2012)

[4] CHOReOS consortium: DynaRoute Architectural Design (D8.2). Tech.
rep. (2011), http://www.choreos.eu/bin/Download/Deliverable

[5] CHOReOS consortium: Passenger Friendly Airport Services Chore-
ographies Design (D6.2). Tech. rep. (2011), http://www.choreos.eu/bin/
Download/Deliverable

[6] Christophe, B.: Managing massive data of the Internet of Things through
cooperative semantic nodes. In: Semantic Computing (ICSC), 2012
IEEE Sixth International Conference on. pp. 93–100. IEEE (2012)

[7] De, S., Barnaghi, P., Bauer, M., Meissner, S.: Service modelling for
the Internet of Things. In: Computer Science and Information Systems
(FedCSIS), Federated Conference on. pp. 949–955. IEEE (2011)

[8] Eisenhauer, M., Rosengren, P., Antolin, P.: HYDRA: A Development
Platform for Integrating Wireless Devices and Sensors into Ambient
Intelligence Systems. The Internet of Things pp. 367–373 (2010)

[9] Guinard, D., Trifa, V., Karnouskos, S., Spiess, P., Savio, D.: Interacting
with the SOA-Based internet of things: Discovery, query, selection, and
on-demand provisioning of Web Services. IEEE transactions on Services
Computing 3(3), 223–235 (2010)

[10] Hachem, S., Pathak, A., Issarny, V.: Probabilistic registration for large-
scale mobile participatory sensing. In: Pervasive Computing (2013)

[11] Hachem, S.: Service-Oriented middleware for the large-scale mobile
Internet of Things. Ph.D. thesis, Université de Versailles-Saint Quentin
en Yvelines (2014)

[12] Hachem, S., Teixeira, T., Issarny, V.: Ontologies for the Internet of
Things. Proceedings of the PhD Student Symposium of the ACM/I-
FIP/USENIX 12th International Middleware Conference (2011)

[13] Issarny, V., Georgantas, N., Hachem, S., Zarras, A., Vassiliadist, P.,
Autili, M., Gerosa, M., Hamida, A.: Service-oriented middleware for
the Future Internet: state of the art and research directions. Journal of
Internet Services and Applications 2(1), 23–45 (2011)

[14] Paganelli, F., Parlanti, D.: A DHT-based discovery service for the
Internet of Things. Journal of Computer Networks and Communications
(2012)

[15] Papazoglou, M., Pohl, K., Parkin, M., Metzger, A.: Service research
challenges and solutions for the Future Internet: S-cube-towards engi-
neering, managing and adapting service-based systems. Springer (2010)

[16] Papazoglou, M.: Service-oriented computing: concepts, characteristics
and directions. In: Web Information Systems Engineering. Proceedings
of the Fourth International Conference on. pp. 3 – 12 (2003)

[17] Pereral, C., Zaslavsky, A., Christen, P., Salehi, A., Georgakopoulos, D.:
Capturing sensor data from mobile phones using global sensor network
middleware. In: Personal Indoor and Mobile Radio Communications
(PIMRC), 23rd International Symposium on. pp. 24–29. IEEE (2012)

[18] Pfisterer, D., Romer, K., Bimschas, D., Kleine, O., Mietz, R., Truong, C.,
Hasemann, H., Kroller, A., Pagel, M., Hauswirth, M., et al.: SPITFIRE:
toward a semantic Web of Things. Communications Magazine, IEEE
pp. 40–48 (2011)

[19] Presser, M., Barnaghi, P., Eurich, M., Villalonga, C.: The SENSEI
project: Integrating the physical world with the digital world of the
network of the future. Communications Magazine, IEEE pp. 1–4 (2009)

[20] Rhee, I., Shin, M., Hong, S., Lee, K., Kim, S., Chong, S.: On the levy-
walk nature of human mobility. IEEE/ACM Transactions on Networking
(TON) 19(3), 630–643 (2011)

[21] Teixeira, T., Hachem, S., Issarny, V., Georgantas, N.: Service Oriented
Middleware for the Internet of Things: A Perspective. In: Towards a
Service-Based Internet, LNCS, vol. 6994, pp. 220–229. Springer Berlin
Heidelberg (2011)

[22] Uppoor, S., Trullols-Cruces, O., Fiore, M., Barcelo-Ordinas, J.M.: Gen-
eration and analysis of a large-scale urban vehicular mobility dataset.
IEEE Transactions on Mobile Computing 99(PrePrints), 1 (2013)

[23] Wang, Y., Fu, W., Agrawal, D.: Gaussian versus uniform distribution for
intrusion detection in wireless sensor networks. Parallel and Distributed
Systems, IEEE Transactions on PP(99) (2012)

[24] Yaqin, W., Xiaoliang, X.: Sensor deployment distribution effect on
intrusion distance in wireless sensor networks. Innovations in Bio-
inspired Computing and Applications, International Conference on pp.
103–106 (2011)

[25] Zhang, W., Hansen, K.: An evaluation of the NSGA-II and MOCell
genetic algorithms for self-management planning in a pervasive service
middleware. In: 14th IEEE International Conference on Engineering of
Complex Computer Systems. pp. 192–201 (2009)

