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Abstract. A fast and accurate texture recognition system is presented. The new
approach consists in extracting locally and globally invariant representations. The
locally invariant representation is built on a multi-resolution convolutional net-
work with a local pooling operator to improve robustness to local orientation and
scale changes. This representation is mapped into a globally invariant descriptor
using multifractal analysis. We propose a new multifractal descriptor that cap-
tures rich texture information and is mathematically invariant to various complex
transformations. In addition, two more techniques are presented to further im-
prove the robustness of our system. The first technique consists in combining the
generative PCA classifier with multiclass SVMs. The second technique consists
of two simple strategies to boost classification results by synthetically augment-
ing the training set. Experiments show that the proposed solution outperforms
existing methods on three challenging public benchmark datasets, while being
computationally efficient.

1 Introduction

Texture classification is one of the most challenging computer vision and pattern recog-
nition problems. A powerful texture descriptor should be invariant to scale, illumina-
tion, occlusions, perspective/affine transformations and even non-rigid surface deforma-
tions, while being computationally efficient. Modeling textures via statistics of spatial
local textons is probably the most popular approach to build a texture classification sys-
tem [142J31415l67]. Based on this Bag-of-Words architecture, these methods try to de-
sign a robust local descriptor. Distributions over these textons are then compared using
a proper distance and a nearest neighbor or kernel SVMs classifier [8]. Another alter-
native to regular histograms consists in using multifractal analysis [9/10J11412013]]. The
VG-fractal method [9] statistically represents the textures with the full PDF of the local
fractal dimensions or lengths, while the methods in [[10J11/12J13]] make use of the box-
counting method to estimate the multifractal spectrum. Multifractal-based descriptors
are theoretically globally invariant to bi-Lipschitz transforms that include perspective
transforms and texture deformations. A different approach recently presented in [[14]
consists in building a powerful local descriptor by cascading wavelet scattering trans-
formations of image patches and using a generative PCA classifier [15]]. Unfortunately,
while these methods achieve high accuracy on some standard benchmark datasets, lit-
tle attention is given to the computational efficiency, which is crucial in a real-world
system.
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We present in this paper a new texture classification system which is both accu-
rate and computationally efficient. The motivation behind the proposed work comes
from the success of multifractal analysis [10/9/11J12/13]. Given an input texture, the
image is filtered with a small filter bank for various filter orientations. A pooling op-
erator is then applied to improve robustness to local orientation change. This process
is repeated for different resolutions for a richer representation. This first step generates
various low-pass and high-pass responses that form a locally invariant representation.
The mapping towards the final descriptor is done via multifractal analysis. It is well
known that the multifractal spectrum encodes rich texture information. The methods
in [LOJ11412013]] use the box-counting method to estimate the multifractal spectrum.
However, this method is unstable due the limited resolution of real-world images. We
present a new multifractal descriptor that is more stable and improves invariance to
bi-Lipschitz transformations. This improvement is validated by extensive experiments
on public benchmark datasets. The second part of our work concerns training strate-
gies to improve classification rates. We propose to combine the generative PCA clas-
sifier [14415] with kernel SVMs [8]] for classification. We also introduce two strategies
called ’synthetic training” to artificially add more training data based on illumination
and scale change. Results outperforming the state-of-the-art are obtained over challeng-
ing public datasets, with high computational efficiency.

The paper is organized as follows : section 2 describes the proposed descriptor, sec-
tion 3 presents the proposed training strategies, section 4 presents classification results
conducted on 3 public datasets as well as a comparison with 9 state-of-the-art methods.

2 Robust Invariant Texture Representation

The main goal of a texture recognition system is to build an invariant representation,
a mapping which reduces the large intra-class variability. This is a very challenging
problem because the invariance must include various complex transformations such as
translation, rotation, occlusion, illumination change, non-rigid deformations, perspec-
tive view, among others. As a result, two similar textures with different transformation
parameters must have similar descriptors. An example is given in Figure |I} Not only
the system should be accurate, but it should be also computationally efficient. Other-
wise, its use in a real-world system would be limited due to the long processing time to
extract the descriptor. Our goal in this paper is to build both an accurate and fast texture
recognition system. Our Matlab non-optimized implementation takes around 0.7 second
to extract the descriptor on a medium size image (480 x 640) using a modern laptop.
The processing time can be further decreased by reducing the resolution of the image
without sacrificing much the accuracy. This is due to the strong robustness of our de-
scriptor to scale changes via accurate multifractal statistics that encode rich multi-scale
texture information. We explain in this section how we build the proposed descriptor,
the motivation behind the approach and the connection with previous work.

2.1 Overview of the Proposed Approach

The proposed descriptor is based on two main steps :
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Fig. 1: Intra-class variability demonstration. The three textures 1, 2 and 3 exhibit strong
changes in scale and orientation as well as non-rigid deformations. As can be seen, the
proposed descriptor is nearly invariant to these transformations (see section 2).

1. Building a locally invariant representation : using multiple high-pass filters, we
generate different sparse representations for different filter orientations. A pooling
operator is applied on the orientation to increase the local invariance to orientation
change. The process is repeated for multiple image resolutions for a richer repre-
sentation.

2. Building a globally invariant representation : the first step generates various im-
ages that encode different texture information. We also include the multi-resolution
versions of the input to provide low-pass information. We need a mapping that
transforms this set of images into a stable, fixed-size descriptor. We use multi-
fractal analysis to statistically describe each one of these images. We present a new
method that extracts rich information directly from local singularity exponents. The
local exponents encode rich multi-scale texture information. Their log-normalized
distribution represents a stable mapping which is invariant to complex bi-Lipschitz
transforms. As a result, the proposed multifractal descriptor is proven mathemati-
cally to be robust to strong environmental changes.

2.2 Locally Invariant Representation

A locally invariant representation aims at increasing the similarity of local statistics be-
tween textures of the same class. To build this representation, we construct a simple
convolutional network where the input image is convolved with a filter bank for var-
ious orientations, and then pooled to reduce local orientation change. The multilayer
extension consists in repeating the same process for various image resolutions on the
low-pass output of the previous resolution, which offers a richer representation.
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Given an input texture I, the image is first low-pass filtered with a filter ¢; to re-
duce small image domain perturbations and produce an image J; o. This image is then
filtered with multiple zero-mean high-pass filters 1), g, where k denotes the filter num-
ber and 6 its orientation. High-pass responses encode higher-order statistics that are not
present in the low-pass response J; o. A more stable approach consists in applying the
modulus on the high-pass responses, which imposes symmetric statistics and improves
invariance of the local statistics. Applying multiple filtering with multiple different fil-
ters naturally increases the amount of texture information that are going to be extracted
further via multifractal analysis. In order to increase the local invariance to orientation,
we apply a pooling operator ¢g : R**7X" — R¥*J on the oriented outputs for each
filter :

Jl,k = ¢9(|J1,0 *wk,9| s 0= 91, ,Qn) y k= 1, ...,K, (1)

where n is the number of orientations and ¢ x j is the size of the low-pass image.
As a result, we obtain 1 low-pass response and K high-pass responses, each image is
encoding different statistics. For a richer representation, we repeat the same operation
for different resolutions s = 2%~L_ where s = 1 is the finest resolution and s = 2L
is the coarsest resolution. The image generation process is then generalized as follows :

I'xqy k=0,s=1
sk = 4 (Jaso * ) k=0,s#1 )
do(|Js,0 * Yipl, 0 =01,....0,) k=1,. K,

where | denotes the downsampling operator. We found that calculating statistics on
multiple resolutions instead of a single one increases significantly the robustness of
the descriptor. This can be expected because two textures may seem ~“more similar”
at a lower resolution. As a result, the intra-class variability decreases as the resolu-
tion decreases, but keeping higher resolution images is important to ensure extra-class
decorrelation.

Dimensionality Reduction with Pooling

Using multiple filters 1)y, ¢ increases dramatically the size of the image set. Knowing
that each image J, ;, will be used to extract statistics using multifractal analysis, this
will result in a very large descriptor. One resulting issue is the high dimensionality of
the training set. Another one is the processing time as the statistics should be applied on
each image. We propose to merge different high-pass responses J; ;. together to reduce
the number of images. A straightforward approach would be to gather various images
{Js,x, k=1t,..,u} and then apply a pooling operator ¢, that is going to merge each

Js,ktw,u :¢T(JS,I€7 k‘:t,,u) (3)

As a result, the number of high-pass responses will be decreased ; this leads to a re-
duced size descriptor. The pooling operator ¢, can be either the mean or the min/max
functions. We take ¢, as a maximum function in this paper. An example is given in
Figure [2] for one resolution s = 0 using 6 high-pass filters and one low-pass filter. The
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number of images is reduced from 7 to 3. For 5 resolutions (s = 2%~~%), the total
number of images goes from 35 to 15, which is an important reduction.

Fig. 2: Image generation example applied on the texture input / for one resolution using
6 high-pass filters. The images Jy 1...¢ are a result of the orientation pooling (eq. 2). The
6 images are reduced to 2 images using a pooling operator ¢, on similar responses to
reduce the dimensionality. The same process is repeated for multiple resolutions.

2.3 Globally Invariant Representation

Once the set of low-pass and high-pass images is generated, we need to extract global
statistics, a mapping into a fixed-size descriptor, which is globally invariant to the com-
plex physical transformations. We propose to use a new multifractal approach to sta-
tistically describe textures suffering from strong environmental changes. To understand
the difference between the proposed method and the previous work, we first present the
standard fractal and multifractal analysis framework used by the previous methods, we
then introduce the proposed approach.

Multifractal Analysis In a nutshell, a fractal object E is self-similar across scales. One
characteristic of its irregularity is the so-called box fractal dimension. By measuring a
fractal object on multiple scales r, the box fractal dimension is defined as a power-law
relashionship between the scale r and the smallest number of sets of length r covering
E [16]:

dim(E) = Jim 128 N E) (4)

r—0 —log r

Using squared boxes of size r, this dimension can be estimated numerically, known
as the box-counting method. Multifractal analysis is an extension of this important no-
tion. A multifractal object F" is composed of many fractal components Iy . . In this
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case, a single fractal dimension is not sufficient to describe this object. The multifrac-
tal spectrum is the collection of all the associated fractal dimensions that describe the
multifractal object.

It is easy to show mathematically that the fractal dimension is invariant to bi-
Lipschitz transformations [[17], which includes various transformations such as non-
rigid transformations, view-point change, translation, rotation, etc.. As a result, the mul-
tifractal spectrum is also invariant to these transformations. This makes the multifractal
spectrum an attractive tool to globally describe textures. However, the box-counting
method gives a rather crude estimation of the real fractal dimension. The fractal di-
mension is estimated for each fractal set using a log-log regression. As the resolution
r is supposed to be very small (r — 0), using small-sized boxes on a relatively low-
resolution image results in a biased estimation due to the relatively low-resolution of
real-world images [18]]. It has been used as the core of various recent multifractal tex-
ture descriptors [1O/11J12113] that use the same box-counting method to build the fi-
nal descriptor. We present a different method to statistically describe textures using
multifractal analysis. Contrary to previous methods, we use a new measure which is
based on the distribution of local singularity exponents. It can be shown in fact that this
measure is related to the true multifractal spectrum, and its precision is proven by the
high-accuracy of the proposed descriptor. Moreover, this approach is computationally
efficient, which permits to achieve high accuracy at reduced processing time.

Proposed Multifractal Descriptor The proposed method first estimates the local sin-
gularity exponents h(z) on each pixel z, and then applies the empirical histogram fol-
lowed by log operator to extract the global statistics ¢, = log(pp, + €). This operation
is performed on all the resulting images of the first step, which results in multiple his-
tograms . The concatenation of all these histograms forms the final descriptor.

Let J be an image, and ju(B(z, 7)) = fB(w (S % ¥,)(y)dy a positive measure,
where v,. is an appropriate wavelet at scale r (Gaussian in our case) and B(z, r) a closed
disc of radius > 0 centered at x. Multifractal analysis states that the wavelet projec-

tions scale as power laws in 7 [19/20021]]. We use a microcanonical evaluation [20]
which consists in assessing an exponent h(x) for each pixel z :

piy (B(x, 7)) = aa)r@ r — 0. )

The validity of equation (5) has been tested on a large dataset [21]], which proves that
natural images exhibit a strong multifractal behavior. Introducing the log, the formula
is expressed as a linear fit :

log(ty (B(z,7))) = log(a(x)) + h(z)log(r) , r — 0. (6)

Rewriting the equation in the matrix form permits to calculate all the exponents at once
by solving the following linear system :

1 log(r1) log(py (B(w1,71))) - - log(py(B(zn,71)))
. {log(a(xl)) o log(a(zn)) | _ . .
: h(z1) -+  h(zn) : : , (D
1 log(rt) log(py (B(z1,71))) - - - log(py (B(xN,71)))
N e’ n

A b
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argmin || An — b||5, h(z;) = n(2,1), ©))
n

where N is the number of pixels of the image .J, [ is the number of scales used in the
log-log regression. This matrix formulation is computationally efficient and plays an
important role in the speed of the proposed method. Given the local exponents h(z),
which is an image of the same size of J that describes the local irregularities at each
pixel, we need to extract now a fixed-size measure that globally describes the statistics
of h(zx). Using the box-counting method, this would require extracting all the fractal
fractal sets Fj, = {x | h(z) = h}, and then calculating the box-counting dimension for
each set Fj,. As discussed before, this approach leads to a crude estimation of the true
multifractal spectrum due to the actual low-resolution of real-world images. Moreover,
a log-log regression should be performed on each fractal set. Instead, we propose to use
the empirical histogram p;, followed by a log operator :

$Ph = IOg(Ph + 6)7 (9)

where € > 1 is set to provide stability. The distribution of the local exponents is an
invariant representation which encodes the multi-scale properties of the texture. The
log acts as a normalization operator that nearly linearizes histogram scaling and makes
the descriptor more robust to small perturbations. This way, we have access to reliable
statistics [ﬂ This log-histogram is calculated on each image generated in the first step,
which results in a set of histograms ¢p,  ,,, where M is the total number of generated
images. The final descriptor ¢ is constructed by concatenating (l#)) all the generated
histograms :

M

o =Hon,: (10)
m

A descriptor example is given in Figure 3] This descriptor ¢ is the result of the con-

catenation of 14 log exponents histograms calculated on the images generated with the

first step of the method presented in section 2.2 and further explained in Figure[2] Three

images are generated for each scale s ; a low-pass response is presented in red, and two

high-pass responses are presented in black and gray in the figure El

2.4 Analysis

The basic multifractal framework consists in generating multiple images and then ex-
tracting statistics using multifractal analysis. Multifractal descriptors are mathemati-
cally invariant to bi-Lipschitz transforms, which even includes non-rigid transforma-
tion and view-point change. The proposed method follows the same strategy, but is
substantially different from the previous methods. The differences lie in both the image
generation step and the statistical description. For instance, the WMEFS method [13]]

! A mathematical relationship between the log exponents histogram and the multifractal spec-
trum is presented in the supplementary material.

% A histogram was discarded for s = 27% in the second high response (in gray) due to the large
size of the filter which is larger than the actual size of the input image at resolution s = 274,
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s =20

s=2°

s=271

low first high range second high range

Fig. 3: A descriptor example using a low-pass response and two high-pass responses for
5 resolutions s = 2% ~%, The exponents log-histogram is calculated for each response
and for multiple image resolutions s.

generates multiple images for multiple orientations, each oriented image is then ana-
lyzed using Daubechies discrete wavelet transform as well as using the wavelet lead-
ers [22]. The multifractal spectrum (MFYS) is then estimated for each image, for a given
orientation using the box-counting method. Each MFS is then concatenated for a given
orientation and the final descriptor is defined as the mean of all the descriptors over
the orientation. Contrary to this method, we use different high-pass filters instead of
one single analyzing wavelet, which permits to extract different statistics. Generating
multiple descriptors for multiple orientations is computationally expensive. In contrast,
we generate only one descriptor. To ensure local robustness to orientation, we apply a
pooling operator on the filtered responses. This approach is much more computation-
ally efficient. Finally, the core of our method is the new multifractal descriptor which
permits to extract accurate statistics, contrary to the popular box-counting method as
explained in the previous section. The proposed method takes about 0.7 second to ex-
tract the whole descriptor on an image of size 480 x 640, compared to 37 seconds
as reported in the state-of-the-art multifractal method [13]]. Experiments show that the
proposed descriptor permits also to achieve higher accuracy, especially in large-scale
situations when the extra-class decorrelation is a challenging issue.

2.5 Pre and Post Processing

Pre-processing and post-processing can improve the robustness of a texture recogni-
tion system. For instance, the method in [12] performs a scale normalization step on
each input texture using blob detection. This step first estimates the scale of the texture
and then a normalization is applied, which aims at increasing the robustness to scale
change. Other texture classification methods such as [9]] use Weber’s law normalization
to improve robustness to illumination. We do not use any scale normalization step such
as [1213], we rather use sometimes histogram equalization to improve robustness to
illumination change. We also use a post-processing on features vector ¢ using wavelet
domain soft-thresholding [?]. This step aims at increasing the intra-class correlation by
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reducing small histogram perturbations (for more details, please refer to the supplemen-
tary material).

3 Classification and Training Strategies

The second part of our work concerns the training aspect of the texture recognition
problem. The globally invariant representation offers a theoretically stable invariant
representation via accurate multifractal statistics. However, there are other small trans-
formations and perturbations that may occur in real-world images and this is where
a good training strategy will help us to take advantage of the proposed descriptor in
practice. We work on two ideas :

1. The choice of the classifier can improve recognition rates : we introduce a simple
combination between the Generative PCA classifier [[14] and SVMs [8]].

2. The lack of data is an issue, how to get more data? : Given an input training texture
image, we synthetically generate more images by changing its illumination and
scale. We call this strategy ’synthetic training”.

Experiments on challenging public benchmark datasets, including a large-scale dataset
with 250 classes, validates the robustness of the proposed solution.

3.1 Classification

Support Vector Machines SVMs [8] are widely used in texture classification
[10U120120131706]]. Commonly used kernels are mainly RBF Gaussian kernel, polynomi-
als and x? kernel. Extension to multiclass can be done via strategies such as one-vs-one
and one-vs-all. In this paper, we use the one-vs-all strategy with an RBF-kernel. It con-
sists in building a binary classifier for each class as follows : for each class, a positive
label is assigned to the corresponding instances and a negative label is affected to all
the remaining instances. The winning class cg,,, can be chosen based on probability
estimates [23]] or a simple score maximization :

Csym = argmax {fsvm('ra C)} fsvm z, C Z OéCyCK 37 33 + b, (1D
1<e<N.

where of are the optimal Lagrange multipliers of the classifier representing the class c,
x¢ are the support vectors of the class c, yi are the corresponding +1 labels, IV, is the
number of classes and x is the instance to classify.

Generative PCA Classifier The generative PCA (GPCA) classifier is a simple PCA-
based classifier recently used in [[15414]]. Given a test descriptor x, GPCA finds the
closest class centroid E({z.}) to x, after ignoring the first D principal variability di-
rections. Let V. be the linear space generated by the D eigenvectors of the covariance
matrix of largest eigenvalues, and V- its orthogonal complement. The generative PCA
classifier uses the projection distance associated to Py . :

Cpea = argmin || Py 1 (z — E({z.})) % (12)

1<c< N,
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Classification consists in choosing the class ¢;, with the minimum projection distance.

GPCA-SVM C(lassifier We propose to combine GPCA and SVMs in one single clas-

sifier. The idea behind this combination comes from the observation that SVMs and

GPCA often fail on different instances. As a result, a well-established combination of

these classifiers should theoretically lead to improved performance. We propose a com-

bination based on the distance between the score separation of each classifier output

Cfinal _ {Csvm if fsvm.(.'lf, Csvm) fsq)m (JJ, Cpca) Z thsvm (13)
Cpca  Otherwise,

where thg,,, is a threshold parameter. The score separation gives an idea of SVMs’
accuracy to classify a given instance. Another similar approach would be using proba-
bility estimates [23]] instead of the score. If the measure fsym (2, Csvm) — fsom (€, Cpea)
is relatively important, this means that SVMs are quite “confident” about the result.
Otherwise, the classifier selects the GPCA result. Determining the best threshold ¢/,
for each instance is an open problem. In this paper, we rather fix a threshold value for
each experiment. We generally select a small threshold for small training sets and larger
thresholds for larger sets. Even if this strategy is not optimal, experiments show that the
combination improves the classification rates as expected.

3.2 Synthetic Training

One important problem in training is coping with the low amount of examples. We
propose a simple strategy to artificially add more data to the training set by changing
illumination and scale of each instance of the training set. While this idea seems simple,
it can have a dramatic impact on the performance as we will see in the next section.

Multi-Illumination Training Given an input image I, multi-illumination training con-
sists in generating other images of the same content of I but with different illumination.
There are two illumination cases ; the first one consists in uniform changing by image
scaling of the form a/, where a is a given scalar. The second case consists in nonuniform
changing using histogram matching with a set of histograms. The histograms can come
from external images, or even from the training set itself (for example by transforming
or combining a set of histograms).

Multi-Scale Training Given an input image /, multi-scale training consists simply in
generating other images of the same size as I by zooming-in and out. In this paper, we
use around 4 generated images, 2 by zooming-in and 2 others by zooming-out.

4 Texture Classification Experiments

We present in this section texture classiffication results conducted on standard public
datasets UIUC [24/1]], UMD [25] and ALOT [26l27]], as well as a comparison with 9
state-of-the-art methods.
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Datasets Description The UIUC dataset [24/1]] is one of the most challenging texture
datasets presented so far. It is composed of 25 classes, each class contains 40 grayscale
images of size 480 x 640 with strong scale, rotation and viewpoint changes in uncon-
trolled illumination environment. Some images exhibit also strong non-rigid deforma-
tions. Some samples are presented in Figure f] The UMD dataset [25] is similar to
UIUC with higher resolution images (1280 x 960) but exhibits less non-rigid deforma-
tions and stronger illumination changes compared to UIUC. To evaluate the proposed
method on a large-scale dataset, we choose the ALOT dataset [26/27]. It consists of 250
classes, 100 samples each. We use the same setup as the previous multifractal meth-
ods [13]]: grayscale version with half resolution (768 x 512). The ALOT dataset is very
challenging as it reprensents a significantly larger number of classes (250) compared to
UIUC and UMD (25) and very strong illumination change (8 levels of illumination).
The viewpoint change is however less dramatic compared to UITUC and UMD.

Fig. 4: Texture samples from the UIUC dataset [24/1]]. Each row represents images from
the same class with strong enviromental changes.

Implementation details In order to build a fast texture classification system, we use
only two high-pass filtering responses, which results in 3 histograms per image resolu-
tionEI The number of the image scales is fixed to 5. The filter bank consists in high-pass
wavelet filters (Daubechies, Symlets and Gabor). A more robust descriptor can be built
by increasing the number of filters and orientations. Filtering can be parallelized for
faster processing. While augmenting the number of filters slightly improves classifica-
tion results, the minimalist setup presented above, coupled with the training strategies
introduced in this paper, permits to outperform existing techniques while offering in
addition computational efficiency.

Evaluation

We evaluate the proposed system and compare it with state-of-the-art methods for 50
random splits between training and testing. The evaluation consists in three steps :

3 Except for ALOT dataset, we use 3 high-pass responses for a more robust representation.
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1. log-histogram vs. box-counting : We evaluate the precision of our log-histogram
method and compare it with the box-counting method used in previous methods.

2. Learning efficiency : We compare the proposed GPCA-SVM combination with sin-
gle GPCA and SVM results and see how the proposed synthetic training strategy
improves classification rates.

3. We compare our main results with 9 state-of-the-art results.

log-histogram vs. box-counting In this experiment, we replace the log-histogram step
of our approach with the box-counting method widely used in the previous multifractal
methods to see if the proposed log-histogram leads to a more accurate bi-Lipschitz
invariance. The results are presented in Figure |5 As can be seen, the log-histogram
approach leads to higher performance, especially when more data is available. This
clearly shows that indeed, the log-histogram leads to a better bi-Lipschitz invariance,
as theoretically discussed before. The log-histogram is a simple operation that permits
our system to achieve high computational efficiency.

Accuracy %

Training set
uiuc umD

Fig. 5: Comparison between the box-counting method and the proposed log-histogram
approach for various dataset training sizes (5, 10 and 20). The proposed approach leads
to a more accurate descriptor.

Learning Efficiency In this experiment, we first compare the proposed GPCA-SVM
combination with single GPCA and SVM classifiers using the proposed descriptor.
Each dataset is presented in the form Df ) where z is the name of the dataset and y
is the training size in number of images. The best results are in bold. As can be seen
in Table[T] the GPCA-SVM does indeed improve classification rates. We expect to get
even better results with a better strategy to set the threshold parameters thg,,, as in
the proposed experiments, the threshold is fixed for all the instances. Now we compare
the results with and without the proposed synthetic training strategy. As can be seen,
synthetic training leads to a dramatic improvement. This is a very interesting approach
as it increases only the training time. The system can achieve higher recognition ac-
curacy for almost the same computational effiency. For the UMD and ALOT datasets,
we use uniform illumination change with the multiplicative parameter a in the range
[0.9,0.95,1.05, 1.1]. For the UTUC dataset, we use the nonuniform illumination change
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with two histograms. For the multi-scale training, we use only four generated images
(two by zooming-in and two other by zooming-out), which increases the training set 9
times in the UMD and UIUC datasets (no mutli-scale training is used for the ALOT
dataset).

viuc vliuc vIiuvc UM D UMD UM D ALOT ALOT ALOT
D) 7 |Paoy |Peoy [Py |Pao [Peoy |Paoy [Pieo  [Piso)

GPCA  |91.15%(97.12%99.07%|95.07% | 97.85% [ 99.40% | 89.30% | 98.03% | 99.27%

Proposed SVM 91.23%96.30% |98.47% [94.43% | 97.44%(99.25% | 88.96% [ 98.16% | 99.14%

GPCA-SVM|92.58%(97.17%(99.10%(95.23%|98.04%|99.44%(90.67%|98.45%|99.34%

GPCA  |95.84% (98.77%(99.67%|98.02% |99.13% [99.62%| 91.54% | 98.81% | 99.59%

+ Synthetic Train| VM |95.40% |98.43%|99.46% | 97.75% [99.06% | 99.72% | 92.23% | 98.80% | 99.51%

GPCA-SVM|96.13%(98.93%|99.78%(98.20%(99.24%|99.79%|92.82%|99.03%(99.64%

Table 1: Classification rates comparison using GPCA-SVM and synthetic training.

Discussions We compare the proposed method MCMA (Multilayer Convolution - Mul-
tifractal Analysis) with 9 state-of-the-art methods for 50 random splits between training
and testing, for different training sizes. Results are presented in Table 2] The best re-
sults are in bold E} As can be seen, the proposed method outperforms the published
results on the 3 datasets. Compared to the leading method [14]], our system seems to
better handle viewpoint change and non-rigid deformations. This is clearly shown in
the results on the UIUC dataset that exhibits strong enviromental changes. This result
can be expected as the scattering method builds invariants on translation, rotation and
scale changes, which does not include viewpoint change and non-rigid deformations.
Contrary to this, using accurate multifractal statistics, our solution produces descriptors
that are invariant to these complex transformations. The proposed system maintains a
high performance on the UMD dataset. It is worth noting that on this dataset, the im-
ages are of high resolution (1280 x 960), which gives an advantage over the UIUC
dataset. However, we did not use the original resolution, we rather rescale the images
to half-size for faster processing. The high accuracy shows that the proposed multifrac-
tal method is able to extract robust invariant statistics even on low-resolution images.
On the large-scale dataset ALOT, the proposed method maintains high performance.
Recall that this dataset contains 250 classes with 100 samples each. This is a very chal-
lenging dataset that evaluates the extra-class decorrelation of the produced descriptors.
A robust descriptor should increase the intra-class correlation, but should also decrease
the extra-class correlation and this has be evaluated on a large-scale data set which con-
tains as many different classes as possible. The results on the ALOT dataset clearly
show a significant performance drop of the leading multifractal method WMFS. The
proposed solution in fact outperforms the WMEFS method even without synthetic train
as can be seen in Table [T} This proves that the proposed descriptor is able to extract a
robust invariant representation.

* Detailed results with standard deviation can be found in the supplementary material.
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D" [ Dt Dl | D™ | piiag” | vt [ ok [ k™|
MFS [10] 92.74% 93.93% | 71.35% 82.57%
OTF-MFS [11] 97.40% 98.49% | 81.04% 93.45%
WMES [I3] |93.40% 97.00% 97.62% | 93.40% 97.00% 98.68% | 82.95% 93.57%
VG-Fractal [9] | 85.35% 91.64% 95.40% 96.36%
Varma [28] 98.76%
Lazebnik [1I | 91.12% 94.42% 97.02% | 90.71% 94.54% 96.95%
BIF [3] 98.80%
SRP [7] 98.56% 99.30%
Scattering [14] | 93.30% 97.80% 99.40% | 96.60% 98.90% 99.70%
’ MCMA ‘96.13% 98.93% 99.78% |98.20% 99.24% 99.79% | 92.82% 99.03% 99.64%

Table 2: Classification rates on the UIUC,UMD and ALOT datasets.

5 Conclusion

This paper presents a fast and accurate texture classification system. The proposed solu-
tion builds a locally invariant representation using a multilayer convolution architecture
that performs convolutions with a filter bank, applies a pooling operator to increase the
local invariance and repeats the process for various image resolutions. The resulting
images are mapped into a stable descriptor via multifractal analysis. We present a new
multifractal descriptor that extracts rich texture information from the local singularity
exponents. The descriptor is mathematically validated to be invariant to bi-Lipschitz
transformations, which includes complex environmental changes. The second part of
paper tackles the training part of the recognition system. We propose the GPCA-SVM
classifier that combines the generative PCA classifier with the popular kernel SVMs to
achieve higher accuracy. In addition, a simple and efficient ”synthetic training” strategy
is proposed that consists in synthetically generating more training data by changing illu-
mination and scale of the training instances. Results outperforming the state-of-the-art
are obtained and compared with 9 recent methods on 3 challenging public benchmark
datasets, while ensuring high computational efficiency.
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