N
N

N

HAL

open science

A Machine Learning Approach to SPARQL Query

Performance Prediction
Rakebul Hasan, Fabien Gandon

» To cite this version:

Rakebul Hasan, Fabien Gandon. A Machine Learning Approach to SPARQL Query Performance
Prediction. The 2014 IEEE/WIC/ACM International Conference on Web Intelligence, Aug 2014,

Warsaw, Poland. hal-01075484

HAL Id: hal-01075484
https://inria.hal.science/hal-01075484
Submitted on 17 Oct 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://inria.hal.science/hal-01075484
https://hal.archives-ouvertes.fr

A Machine Learning Approach to SPARQL Query
Performance Prediction

Rakebul Hasan and Fabien Gandon
INRIA Sophia Antipolis, Wimmics, 2004 route des Lucioles - B.P. 93,
06902 Sophia-Antipolis Cedex, France,
{hasan.rakebul, fabien.gandon}@inria.fr

Abstract—In this paper we address the problem of predicting
SPARQL query performance. We use machine learning tech-
niques to learn SPARQL query performance from previously
executed queries. Traditional approaches for estimating SPARQL
query cost are based on statistics about the underlying data.
However, in many use-cases involving querying Linked Data,
statistics about the underlying data are often missing. Our
approach does not require any statistics about the underlying
RDF data, which makes it ideal for the Linked Data scenario.
We show how to model SPARQL queries as feature vectors, and
use k-nearest neighbors regression and Support Vector Machine
with the nu-SVR kernel to accurately predict SPARQL query
execution time.

I. INTRODUCTION

In the recent years, we have seen a sharp growth of publish-
ing Linked Data from community driven efforts, governmental
bodies, social networking sites, scientific communities, and
corporate bodies [1]. Data publishers from these different
domains publish their data in an interlinked fashion' using
RDF data model and provide SPARQL endpoints to enable
querying their data. This global space presents tremendous
potential for large-scale data integration over cross domain
data to support a new generation of intelligent application [2].
In this context, it increasingly important to develop efficient
ways of querying Linked Data [3]. Central to this problem
is knowing how a query would behave prior to executing the
query [4]. This enables us to adjust our queries accordingly.

Current generation of SPARQL query cost estimation ap-
proaches are based on data statistics and heuristics. Statistics-
based approaches have two major drawbacks in the context of
Linked Data [5]. First, the statistics (e.g histograms) about the
data are often missing in the Linked Data scenario because
they are expensive to generate and maintain. Second, due to
the graph-based data model and schema-less nature of RDF
data, what makes effective statistics for query cost estimation is
unclear. Heuristics-based approaches generally do not require
any knowledge of underlying data statistics. However, they are
based on strong assumptions such as considering queries of
certain structure less expensive than others. These assumptions
may hold for some RDF datasets and may not hold for others.

We take a rather pragmatic approach to SPARQL query
cost estimation. We learn SPARQL query performance metrics
from already executed queries. Recent work [6], [7], [8]
in database research shows that database query performance

See http://richard.cyganiak.de/2007/10/lod/ for a graph linking these
datasets.

metrics can be accurately predicted without any knowledge
of data statistics by applying machine learning techniques
on the query logs of already executed queries. Similarly, we
apply machine learning techniques to learn SPARQL query
performance metrics from already executed queries. SPARQL
query optimizers can use these predictions to choose among
alternative query plans. In addition, they can be also used for
workload allocation or to meet specific QoS targets [8]. We
consider query execution time as the query performance metric
in this paper.

The rest of this paper is structured as following: in sec-
tion II we briefly introduce the RDF data model and the
SPARQL query language. In section III we describe our
approach to modeling SPARQL query execution. In section IV
we present our experiments and results. In section V we
describe the related work. Finally, in section VI we conclude
and outline the future work.

II. PRELIMINARIES

Before we present our approach to query performance
prediction, we briefly introduce the RDF data model and the
SPARQL query language. For more detailed introduction to
RDF and SPARQL, please refer to the cited W3C specification
documents.

The Resource Description Framework (RDF) data model
is @ W3C recommended standard for representing information
about resources in the World Wide Web [9]. RDF is a graph-
based data model where vertices represent entities and edges
represent relationships between entities.

Definition 1 (RDF graph). Let I be the set of IRIs, L be the
set of literals, and B be the set of blank nodes. An RDF triple
(s,p,0) is a member of the set (IUB)x I x(IULUB). An RDF
graph is a set of RDF triples. For an RDF triple (s,p,0), the
element s is called subject, the element p is called predicate,
and the element o is called object.

SPARQL is the W3C recommended query language for
RDFE. As the SPARQL 1.1 specification describes [10],
SPARQL query solving is based around graph pattern match-
ing. SPARQL queries allow specifying sets of triple patterns
know as basic graph patterns. Triple patterns are similar to
RDF triples but the subject, predicate, and object can be
variables. A basic graph pattern may match a subgraph from
the RDF data and substitute the variables by RDF terms from
that matched subgraph. The native SPARQL query engines
perform a series of steps to execute a query [10]. First,

parsing the query string into an abstract syntax form. Next,
transforming the abstract syntax to SPARQL abstract query.
Finally, optimizing and evaluating the SPARQL abstract query
on an RDF dataset.

Definition 2 (SPARQL abstract query). A SPARQL abstract
query is a tuple (E, DS, QF) where E is a SPARQL algebra
expression, DS is an RDF dataset, QF is a query form.

The algebra expression E is evaluated against RDF graphs
in the RDF dataset DS. The query form QF (SELECT,
CONSTRUCT, ASK, DESCRIBE) uses the solutions from
pattern matching to provide result sets or RDF graphs. The
algebra expression E includes graph patterns and operators
such as FILTER, JOIN, and ORDER BY 2. SPARQL allows
forming graph patterns by combining smaller patterns: basic
graph patterns, group graph patterns, optional graph patterns,
alternative graph patterns, and patterns on named graphs. A
basic graph pattern contains a set of triple patterns.

Definition 3 (Triple pattern). A triple pattern is a member of
the set: (TUV) x (IUV) x (T'UV). The set of RDF terms
T is the set I UL U B. The set V is the set of query variables
where V is infinite and disjoint from T.

A group graph pattern combines all other types of graph
patterns. An optional graph pattern contains a graph pattern
which is optional to match for a query solution. Alternative
graph patterns provide a means to take union of the solutions of
two or more graph patterns. Patterns on named graphs provide
a means to match patterns against graphs when querying
a collection of graphs. The outer-most graph pattern in a
SPARQL query is known as the query pattern. A query pattern
is a group graph pattern.

III. MODELING SPARQL QUERY EXECUTION

As in the common machine learning approaches, our query
performance prediction approach includes two main phases:
training and testing. In the training phase, we derive a pre-
diction model from a training dataset containing previously
executed queries and the observed performance metric values
(execution times) for those queries. We represent the queries
as feature vectors. The goal of the training phase is to create
an accurate model that maps the feature vectors to the perfor-
mance metric data points. We use regression for this purpose.
We define feature vectors, x = (x1,xa, ...T,), where z € R"
and each x; is a SPARQL query feature. The performance
metric, query execution time, is the variable y. We learn a
function f(x) = y, i.e. the function maps a feature vector x
to y, using regression. We provide more details on the types
of regression we use in section IV-C. In the testing phase,
we use the trained model to predict query performance metric
values for unforeseen queries. Additionally, we tune our model
parameters using cross-validation. We use two types of query
features: SPARQL algebra features and graph pattern features.

A. SPARQL Algebra Features

We use the frequencies of all the SPARQL algebra op-
erators except the SLICE operator as query features. The
SLICE operator is the combination of OFFSET and LIMIT

PREFIX foaf: <http://xmlns.com/foaf/@.1/>
SELECT DISTINCT ?name ?nick WHERE {
?x foaf:mbox <mailto:person@server.com> .
?x foaf:name ?name
OPTIONAL { ?x foaf:nick ?nick }

b

distinct

}

project (?name ?nick)

leftjoin

bgp

o
—a —
S

triple triple triple

x x 7x

foaf :mbox foaf :name foaf:nick
<mailto:person@server.com> ?name ?nick

[triple[bgp[join[leftjoin].[.[.[.[project[distinct [. [. [. |. [depth
L L S 3 Y

Fig. 1. Extracting SPARQL algebra features from a SPARQL query.

SPARQL keywords. We use the sum of all the SLICE operator
cardinalities appearing in the algebra expression as the feature
representing the SLICE operator. In addition, we use two more
features: the depth of the algebra expression tree and the num-
ber of triple patterns. Figure 1 shows an example of extracting
the SPARQL algebra features vector from a SPARQL query.
First we transform a query into an algebra expression tree.
Then we extract the features and represent the query as a
feature vector. We use the Jena ARQ SPARQL parselr3 to
transform query strings to SPARQL algebra expressions.

B. Graph Pattern Features

The SPARQL algebra features do not represent graph
patters appearing in SPARQL queries. Transforming graph
patterns to vector space is not trivial because the space is
infinite. To address this, we create a query pattern vector
representation relative to the query patterns appearing in the
training data. First, we cluster the structurally similar query
patterns in the training data into K4, number of clusters. The
query pattern in the center of a cluster is the representative
of query patterns in that cluster. Second, we represent a
query pattern as a K, dimensional vector where the value
of a dimension is the structural similarity between that query
pattern and the corresponding cluster center query pattern. To
compute the structural similarity between two query patterns,
we first construct two graphs from the two query patterns, then
compute the graph edit distance [11] between these two graphs.
We compute the structural similarity by inverting the edit
distance. The graph edit distance between two graphs is the
minimum amount of distortion needed to transform one graph
to another. The minimum amount of distortion is the sequence
of edit operations with minimum cost. The edit operations are
deletions, insertions, and substitutions of nodes and edges. A
well known method for computing graph edit distance is using
the A* search algorithm to explore the state space of possible

2 Algebra operators: http://www.w3.org/TR/sparql11-query/#sparql Algebra

3https://jena.apache.org/documentation/query/algebra.html

PREFIX foaf: <http://xmlns.com/foaf/@.1/>
SELECT DISTINCT ?name ?nick WHERE {
?7x foaf:mbox <mailto:person@server.coms .
?x foaf :name 7name
OPTIONAL { ?x foaf:nick ?nick }

foaf :mbox < ‘mailto: .com:>
foatinane
L foafinick Query graph
O

Clustered
training
ueries

Fig. 2. Example of extracting graph pattern features.

mappings of the nodes and edges of the source graph to the
nodes and edges of the target graph. However, the computa-
tional complexity of this edit distance algorithm is exponential
in the number of nodes of the involved graphs, irrespective
of using A* search with a heuristic function to govern the
tree traversal process. Therefore we use the polynomial time
suboptimal solution of graph edit distance that Riesen and
Bunke [12], [13] propose. The computational complexity this
polynomial time suboptimal solution is O (n5) where n is the
number of nodes of the involved graphs. To construct a graph
from a query pattern, we take all the triple patterns in the
query pattern and construct a graph from these triple patterns.
As in RDF graphs, the subject and the object of a triple pattern
represent vertices of the graph and the predicate represents an
edge of the graph. After constructing such a graph, we replace
the labels of vertices and edges representing variables by a
fixed symbol - the symbol ‘?’. This ensures that the graph has
separate vertices and edges for each variable appearing in the
query but an unified labeling. We call such a graph a query
graph. Figure 2 shows an example of extracting graph pattern
features for a query. First step shows the constructed guery
graph. The clustered queries box shows the clusters of training
queries where each circle is a cluster of query graphs with their
cluster centers shown in blue color. We use the k-mediods [14]
clustering algorithm to cluster the query graphs of training
data. We use k-mediods because it chooses data points as
cluster centers and allows using an arbitrary distance function.
As we mention before, we use the suboptimal graph edit
distance algorithm as the distance function for k-mediods. For
the K, dimensional vector representation of query pattern,
we compute the structural similarity between a query graph
p; and the k' cluster center query graph C(k) as below:

1

sim(p;, C'(k)) = 1+d(p;, C(k))

e))

The term d(p;, C(k)) is the graph edit distance between query
graphs p; and C(k). This formulation gives us a similarity

score within the range of 0 to 1. A similarity score of 0
being the least similar and a score of 1 being the most similar.
The extracted feature vector in figure 2 shows the computed
similarity values using equation 1 for the example query.

IV. EXPERIMENTS AND RESULTS

We use the DBPSB benchmark [15] queries on a Jena-
TDB triple store [16] to evaluate our approach. DBPSB
includes 25 query templates which cover most commonly used
SPARQL query features in the queries sent to DBPedia*. We
generate our training, validation, and test queries from these
query templates. We use query execution time as the query
performance metric. The details of our experimental setup is
as below.

A. Triple Store and Hardware

We use Jena-TDB 1.0.0 as a triple store. We allow Jena-
TDB to use 16 GB of memory. We execute all the queries in
a commodity server machine with a 4 core Intel Xeon 2.53
GHz CPU, 48 GB system RAM, and Linux 2.6.32 operating
system.

B. Datasets

As the RDF dataset, we use the DBpedia 3.5.1 dataset with
100% scaling factor — provided by the DBPSB benchmark
framework. We generate our training, validation, and test
queries from the 25 DBPSB query templates. To generate
queries, we assign randomly selected RDF terms from the RDF
dataset to the placeholders in the query templates. We generate
205 queries for each template and then execute them to build
our training, validation, and test datasets. Before executing the
queries, we restart the triple store to clear the caches. Then
we execute total 125 queries in our warm-up phase to measure
query performance under normal operational conditions. Our
warm-up queries include the first 5 queries from each of the 25
templates. To generate the training queries, we execute the next
120 queries from each template and take the first 60 queries
for each template which return at least 1 result and finish
executing within a reasonable time. We specify a 300 second
timeout for a query execution. We follow the same process
to generate 20 validation queries from the next 40 queries for
each template and 20 test queries from the last 40 queries
for each template. In this setting, none of the queries from
template 2, 16, and 21 returned any result. All the queries from
template 20 were interrupted because of timeout. This process
resulted 1260 training queries, 420 validation queries, and 420
test queries. We execute each of these training, validation, and
test queries 5 times and record the average execution time in
milliseconds (ms) for each query. Figure 3 shows the average,
minimum, and maximum execution times for the queries from
our test dataset. As the figure shows, we have a mix of long
and short running queries. Queries belonging to templates 4,
10, and 24 have more than 1000 ms of average execution time.
The queries from the other query templates have less than 1000
ms of average execution time.

“http://dbpedia.org

10000

9000
8000

7
E 7000
e 8
£ o000 o
c
o
E 5000 mavg
g
I 4000 - = min
= g
g 3000 A- 1- . max
<] %
2000 &
1000 Fwe - e
0 - ™
13456 7 8 9 1011121314 1517 18 19 22 23 24 25
DBPSB template
Fig. 3. Average, minimum, and maximum execution times for the queries

belonging to different query templates in the test dataset.

C. Prediction Models

To predict query execution time, we experiment with two
regression models. We first experiment with Weka’s [17]
implementation of k-nearest neighbors (k-NN) regression [18],
[19]. The k-NN algorithm predicts based on the closest training
data points. It uses a distance function to compute these closest
data points. We use Euclidean distance as the distance function
in our experiments. For predictions, we use the weighted
average of the k nearest neighbors - weighted by the inverse
of the distance from the querying data point. This ensures that
the nearby neighbors contribute more to the prediction than
the faraway neighbors. We use the k-dimensional tree (k-d
tree) [20] data structure to compute the nearest neighbors. For
N training samples, k-d tree can find the nearest neighbor of a
data point with O (log N) operations. We also experiment with
the libsvm [21] implementation of Support Vector Machine
(SVM) with the nu-SVR kernel for regression [22]. The
approach in SVM regression is to map the features to a higher
dimensional space and perform a regression in that space. The
predictions in SVM are based on a subset of data points known
as support vectors.

D. Evaluation Metrics

We use the coefficient of determination, denoted as R2, to
evaluate our models. R? is a widely used evaluation measure
for regression. R? measures how well future samples are likely
to be predicted. We compute R? as:

The vectors y and gy represent the actual values and predicted
values respectively for n queries. y is the mean of actual val-
ues. An R? score close to 1 indicates near perfect prediction.
R? scores however can be misleading in many cases. As R?2
depends on the scale and statistical characteristics of the whole
dataset, it can have low errors even if the predictions have high
errors [8]. Therefore we use another evaluation metric, root

mean squared error (RMSE), as our error metric:

-

@
I
—

(yi — 9:)?
RMSE(y,y) =

E. Predicting Query Execution Time

We show the results of our experiments in Figure 4 and
Figure 6. The results include R? and RMSE values using k-
NN and SVM with SPARQL algebra features and graph pattern
features. Below we discuss these results.

1) Predicting with SPARQL Algebra Features: For k-NN
with SPARQL algebra features, we select k, the number of
neighbors, by cross-validation. As Table I shows, different
values of k& do not have any effect on RMSE and R? on our
validation dataset. Therefore we select k& = 2. We achieve
an R? value of 0.96645 and an RMSE value of 395.5125 on
the test dataset using k-NN with SPARQL algebra features.
Figure 4(a) shows the comparison between predicted and
actual execution times using k-NN with SPARQL algebra
features. Figure 4(b) shows that the queries from template
15 has the highest RMSE. The execution time for queries
from template 15 range from 2 ms to 382.4 ms with an
average of 69.09 ms. Because of the high error for queries
from template 15, there are overestimated data points in this
interval in Figure 4(a).

k=2 k=3 k=4 k=5
RMSE | 588.2004 | 588.2004 | 588.2004 | 588.2004
R? 09286 | 09286 | 09286 | 0.9286

RMSE AND R? VALUES FOR DIFFERENT k FOR k-NN ON
THE VALIDATION DATASET.

TABLE L

We achieve an improved R? value of 0.98142 and a lower
RMSE value of 294.3532 on the test dataset using SVM with
SPARQL algebra features. Figure 4(c) shows the comparison
between predicted and actual execution times using SVM with
SPARQL algebra features. Figure 4(d) shows the RMSE values
by query template for this model. As the figures show, the
error for queries from template 15 decreases. Therefore the
overestimated data points in the interval 2 ms to 382.4 ms
move towards the perfect prediction line. However, the error
for template 8 and 24 slightly increases.

2) Predicting with SPARQL Algebra and Graph Pattern
Features: For k-NN with SPARQL algebra features and graph
pattern features, we have two parameters: the number of clus-
ters K4, and the number of neighbors k. Again we select them
by cross-validation. Figure 5(a) shows the RMSE values on
the validation dataset for different K, and k, and Figure 5(b)
shows the R? values on the validation dataset for different K ap
and k. The Figure 5 shows, k again does not have any impact.
We get lowest K, and highest R? values at K, = 10 and
K4, = 25 for all k£ values. Therefore we select Ky, = 10
and k = 2 for our predictions with k-NN on the test dataset.
Figure 6(a) and Figure 6(b) shows the prediction results on
the test dataset using k-NN with K, = 10 and £ = 2. We
get a slightly less R? value for this model than k-NN with
SPARQL algebra features. This is because of the increase in
RMSE values for queries from template 9, 17, and 24.

For SVM with SPARQL algebra features and graph pattern
features, we select the value of K, by cross-validation.

9000 + Predicted vs. actual data point
— Perfect prediction

8000

7000 -

6000 -

5000 -

4000 -

3000 -

Actual execution time (ms)

2000 -

1000;

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
Predicted execution time (ms)

(a) k-NN using algebra features (R2=0.96645)

9000 + Predicted vs. actual data point

— Perfect prediction

8000 -

7000

6000

5000

Actual execution time (ms)

i i

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
Predicted execution time (ms)

(c) SVM using algebra features (R2=0.98142)

1500 F—————————————————————————
1400 | I Template RMSE 1
1300 — — — Overall RMSE |
1200 <
1100} <
1000 g
900} <
800} <
700} <
600 <
500 <
400 — — — — —
300} <
200} <
100} <

RMSE

0
134567 8 910111213141517181922232425
DBPSB Template

(b) RMSE for k-NN using algebra features

150———m———————————F—"— "7
1400 | | IIIEE Template RMSE]
1300H — — — Overall RMSE 4
1200 9
1100 R
1000 9
900 R
800 R
700 9
600 R
500 R
400 - 9
300 — — — — — - — =
200 R
100 9

RMSE

0
1834567 8 910111213141517181922232425
DBPSB Template

(d) RMSE for SVM using algebra features

Fig. 4. Query execution time predictions with SPARQL algebra features using k-NN (with £ = 2) and SVM models.

RMSE
R?

k 2 2
s KW’ 5 o
(a) RMSE values for ifferent K _ and k (b) R values for different K __and k

Fig. 5.
and k.

RMSE and R? values on the validation dataset for different K)

Table II shows RMSE and R? values on the validation dataset
for different K, using SVM. We select K, = 25 because
it gives use the lowest RMSE value 528.9321 and highest

R? value 0.9422 on the validation dataset. Figure 6(c) and
Figure 6(d) shows the prediction results on the test dataset
using SVM with K, = 25. We get the overall best R? value

Kyp=5 | Kgp=10] Kgp=15] K,p=20] Kqp=25
RMSE | 530.9160| 546.7406] 547.6764| 547.4219] 528.9321
R? 09418 | 09383 | 09381 | 0.9381 | 0.9422

RMSE AND R2 VALUES ON THE VALIDATION DATASET FOR
DIFFERENT K g5 USING SVM.

TABLE II.

0.98526 and the overall lowest RMSE value 262.1869 with this
model. This is an improvement from the SVM with SPARQL
algebra features model. The main reason for this is the decrease
in RMSE for queries from template 12 and 24.

F. Required Time for Training and Prediction

Table III shows the total training time and average pre-
diction time per query for the models we experimented with.
Models with SPARQL algebra features take very low predic-
tion time per query. Training time is also low. Models with

9000 + Predicted vs. actual data point

— Perfect prediction

8000 -

7000 -

6000 -

5000 -

4000 -

3000 -

Actual execution time (ms)

2000 -

1000 H

iy

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
Predicted execution time (ms)

(a) k—-NN using algebra and graph pattern features (R2=0.9654)

9000 + Predicted vs. actual data point

— Perfect prediction

8000 -

7000

6000

5000

4000

3000

Actual execution time (ms)

2000

1000}

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
Predicted execution time (ms)

(c) SVM using algebra and graph pattern features (R?=0.98526)

1500 ———————r—+———+—+—+——————————
1400 || I Template RMSE]
1300+ — — - Overall RMSE 4
1200 g
1100 g
1000 | g
900} g
800} g
700} g
600 g
500 g
400 — - — - —
300} g
200} g
100 —

RMSE

0
134567 8 910111213141517181922232425
DBPSB Template

(b) RMSE for k-NN using algebra and graph pattern features

1500 — T T T
1400 || I Template RMSE 1
1300H — — — Overall RMSE 4
1200 b
1100 1
1000 1
900
800
700
600
500
400
300
200
100

RMSE

0
134567 8 910111213141517181922232425
DBPSB Template

(d) RMSE for SVM using algebra and graph pattern features

Fig. 6. Query execution time predictions with SPARQL algebra features and graph pattern features using k-NN (Kgp = 10 and k£ = 2) and SVM (K gp = 25).

graph pattern features take longer time to train. This is because
the training time includes generating the distance matrix using
approximated graph edit distance. This process itself takes
3293 seconds on average for 1260 queries. Also it includes
the time required to cluster the training queries. However the
average prediction time per query using models with graph
pattern features is within the limit of 100 milliseconds, which
is reasonable especially for query solving over Linked Data.
The average prediction time per query using models with

Model Training time Avg. prediction
time per query

k-NN + algebra 7.14 sec 3.42 ms

SVM+ algebra 26.26 sec 3.53 ms

k-NN + algebra + | 3300.33 sec 47.25 ms

graph pattern

SVM + algebra + | 3390.71 sec 98.1 ms

graph pattern

TABLE TII. REQUIRED TIME FOR TRAINING AND PREDICTIONS.

graph pattern features increase from the models with only
algebra features because of the similarity computations using

approximated edit distance. It is important to note that the
training phase is an offline process and hence it does not
influence query prediction time.

V. RELATED WORK

Recent work on predicting database query performance [8],
[6], [7] has argued that the cost models used by the current
generation query optimizers are good for comparing alterna-
tive query plans, but ineffective for predicting actual query
performance metrics such as query execution time. These cost
models are unable to capture the complexities of modern
database systems [8]. To address this, database researchers
have experimented with machine learning techniques to learn
query performance metrics. Ganapathi ef al. [6] use Kernel
Canonical Correlation Analysis (KCCA) to predict a set of
performance metrics. For the individual query elapsed time
performance metric, they were able to predict within 20% of
the actual query elapsed time for 85% of the test queries.
Gupta et al. [7] use machine learning for predicting query
execution time ranges on a data warehouse and achieve an

accuracy of 80%. Akdere et al. [8] study the effectiveness of
machine learning techniques for predicting query latency of
static and dynamic workload scenarios. They argue that query
performance prediction using machine learning is both feasible
and effective.

Related to the Semantic Web query processing, SPARQL
query engines can be categorized into two categories: SQL-
based and RDF native query engines [5]. SQL-based query en-
gines rely on relational database systems storage and query op-
timization techniques to efficiently evaluate SPARQL queries.
They suffer from the same problems mentioned above. Further-
more, due to the absence of schematic structure in RDF, cost-
based approaches — successful in relational database systems
— do not perform well in SPARQL query processing [5].
RDF native query engines typically use heuristics and statis-
tics about the data for selecting efficient query execution
plans [23]. Heuristics-based optimization techniques include
exploiting syntactic and structural variations of triple patterns
in a query [23], and rewitting a query using algebraic optimiza-
tion techniques [24] and transformation rules [4]. Heuristics-
based optimization techniques generally work without any
knowledge of the underlying data. Stocker ef al. [23] present
optimization techniques with pre-computed statistics for re-
ordering triple patters in a SPARQL query for efficient query
processing. However, in many use-cases involving querying
Linked Data, statistics are often missing [5]. This makes
these statistics-based approaches ineffective in the Linked Data
scenario. Furthermore, as in the case of relation database
systems, these existing approaches are unable to predict actual
query performance metrics such as query execution time for a
given configuration.

VI. CONCLUSION AND FUTURE WORK

We present an approach to predict SPARQL query execu-
tion time using machine learning techniques. We learn query
execution times from already executed queries. This approach
can be useful where statistics about the underlying data are
unavailable We discuss how to model SPARQL queries as
feature vectors, and show highly accurate results.

In future, firstly we would like to compare our approach
to traditional query cost estimation techniques in the Linked
Data scenario — e.g. join order optimization in federated query
processing. State of the art Linked Data query processing ap-
proach FedX [2] uses variable count selectivity estimation [23]
optimization for efficient join ordering of grouped triple pat-
tern execution. We would like to compare our approach to
such approaches. Second, we plan to systematically generate
training queries for two scenarios: (a) given query logs of
real queries (b) given a small set of sample queries. We
plan to apply query log mining techniques to systematically
generate training queries. Recent [25] work on query log
mining shows that the majority of SPARQL queries share some
common characteristics. We plan to consider those statistically
significant common characteristics in refining training queries
from massive query logs and generating training queries from
a small set of sample queries. We would also explore how
these common characteristics can be used as query features.
Third, we would like to investigate online machine learning
techniques for our models. Our goal would be to refine our
prediction models based on the new predictions and their actual

values. Finally, we would like to include load and availability
related features. In this direction, we plan to execute the
training queries every hour and include features such as time,
day, and month. This would help us to model workload patterns
for public SPARQL endpoints.

ACKNOWLEDGMENT

This work is supported by the ANR CONTINT program
under the Kolflow project (ANR-2010-CORD-021-02).

REFERENCES

[1] P. Bonatti, A. Hogan, A. Polleres, and L. Sauro, “Robust and scalable
linked data reasoning incorporating provenance and trust annotations,”
Web Semantics: Science, Services and Agents on the World Wide Web,
vol. 9, no. 2, pp. 165-201, 2011.

[2] A. Schwarte, P. Haase, K. Hose, R. Schenkel, and M. Schmidt, “Fedx:
Optimization techniques for federated query processing on linked data,”
in Proc. of the 10th International Semantic Web Conference, ser. ISWC
2011. Springer, 2011.

[3] J.Huang, D.J. Abadi, and K. Ren, “Scalable SPARQL querying of large
RDF graphs,” Proceedings of the VLDB Endowment, vol. 4, no. 11, pp.
1123-1134, 2011.

[4] O. Hartig and R. Heese, “The sparql query graph model for query
optimization,” in Proceedings of the 4th European Conference on The
Semantic Web: Research and Applications, ser. ESWC °07. Berlin,
Heidelberg: Springer-Verlag, 2007, pp. 564-578.

[S] P. Tsialiamanis, L. Sidirourgos, I. Fundulaki, V. Christophides, and
P. Boncz, “Heuristics-based query optimisation for SPARQL,” in Pro-
ceedings of the 15th International Conference on Extending Database
Technology, ser. EDBT ’12. New York, NY, USA: ACM, 2012, pp.
324-335.

[6] A. Ganapathi, H. Kuno, U. Dayal, J. L. Wiener, A. Fox, M. Jordan,
and D. Patterson, “Predicting multiple metrics for queries: Better
decisions enabled by machine learning,” in Proceedings of the 2009
IEEE International Conference on Data Engineering, ser. ICDE ’09.
Washington, DC, USA: IEEE Computer Society, 2009, pp. 592-603.

[71 C. Gupta, A. Mehta, and U. Dayal, “PQR: Predicting query execution
times for autonomous workload management,” in Proceedings of the
2008 International Conference on Autonomic Computing, ser. ICAC
’08. Washington, DC, USA: IEEE Computer Society, 2008, pp. 13—
22.

[8] M. Akdere, U. Cetintemel, M. Riondato, E. Upfal, and S. Zdonik,
“Learning-based query performance modeling and prediction,” in Data
Engineering (ICDE), 2012 IEEE 28th International Conference on,
2012, pp. 390-401.

[9] “RDF 1.1 concepts and abstract syntax,” W3C recommendation, 2014.
[10] “SPARQL 1.1 Query Language,” W3C recommendation, 2013.

[11] H. Bunke and B. Messmer, “Similarity measures for structured rep-
resentations,” in Topics in Case-Based Reasoning, ser. Lecture Notes
in Computer Science, S. Wess, K.-D. Althoff, and M. Richter, Eds.
Springer Berlin Heidelberg, 1994, vol. 837, pp. 106-118.

[12] K. Riesen and H. Bunke, “Approximate graph edit distance computation
by means of bipartite graph matching,” Image Vision Comput., vol. 27,
no. 7, pp. 950-959, Jun. 2009.

[13] K. Riesen, S. Emmenegger, and H. Bunke, “A novel software toolkit
for graph edit distance computation,” in Graph-Based Representations
in Pattern Recognition, ser. LNCS, W. Kropatsch, N. Artner, Y. Hax-
himusa, and X. Jiang, Eds. Springer Berlin Heidelberg, 2013, vol.
7877, pp. 142-151.

[14] L. Kaufman and P. Rousseeuw, “Clustering by means of medoids,” in
Statistical Data Analysis based on the L1 Norm, Y. Dodge, Ed., 1987,
p. 405416.

[15] M. Morsey, J. Lehmann, S. Auer, and A.-C. Ngonga Ngomo, “Dbpedia
SPARQL benchmark performance assessment with real queries on real
data,” in The Semantic Web ISWC 2011, ser. LNCS, L. Aroyo et al.,
Eds. Springer Berlin Heidelberg, 2011, vol. 7031, pp. 454-4609.

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

A. Owens, A. Seaborne, N. Gibbins, and mc schraefel, “Clustered TDB:
A clustered triple store for Jena,” November 2008.

M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and
I. H. Witten, “The WEKA data mining software: an update,” SIGKDD
Explorations, vol. 11, no. 1, 2009.

D. Aha, D. Kibler, and M. Albert, “Instance-based learning algorithms,”
Machine Learning, vol. 6, no. 1, pp. 37-66, 1991.

N. Altman, “An introduction to kernel and nearest-neighbor nonpara-
metric regression,” The American Statistician, vol. 46, no. 3, pp. 175—
185, 1992.

J. H. Friedman, J. L. Bentley, and R. A. Finkel, “An algorithm for
finding best matches in logarithmic expected time,” ACM Trans. Math.
Softw., vol. 3, no. 3, pp. 209-226, Sep. 1977.

C.-C. Chang and C.-J. Lin, “LIBSVM: A library for support vector
machines,” ACM Transactions on Intelligent Systems and Technology,
vol. 2, pp. 27:1-27:27, 2011, software available at http://www.csie.ntu.
edu.tw/~cjlin/libsvm.

S. K. Shevade, S. S. Keerthi, C. Bhattacharyya, and K. R. K. Murthy,
“Improvements to the SMO algorithm for SVM regression,” Neural
Networks, IEEE Transactions on, vol. 11, no. 5, pp. 1188-1193, 2000.

M. Stocker, A. Seaborne, A. Bernstein, C. Kiefer, and D. Reynolds,
“SPARQL basic graph pattern optimization using selectivity estima-
tion,” in Proceedings of the 17th International Conference on World
Wide Web, ser. WWW °08. New York, NY, USA: ACM, 2008, pp.
595-604.

F. Frasincar, G.-J. Houben, R. Vdovjak, and P. Barna, “RAL: An algebra
for querying RDF,” World Wide Web, vol. 7, no. 1, pp. 83-109, 2004.
M. Arias, J. D. Fernndez, M. A. Martnez-Prieto, and P. de la Fuente,
“An empirical study of real-world SPARQL queries,” /st International
Workshop on Usage Analysis and the Web of Data (USEWOD2011), in
Conjunction with WWW 2011, 2011.

