
HAL Id: hal-01082635
https://inria.hal.science/hal-01082635v3

Submitted on 29 Dec 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

XQuery and Static Typing: Tackling the Problem of
Backward Axes

Pierre Genevès, Nils Gesbert

To cite this version:
Pierre Genevès, Nils Gesbert. XQuery and Static Typing: Tackling the Problem of Backward Axes.
ICFP (International Conference on Functional Programming), ACM SIGPLAN, Aug 2015, Vancouver,
Canada. �10.1145/2784731.2784746�. �hal-01082635v3�

https://inria.hal.science/hal-01082635v3
https://hal.archives-ouvertes.fr

XQuery and Static Typing: Tackling

the Problem of Backward Axes

Pierre Genevès Nils Gesbert
Univ. Grenoble Alpes, LIG, F-38000 Grenoble, France

CNRS, LIG, F-38000 Grenoble, France
Inria

pierre.geneves@cnrs.fr nils.gesbert@grenoble-inp.fr

Abstract

XQuery is a functional language dedicated to XML data querying
and manipulation. As opposed to other W3C-standardized languages
for XML (e.g. XSLT), it has been intended to feature strong static
typing. Currently, however, some expressions of the language cannot
be statically typed with any precision. We argue that this is due to
a discrepancy between the semantics of the language and its type
algebra: namely, the values of the language are (possibly inner)
tree nodes, which may have siblings and ancestors in the data. The
types on the other hand are regular tree types, as usual in the XML
world: they describe sets of trees. The type associated to a node
then corresponds to the subtree whose root is that node and contains
no information about the rest of the data. This makes navigation
expressions using ‘backward axes,’ which return e.g. the siblings of
a node, impossible to type.

We discuss how to handle this discrepancy by improving the
type system. We describe a logic-based language of extended types
able to represent inner tree nodes and show how it can dramatically
increase the precision of typing for navigation expressions. We
describe how inclusion between these extended types and the
classical regular tree types can be decided, allowing a hybrid system
combining both type languages. The result is a net increase in
precision of typing.

Categories and Subject Descriptors D.3.3 [Programming Lan-
guages]: Language Constructs and Features—Abstract data types;
F.3.2 [Logics and Meanings of Programs]: Semantics of Program-
ming Languages—Operational semantics; F.3.3 [Logics and Mean-
ings of Programs]: Studies of Program Constructs—Type structure

General Terms Languages, Theory, Verification

Keywords XQuery, XML, regular tree types, µ-calculus

1. Introduction

XQuery is a functional language with some unusual features. The
standard which defines it [6, 17] describes, among other things,
a formal semantics for a core fragment of the language, rules to

Copyright c� ACM, 2015. This is the author’s version of the work. It is posted here
by permission of ACM for your personal use. Not for redistribution. The definitive
version was published in ICFP’15, August 31 – September 2, 2015, Vancouver, BC,
Canada, http://dx.doi.org/10.1145/2784731.2784746.

compile the full language into its core fragment, and a static type
system.

Although it is Turing-complete, this language is not general-
purpose; it is designed for manipulating XML data, in various ways.
Its type system is thus built around regular tree types, as usual for
XML. The values of the language, however, are not trees or forests,
but sequences of pointers to tree nodes. These pointers can point
anywhere in the tree, not only at the root, and it is always possible,
given such a pointer, to get pointers to its parent and sibling nodes.
Furthermore, a sequence may contain pointers into different trees.

The formal semantics from the XQuery standard uses judgements
of the form DynEnv ` Expr) Val , where DynEnv is a store of
trees. Navigational expressions (e.g. getting the parent of a node) are
evaluated by looking up the initial pointer in the store, navigating in
there, and returning a pointer to the destination. However, XQuery
is designed as a pure functional language and all the trees in the
store are immutable1; the only expressions which update the store
are those which create a new tree, returning a pointer to its root.
Because of this purity, it is possible to describe the semantics of Core
XQuery without using an external store, but only reduction rules
for expressions, if we represent tree nodes as focused trees, a data
structure describing a whole tree ‘seen’ from a given internal node.
We believe that it makes it easier to reason about programs. This
will be our first contribution (Sec. 2). This formalization will allow
us to highlight a discrepancy between the semantics of XQuery
and its type language (Sec. 3.1): whereas the values manipulated
by the language consist of a subtree and a context, the types
describe only the subtree and say nothing of the context. Because
of this, expressions navigating upwards or between siblings can
only be given the most general type, which contains no information
whatsoever, regardless of the type of the initial node.

In order to solve this discrepancy, we then define (Sec. 3.2.1) a
logic whose formulas denote sets of focused trees rather than just of
trees, and discuss how it can be combined with the existing types to
yield a precise type system.

2. Syntax and Semantics of an XQuery Core

2.1 Values

2.1.1 Items and Sequences

XQuery programs manipulate two ‘levels’ of values: items and
sequences. In full XQuery, item values can be literals of various base
types (string, boolean etc.), functions (in XQuery 3.0 [34]), and tree
nodes. Base values and function values behave in a fairly standard
way in XQuery, so, in order to keep this paper to the point, we

1 Expressions used to make persistent changes to instances in the XQuery
data model are defined as a separate extension of the language [33].

1 2015/5/26

consider the fragment where all items are tree nodes. Furthermore,
we focus on the structure of XML trees and thus consider them
composed of only element nodes (with no text content or attributes).
This does not imply a loss of generality since literals and text could
be encoded as trees.

In XQuery, sequence values are flat lists of items. Nested
sequences do not exist. The result of evaluating an expression is
always a sequence.

Tree nodes are pointers to nodes which can be anywhere in
a tree, not necessarily at the root. Since the tree data structures
manipulated by XQuery are always immutable, we need not however
actually represent these node values as pointers into a shared data
structure defined in an external environment: we may represent
them as focused trees which contain all the information we need.
We detail this structure in the next subsection.

2.1.2 Focused Trees

In order to represent references to nodes of immutable trees, we
use focused trees, inspired by Huet’s Zipper data structure [26] in
the manner of [21]. Focused trees not only describe a tree but also
its context: its siblings and its parent, including its parent context
recursively. Formally, we assume an alphabet ⌃ of labels, ranged
over by σ. The syntax of our data model is as follows.

t ::= σ[tl] tree
tl ::= ✏ | t :: tl list of trees
c ::= Top | (tl , c[σ], tl) context
f ::= (t, c) focused tree

A focused tree (t, c) is a pair consisting of a tree t and its context
c. The context is Top if the current tree is at the root. Otherwise,
it is of the form (tl , c[σ], tl) and comprises three components: a
list of trees at the left of the current tree in reverse order (the first
element of the list is the tree immediately to the left of the current
tree), the context above the tree, and a list of trees at the right of the
current tree. The context above the tree is of the form c[σ] where σ
is the label of the enclosing element and c is the context in which
the enclosing element occurs.

We now describe how to navigate focused trees, in binary style.
There are four directions that can be followed: for a focused tree
f , f h1i changes the focus to the first child of the current tree,
f h2i changes the focus to the next sibling of the current tree, f h1i
changes the focus to the parent of the tree if the current tree is a
leftmost sibling, and f h2i changes the focus to the previous sibling.
Formally, we have:

DEFINITION 1.

(σ[t :: tl], c) h1i def
= (t, (✏, c[σ], tl))

(t, (tl l, c[σ], t
0
:: tlr)) h2i

def
= (t

0
, (t :: tl l, c[σ], tlr))

(t, (✏, c[σ], tl)) h1i def
= (σ[t :: tl], c)

(t

0
, (t :: tl l, c[σ], tlr)) h2i

def
= (t, (tl l, c[σ], t

0
:: tlr))

When the focused tree does not have the required shape, these
operations are not defined.

2.2 Expressions

The standard defining XQuery describes how to compile (‘normal-
ize’) expressions of the full language into a core fragment, called
the XQuery Core [17]. Although this part of the specification has
not been updated after XQuery 1.0, it still is a good starting point.

The formal semantics for this core fragment is defined using
an external store, with node items being pointers into that store.
What we propose to do is to replace these pointers with focused
trees, as described in the previous subsection, which removes the

e ::= expression
<σ>{e}</σ> : x XML element

| ✏ empty sequence
| e, e seq. concatenation
| for $v in e return e for loop
| let $v := e return e variable binding
| if non-empty(e) then e else e existence test
| $v/axis::n tree navigation
| $v item variable
| $v sequence variable

n ::= σ | ⇤ label or wildcard
s ::= ✏ | f :: s value sequence

E ::=

[] | <σ>{E}</σ> : x | for $v in E return e
| if non-empty(E) then e else e | E, e | s, E

Figure 1. Navigational core of XQuery.

need for a store2. As the XQuery Core is already quite large, we
will consider a much smaller fragment comprising only constructs
impacted by this proposal and useful for the discussion, which we
call the navigational core. It is worth noting that several other ‘core
fragments’ of XQuery have already been defined and studied in
research papers. We will discuss how this one relates to them in the
related work section (Sec. 5).

The navigational XQuery fragment we consider is described by
the abstract syntax shown in Fig. 1, where axis 2 {child, desc,
parent, anc, psibl, nsibl, self}. The values of the language
are sequences s; we write [f1, . . . , fn] for f1 :: . . . :: fn :: ✏.

The XML element construction expression we include in our
core syntax represents a combination of XQuery’s element construc-
tor and validate expressions. In XQuery, indeed, the result of a
constructor expression of the form <σ>{e}</σ> is always consid-
ered untyped (both statically and dynamically) unless it is validated.
The validate expression may include an explicit type annotation
or not; if not, a type corresponding to the element name is looked
for in the environment. This expression then checks, at runtime,
whether the constructed element conforms to the expected type: if
yes, it returns the element with the required dynamic type; if not, a
dynamic type error is triggered.

We represent all this by the expression <σ>{e}</σ> : x, where
x refers to a type u defined in an external environment, as will be
defined in Section 3.1. Translation from XQuery into this core is as
follows:

• untyped element construction is represented by
<σ>{e}</σ> : AnyElt;

• a validate expression with explicit type annotation x is repre-
sented by <σ>{e}</σ> : x;

• for a validate expression without annotation, we assume a
mapping from ⌃ to type references x (obtained from e.g. a
DTD) is available, and represent this expression as:
<σ>{e}</σ> : x(σ).

We do not include boolean expressions in our fragment; how-
ever XQuery allows writing if-then-else expressions where the
condition evaluates to a sequence of element nodes. The meaning of
such an expression is an emptiness test on the sequence; we include
it, and write if non-empty explicitly for clarity.

2 Remark that in full XQuery, a focused tree is not enough to uniquely
identify a node, because the store may contain several identical trees, whose
nodes will have different identifiers. In order to be complete with this respect,
we would thus have to use as values not just focused trees, but rather pairs
of a focused tree and a tree identifier. However this is not relevant for the
fragment we study here, which does not include an identity test.

2 2015/5/26

R-TREE
t = σ[t1 :: t2 :: . . . :: tn :: ✏] t 2 JxK

<σ>{[(t1, c1), (t2, c2), . . . , (tn, cn)]}</σ> : x −! [(t,Top)]

R-TREEERROR
t = σ[t1 :: t2 :: . . . :: tn :: ✏] t /2 JxK

<σ>{[(t1, c1), (t2, c2), . . . , (tn, cn)]}</σ> : x −! !

R-FOR

for $v in f1 :: s return e −! e
h
f1
/$v

i
, for $v in s return e

R-FOREMPTY
for $v in ✏ return e −! ✏

R-SINGLETON
f −! [f]

R-CONCAT
[f1, . . . , fn], [f

0
1, . . . , f

0
n0] −! [f1, . . . , fn, f

0
1, . . . f

0
n0]

R-LET
let $v := s return e −! e [s/$v]

R-IFF
if non-empty(✏) then e1 else e2 −! e2

R-IFT
if non-empty(f :: s) then e1 else e2 −! e1

R-NOPARENT
(t,Top)/parent::n −! ✏

R-NOCHILD
(σ[✏], c)/child::n −! ✏

R-NONSIBL
(t, (tl , σ[c], ✏))/nsibl::n −! ✏

R-NOPSIBL
(t, (✏, σ[c], tl))/psibl::n −! ✏

R-NOANC
(t,Top)/anc::n −! ✏

R-SELFSTAR
f/self::⇤ −! [f]

R-SELFMATCH
(σ[tl], c)/self::σ −! [(σ[tl], c)]

R-SELFDIFF
σ 6= σ

0

(σ[tl], c)/self::σ0 −! ✏

R-PARENT
f

0
= f h1i

f/parent::n −! f

0
/self::n

R-PSPARENT
f

0
= f h2i

f/parent::n −! f

0
/parent::n

R-CHILD
f

0
= f h1i

f/child::n −! f

0
/self::n, f 0

/nsibl::n

R-NSIBL
f

0
= f h2i

f/nsibl::n −! f

0
/self::n, f 0

/nsibl::n

R-PSIBL
f

0
= f h2i

f/psibl::n −! f

0
/psibl::n, f 0

/self::n

R-ANC
f

0
= f h1i

f/anc::n −! f

0
/anc::n, f 0

/self::n

R-PSANC
f

0
= f h2i

f/anc::n −! f

0
/anc::n

R-DESC
f/desc::n −! for $v in f/child:: ⇤ return $v/self::n, $v/desc::n

R-CONTEXT
e1 −! e2 e2 6= !

E[e1] −! E[e2]

R-ERROR
e1 −! !

E[e1] −! !

Figure 2. Reduction rules for the navigational XQuery fragment

We distinguish variables $v bound by for loops from variables
$v bound by let expressions. The former are bound to single tree
nodes (“items” in XQuery terminology) whereas the latter are bound
to possibly empty sequences of nodes. Path navigation expressions
can only start from an item variable3.

2.3 Reduction Semantics

Figure 2 gives reduction rules defining a small-step operational
semantics for the focused-tree-based navigational XQuery fragment
we consider. These rules rely on the evaluation contexts E defined
in Fig. 1 to allow reduction of a subexpression. In addition to
expressions from the syntax of Fig. 1, runtime expressions can
contain focused tree and sequence literals (only sequences are values:
focused tree literals reduce to sequences by R-SINGLETON) as well
as the dynamic type error !.

Rules R-TREE and R-TREEERROR correspond, as described in
the previous section, to a combination of tree construction and
dynamic type check: the tree constructed in the premise is the
same in both rules, and whether it conforms to the type annotation
(t 2 JxK) determines which rule applies; JxK will be defined
formally in Section 3.1.

Note that, because f h1i and f h2i are never both defined for the
same f , rules R-PARENT and R-PSPARENT are mutually exclusive,
and that R-NOPARENT can only apply in a case where both f h1i
and f h2i are undefined. The same is true for R-ANC, R-PSANC
and R-NOANC, so that the set of rules is almost deterministic. The
only ambiguity is the order of concatenation in expressions of the
form s1, s2, s3, but in that case note that the result is independent
on that order.

3 The expression $v/axis::n exists in XQuery, but its semantics is defined as
for $v in $v return $v/axis::n plus a sort operation on the result.

3. Type System

Now that we have a simple formal semantics for a core fragment of
XQuery, we want to design a type system able to ensure statically
that a given program will never go wrong at runtime. With the
reduction rules we have, a syntactically correct program cannot get
stuck, and the only kind of expression which can yield a dynamic
type error is tree construction <σ>{e}</σ> : x. However, since,
in such an expression, e can be any expression and x refers to
an external type specification, the problem of type safety is here
equivalent to the fully general problem of statically checking that
an arbitrary expression will always reduce to a value conforming
to an arbitrary specification. This means that if we extend the core
to include e.g. type-annotated function definitions we will be able
to typecheck them with the same system. We now discuss different
type languages and how to construct a type system which is sound
and as precise as possible, i.e. accepts only correct programs but as
many of them as possible.

3.1 Regular Tree Types

As is customary in the literature ([15, 16, 19, 38] for instance), we
use a slight variant of XDuce’s type language [23, 24], described in
Fig. 3, to represent (core) XQuery types.

Unit types u, or ‘prime types’ in the XQuery terminology,
correspond to items. Types ⌧ correspond to sequences. In the general
case, u would include both element types and base types; since we
removed base values from the language fragment we consider, it
only includes element types.

A type environment E is a mapping from type references x to
types ⌧ . These references may be mutually recursive, but recursion
must be guarded by an element constructor. In other words, if we
repeatedly replace all references appearing at top level (i.e. not inside
a unit type) with their bindings, this process must terminate after
a few iterations and yield a regular expression of unit types. As an

3 2015/5/26

u ::= element n {⌧} unit type
n ::= σ | ⇤ name test
⌧ ::= u | () | ⌧, ⌧ | (⌧ | ⌧) | ⌧⇤ | x sequence type

Figure 3. XQuery types

additional restriction, these regular expressions must be composed
of mutually exclusive unit types and be 1-unambiguous [7]. This
constraint is standard: it comes from XML Schema. In the following,
we assume this restriction is respected by all types in E.

The semantics of types is defined in terms of sets of forests,
i.e. of sequences of trees (called elements in the XML context). A
value s, which is a sequence of items (nodes, focused trees in our
semantics), matches a type if the forest constituted of the subtrees
rooted at all nodes of the sequence belongs to the semantics of the
type. This is the same forest that is constructed in the tree creation
rule R-TREE as the children of the new node.

To give a formal definition, we first define the denotation of a
type depending on a function d mapping references to sets of forests.
We then define the variable denotation dE corresponding to a type
environment E. The denotation of a type containing references is
only defined if an environment providing bindings for all these
references is given.

JxKd = d(x)

Jelement σ {⌧}Kd = {[σ[tl]] | tl 2 J⌧Kd}
Jelement ⇤ {⌧}Kd = {[σ[tl]] | σ 2 ⌃ and tl 2 J⌧Kd}

J()Kd = ✏

J⌧, ⌧ 0Kd = {[t1, . . . , tn, t01, . . . , t0m] |
[t1 . . . tn] 2 J⌧Kd and [t

0
1 . . . t

0
m] 2 J⌧ 0Kd}

J⌧ | ⌧ 0Kd = J⌧Kd [J⌧ 0Kd
J⌧0Kd = ✏

J⌧n+1Kd = J⌧, ⌧nKd
J⌧⇤Kd =

[

n2N
J⌧nKd

Let E = (xi = ⌧i)i2I . Given two mappings d1 and d2

from the xi to sets of forests, we say that d1 is smaller than
d2 if: 8i 2 I, d1(xi) ✓ d2(xi). The variable denotation dE

corresponding to the type environment E is defined as the smallest
mapping such that: 8i 2 I, dE(xi) = J⌧iKdE .

In the following, we always assume the environment E is well-
formed and contains bindings for all references appearing in the
types, and we write J⌧K as a shorthand for J⌧KdE . We often assume,
as well, that references x are implicitly replaced with their bindings
at toplevel, so that a type ⌧ is really a regular expression of unit types.
We also consider that E always contains the type of all elements,
AnyElt, defined as AnyElt = element ⇤ {AnyElt⇤}.

3.2 Types for Focused Trees

All the definitions we gave about regular tree types up to now are
standard. The standard notion of a value (sequence of tree nodes)
matching a type can be formally defined as follows when nodes are
represented as focused trees:

DEFINITION 2. The focused-tree interpretation J⌧K" of a type ⌧ is
the set {[(t1, c1) . . . (tn, cn)] | [t1 . . . tn] 2 J⌧K}. A value s is said
to match type ⌧ if s 2 J⌧K".

As we can see, regular tree types naturally denote sequences of
trees, and their interpretation is lifted to sequences of focused trees
by simply ignoring the context part. The static type system defined

', ::= formula
> true

| σ | ¬σ atomic prop. (negated)
| X variable
| ' _ disjunction
| ' ^ conjunction
| hai' | ¬ hai> existential (negated)
| µ(Xi = 'i)i2I in (least) polyadic fixpoint

Figure 4. Logic formulas

in the XQuery standard, and its various improvements proposed in
the literature, rely only on this type language, and thus associate
to each expression such a regular tree type and nothing else. This
means that they do not have any information about the context of
the nodes in the sequence the expression will reduce to.

So in such a system, if we consider, for example, the expression
for $v in e return $v/nsibl::⇤, its type has to be deduced from
the regular type ⌧ of e. What we know is that when e reduces to a
value [f1 . . . fn], this value will match ⌧ . Looking at the reduction
rules, we can see that the final result of the expression depends
only of the fi h2i; and if fi = (ti, ci), fi h2i depends mainly of ci,
whereas ⌧ only contains information about ti. It is thus impossible
to say anything interesting about the result without having more
information on e than its regular tree type. A consequence is that
type systems for XQuery based only on this type language give to
this expression the most general type (AnyElt⇤), and thus always fail
to typecheck it unless no requirement at all was made on the result.

In order to solve this problem, we need to enrich the language of
types to also describe the context part of focused trees. We propose
to do this using logic formulas.

3.2.1 A Tree Logic

In order to describe sets of focused trees rather than just sets of trees,
we use a variant of the logic language defined in [22]. Its syntax is
given in Fig. 4, where a 2 {1, 2, 1, 2} are programs, corresponding
to the four directions in which trees can be navigated.

Our main reasons for choosing this formalism are: it is expressive
enough to support all XQuery types, it is succinct (types are
represented as formulas of linear size compared to their regular
expression syntax), and the satisfiability problem for a logical
formula of size n can be efficiently decided with an optimal 2O(n)

worst-case time complexity bound [22].
Formulas include the truth predicate, atomic propositions (de-

noting the label of the node in focus), disjunction and conjunction
of formulas, formulas under an existential modality (denoting the
existence of a node, in the direction denoted by the program, sat-
isfying the sub-formula), and a fixpoint operator. We use µX.'

as an abbreviation for µ(X = ') in '. For example, the formula
µX.b _ h2iX means that either the current node or some previous
sibling is labeled b.

The interpretation of a logical formula is the set of focused trees
such that the formula is satisfied at the current node. We give the
formal definition in Fig. 5, where F is the set of all focused trees
and nm(f) is the label at the current node of f .

In the following, we consider only closed formulas and write
hh'ii for hh'ii;.

3.2.2 Adding Formulas to Regular Tree Types

We now have a type language which allows us to describe sets of
focused trees. Since the values of the language are sequences of
focused trees, we still want regular expressions to represent them;
we simply enrich the regular expressions of unit types defined in

4 2015/5/26

hh>iiV def
= F hhhai'iiV def

= {f hai | f 2 hh'iiV }

hhXiiV def
= V (X) hh¬ hai>iiV def

= {f | f hai undefined}

hhσiiV def
= {f | nm(f) = σ} hh' _ iiV def

= hh'iiV [hh iiV

hh¬σiiV def
= {f | nm(f) 6= σ} hh' ^ iiV def

= hh'iiV \ hh iiV

hhµ(Xi = 'i)i2I in iiV
def
=

let S = {(Ti) 2 P(F)

I | 8j 2 I, hh'jiiV [Ti/Xi]
✓ Tj} in

let (Uj) =
�T

(Ti)2S Tj

�
j2I

in hh iiV [Ui/Xi]

where V [Ti/Xi](X)

def
= V (X) if X 62 {Xi}

and Ti if X = Xi.

Figure 5. Interpretation of formulas

⇢ ::= (', u) | () | ⇢, ⇢ | (⇢ | ⇢) | ⇢⇤

Figure 6. Formula-enriched sequence types

Sec. 3.1 by associating to each unit type a formula. The enriched
types are thus regular expressions of pairs of a unit type and a
formula, defined by Fig. 6.

Note that unit types are not enriched in depth, i.e. they are still of
the form element n {⌧} where ⌧ does not contain formulas. This
is because ⌧ is here actually used to describe a list of trees and not
of focused trees: focused trees are of the form (σ[tl], c) (Sec. 2.1.2).
In a pair (element n {⌧}, '), n describes σ, ⌧ describes tl , and
c is described only by '4. The list tl is a list of subtrees which
are all siblings in the same tree structure; it is very different from
a sequence value s where each node in the sequence has its own
context independently of the others, although the standard type
system does not distinguish the two.

DEFINITION 3. The interpretation of a pair (', u) is defined as the
set of focused trees which match both components, i.e. :

J(', u)K = {(t, c) | t 2 JuK and (t, c) 2 hh'ii}
From this, the interpretation of regular expressions of pairs in terms
of sets of sequences of focused trees is then defined in the obvious
manner.

3.3 Typing Rules

We present in Figures 7 and 8 a type system for the navigational
core of XQuery which makes use of the additional information in
our enriched types.

The rules use type environments E, which contain the possibly
mutually recursive definitions of named types (see Sec. 3.1), and
typing environments Γ which map sequence variables to sequence
types and iteration variables to single pairs of a formula and a unit
type (not types in general). Indeed, in the for loop, the variable is
bound successively to all items in the input sequence, thus its value
is an item, not a sequence.

Rules T-ITEMVAR, T-SEQVAR, T-EMPTY, T-LET and T-SEQ
are straightforward. Rule T-FOR uses an auxiliary judgement, taken
from [19]. We write E; Γ ` for $v : ⇢ return e : ⇢

0 if, in
environment Γ, when the bound variable of an iteration $v has
type ⇢ then the body e of the iteration has type ⇢0. This typing of
for expressions is more precise than the one found in the standard
type-system [17] (as explained in Section 5).

4 which can additionally contain information about both σ and tl as well

Rule T-TREE involves a subtyping check: recall that the tree
constructor includes a validate operation, and we want this
rule to detect whether this operation will succeed at runtime or
not. Note that in this subtyping check, the right-hand type is not
formula-enriched. Indeed, it comes from the type specification of the
element being constructed, and as we can see in Rules R-TREE/R-
TREEERROR (Fig. 2), the context of this element is always Top and
the original context of the component nodes is erased. The check
we have to make is thus between a focused-tree sequence type and a
tree sequence type, ignoring the contexts in the left-hand type. We
detail this in the next section.

The if-then-else expression can be typed with more or less
precision depending on what appears in the condition. To get the best
precision, the four rules presented in Fig. 7 must be tried in the order
they are listed. T-IFANY is the most general one and simply gives
to the expression the disjunction of the types of the then and else

clauses; this is the usual rule for conditional expressions, and the one
in the standard type system. T-IFEMPTY and T-IFNONEMPTY are
straightforward improvements in the case of the emptiness check,
which do not need enriched types; the auxiliary predicate nullable()
used in T-IFNONEMPTY indicates whether the empty sequence
belongs to the denotation of the regular expression (which is a
simple linear syntactic check).

The improvements in precision that formulas allow are in rules
T-IFAXIS and T-AXIS, where navigation expressions appear. They
make use of the auxiliary functions defined on Fig. 8. k translates
a node test n into a formula depending whether it is a wildcard
or specific label. The next two functions, navigate-axis(χ) and
has-axis(χ), are functions from formulas to formulas and in some
sense dual from each other. The first one constructs a formula which
is true at all nodes reached by navigating axis from a node where χ is
true; in a nutshell, this formula says that if we perform the navigation
in the reverse direction then we must reach a node satisfying χ. The
second one constructs a formula which is true if navigating axis
from the current node reaches at least one node where χ is true. T-
IFAXIS only uses has-axis(χ); it is an improvement over T-IFANY,
possible in the case where the condition is a navigation expression.
The then and else subexpressions can be checked with a refined
environment because knowing whether the navigation expression
yields an empty result or not gives additional information on $v.

The function go-axis() is similar to navigate-axis() in pur-
pose but works on unit types instead of formulas; this function
corresponds to the standard XQuery type system. It uses operations
children and dos (‘descendant-or-self’), which are discussed e.g.
in [15] together with filter. Their definition is recalled in Fig. 9. The
important point to notice is that when axis is not self, child or
desc, the result of this function is extremely imprecise and basically
useless, due to the fact that the original type contains no information
on the context – in this case, having the formulas is crucial.

The other functions are used to re-combine formulas and unit
types after performing navigation: indeed, go-axis(u) yields a regu-
lar expression whereas navigate-axis(χ) yields a single formula,
which then must be distributed to all unit types in the regular ex-
pression, using distrib. This is done by the follow-axis function,
which computes the type resulting from a navigation expression,
and is used in T-AXIS. This function adds a further refinement: it is
sometimes possible to detect by a satisfiability check (last premise)
that the navigation expression cannot yield the empty sequence.
In this case (second follow-axis rule), the empty sequence is
removed from the type obtained (which is a simple operation on
regular expressions).

3.4 Comparing Classical and Formula-Based Types

As we saw, in order to deal with the context-erasing tree construction
operation, we need to be able to decide when an enriched type ⇢

5 2015/5/26

T-ITEMVAR
E; Γ, $v : (', u) ` $v : (', u)

T-SEQVAR

E; Γ, $v : ⇢ ` $v : ⇢

T-EMPTY

E; Γ ` ✏ : ()
T-LET
E; Γ ` e1 : ⇢1 E; Γ, $v : ⇢1 ` e2 : ⇢2

E; Γ ` let $v := e1 return e2 : ⇢2

T-TREE
(x = element n {⌧}) 2 E n = ⇤ _ n = σ E; Γ ` e : ⇢ ⇢ <: ⌧

E; Γ ` (<σ>{e}</σ> : x) : (form(x), element n {⌧})

T-SEQ

E; Γ ` e1 : ⇢1 E; Γ ` e2 : ⇢2

E; Γ ` e1, e2 : ⇢1, ⇢2

T-IFEMPTY
E; Γ ` e : () E; Γ ` e2 : ⇢2

E; Γ ` if non-empty(e) then e1 else e2 : ⇢2

T-IFNONEMPTY
E; Γ ` e : ⇢ ¬nullable(⇢) E; Γ ` e1 : ⇢1

E; Γ ` if non-empty(e) then e1 else e2 : ⇢1

T-IFAXIS
E; Γ, $v : (', u) ` $v/axis::n : AnyElt⇤

E; Γ, $v : (' ^ has-axis(k(n)), u) ` e1 : ⇢1 E; Γ, $v : (' ^ ¬has-axis(k(n)), u) ` e2 : ⇢2

E; Γ ` if non-empty($v/axis::n) then e1 else e2 : ⇢1 | ⇢2
T-IFANY
E; Γ ` e : AnyElt⇤ E; Γ ` e1 : ⇢1 E; Γ ` e2 : ⇢2

E; Γ ` if non-empty(e) then e1 else e2 : ⇢1 | ⇢2

T-FOR
E; Γ ` e1 : ⇢1 E; Γ ` for $v : ⇢1 return e2 : ⇢2

E; Γ ` for $v in e1 return e2 : ⇢2

T-AXIS
E; Γ, $v : (', u) ` $v/axis::n : follow-axis(axis, (', u), n)

Auxiliary judgement for for loops [19]:

E; Γ, $v : (', u) ` e : ⇢

0

E; Γ ` for $v : (', u) return e : ⇢

0 E; Γ ` for $v : () return e : ()

E; Γ ` for $v : ⇢ return e : ⇢

0

E; Γ ` for $v : ⇢ ⇤ return e : ⇢

0⇤

E; Γ ` for $v : ⇢1 return e : ⇢

0
1 E; Γ ` for $v : ⇢2 return e : ⇢

0
2

E; Γ ` for $v : ⇢1, ⇢2 return e : ⇢

0
1, ⇢

0
2

E; Γ ` for $v : ⇢1 return e : ⇢

0
1 E; Γ ` for $v : ⇢2 return e : ⇢

0
2

E; Γ ` for $v : ⇢1 | ⇢2 return e : ⇢

0
1 | ⇢02

Figure 7. Typing Rules for the Navigational XQuery Fragment.

k(⇤) = > k(σ) = σ

navigate-self(χ) = χ has-self(χ) = χ

navigate-child(χ) = µZ. h1iχ _ h2iZ has-child(χ) = navigate-parent(χ)

navigate-nsibl(χ) = µZ. h2iχ _ h2iZ has-nsibl(χ) = navigate-psibl(χ)

navigate-psibl(χ) = µZ. h2iχ _ h2iZ has-psibl(χ) = navigate-nsibl(χ)

navigate-parent(χ) = h1iµZ.χ _ h2iZ has-parent(χ) = navigate-child(χ)

navigate-desc(χ) = µZ. h1i (χ _ Z) _ h2iZ has-desc(χ) = navigate-anc(χ)

navigate-anc(χ) = h1iµZ.χ _ h1iZ _ h2iZ has-anc(χ) = navigate-desc(χ)

go-self(u) = u distrib(χ, ()) = ()

go-child(u) = children(u) distrib(χ, u) = (χ, u)

go-desc(u) = dos(children(u)) distrib(χ, ⌧1, ⌧2) = (distrib(χ, ⌧1), distrib(χ, ⌧2))

go-parent(u) = () | AnyElt distrib(χ, ⌧1 | ⌧2) = (distrib(χ, ⌧1) | distrib(χ, ⌧2))
go-axis(u) = AnyElt ⇤ for axis 2 {anc, psibl, nsibl} distrib(χ, ⌧⇤) = distrib(χ, ⌧)⇤

 = navigate-axis(' ^ form(u)) ^ k(n) ⌧ = filter(n, go-axis(u)) ' ^ ¬has-axis(k(n)) is satisfiable
follow-axis(axis, (', u), n) = distrib(, ⌧)

 = navigate-axis(' ^ form(u)) ^ k(n) ⌧ = filter(n, go-axis(u)) ' ^ ¬has-axis(k(n)) is unsatisfiable
follow-axis(axis, (', u), n) = (distrib(, ⌧)) \ {()}

Figure 8. Auxiliary functions used to typecheck axes

6 2015/5/26

filter((), n) = ()

filter(element ⇤ {⌧}, n) = element ⇤ {⌧}
filter(element n {⌧}, ⇤) = element n {⌧}

filter(element σ {⌧}, σ) = element σ {⌧}

filter(element σ {⌧}, σ

0
) = () if σ 6= σ

0

filter(⌧1 | ⌧2, n) = filter(⌧1, n) | filter(⌧2, n)

filter((⌧1, ⌧2), n) = filter(⌧1, n), filter(⌧2, n)

filter(⌧⇤, n) = filter(⌧, n)⇤

children(element n {⌧}) = ⌧

children(u1 | u2) = children(u1) | children(u2)

children(⌧1, ⌧2) = children(⌧1), children(⌧2)

children(⌧⇤) = children(⌧)⇤
The descendant-or-self function dos first computes the set of all
unit types which may appear as descendants of the original type;
this (finite) set is then converted into a regular type by putting all
these unit types in a big disjunction, to which a Kleene star is added.
Formally :

setdos(element n {⌧}) = {element n {⌧}} [setdos(⌧)

setdos(()) = ;
setdos(⌧1 | ⌧2) = setdos(⌧1) [setdos(⌧2)

setdos(⌧1, ⌧2) = setdos(⌧1) [setdos(⌧2)

setdos(⌧⇤) = setdos(⌧)

dos(⌧) = (u1 | · · · | un) ⇤ where {u1, . . . , un} = setdos(⌧)

As remarked by Colazzo and Sartiani [15], for non-recursive types
a more precise definition of dos can be given:

dos(()) = ()

dos(element n {⌧}) = element n {⌧}, dos(⌧)

dos(⌧1 | ⌧2) = dos(⌧1) | dos(⌧2)
dos(⌧1, ⌧2) = dos(⌧1), dos(⌧2)

dos(⌧⇤) = dos(⌧)⇤
This is what we implemented in our prototype: when dos needs to
be called, the definition used is decided depending whether the type
is recursive.

Figure 9. Auxiliary functions of the XQuery standard type system

is a subtype of a classical type ⌧ . We define the subtyping relation
semantically as ⇢ <: ⌧ if J⇢K ✓ J⌧K". In order to decide this
relation, we first need to compare unit types.

For this, we rely on the function form(u), which translates a
classical unit type into a downward-only formula which is true at
any tree node matching this unit type, regardless of its context. This
function is formally defined on Fig. 10.

The definition uses an auxiliary operation L⌧MV' which translates
a regular expression ⌧ of unit types into a single formula. This
operation additionally updates a pair V of mappings used for
downward recursion. The formula represents the set of focused
trees such that there is a sequence of siblings starting at the current
node which matches ⌧ and ends with a node satisfying '. This
parameter ' allows us to write a recursive definition in the case of
concatenation: when translating ⌧1, ⌧2, the regular expression ⌧2 is
translated first and the result is used to build a formula that the last

node in the sequence matching ⌧1 will have to satisfy. The predicate
nullable(⌧) is used for checking whether ✏ 2 J⌧K.

The treatment of recursion in this translation needs specific
care. Indeed, in classical types the same type reference may occur
in different sequences, but because the translation of types into
formulas integrates the tail of the sequence, this reference will not
correspond to the same formula each time. It is therefore not possible
to simply translate type references into fixpoint variables. However,
just expanding references every time they are encountered would
not terminate: we still need to introduce recursion in the translation.
Since recursion in the original type must be guarded by element
constructors, what we do is to translate unit types with fixpoint
variables: the translation operation updates a pair V = (U, V) where
U is a mapping from unit types to variables and V a mapping from
variables to formulas. Whenever a unit type u = element n {⌧}

which is not already in U is encountered, a fresh variable X is
created and associated with u in U . The content model type ⌧ is
then translated using this updated U and the result of the translation
is associated to X in V . At the end of the whole translation, a
fixpoint formula is generated from all the bindings in V and the
result formula.

The environment E and the substitution of references x with
their bindings are left implicit in the definition. The number of such
substitutions which needs to be done during the translation is finite
since:

• the guardedness constraint on recursion in E implies that any
sequence type reduces after a finite number of such substitutions
to a type without references at toplevel;

• the translation never looks into the same unit type twice, so
references in its content need only be expanded once.

LEMMA 1 (Translation correctness). Let u be a unit type. Then
Jform(u)K = JuK".

Proof. Immediately follows from the correctness of the translation
from unranked regular expression types into binary form (proved in
Appendix A of [24]), and a straightforward translation of the latter
into logical formulas, as first introduced in [21]. ⇤

This translation allows us to compare a formula ' and a unit type
u by testing the satisfiability of the formula ' ^ ¬form(u); indeed,
hh' ^ ¬form(u)ii = ; if and only if any focused tree satisfying '
matches u. Furthermore, it allows us to convert a regular expression
⇢ of pairs (', u) into a regular expression R of only formulas
(replacing (', u) with ' ^ form(u)). Our problem is then just to
decide inclusion between a regular expression of formulas and a
regular expression of unit types. For this, we need to write them as
regular expressions on a common alphabet, which will allow us to
use a standard inclusion check.

Because we are interested in an inclusion check where the
formula-based type is on the left, we take as alphabet the set of
unit types appearing in the right-hand type plus a single symbol
representing everything else.

DEFINITION 4. Let ! be a constant which is not a unit type.
Let ⌧ be a regular expression of unit types. Let U(⌧) be the set of

unit types appearing at toplevel in ⌧ . We assume that all unit types in
U(⌧) are mutually exclusive5: 8(u1, u2) 2 U(⌧)

2
, Ju1K\Ju2K = ;.

We define the alphabet of ⌧ as follows: ⌃(⌧) = U(⌧) [{!}.

For a given ⌧ , we extend the function form() to ! as follows:
form(!) =

V
u2U(⌧) ¬form(u). This gives us a function from

⌃(⌧) to formulas such that the sets hhform(↵)ii form a partition of
F when ↵ ranges over ⌃(⌧).

5 as required of types declared by the user: see Sec. 3.1.

7 2015/5/26

LuM(;,;)> = (, (U, V))

form(u) = µ(X = V (X))X2dom(V) in

L⌧1MV' = (1,V1) L⌧2MV1
' = (2,V2)

L⌧1 | ⌧2MV' = (1 _ 2,V2)

X is fresh L⌧MV'_h2iX = (,V 0
)

L⌧⇤MV' = (µX. ,V 0
)

L()MV' = (?,V)

L⌧2MV' = (,V 0
) '

0
=

(
' _ h2i if nullable(⌧2)
h2i otherwise

L⌧1MV0
'0 = (

0
,V 00

)

00
=

(
 _ 0 if nullable(⌧1)

0 otherwise

L⌧1, ⌧2MV' = (

00
,V 00

)

u /2 dom(U) X is fresh u = element n {⌧}

L⌧M(U+{u7!X},V)
¬h2i> = (, (U

0
, V

0
)) δ(⌧,) =

(
¬ h1i> _ h1i if nullable(⌧)
h1i otherwise

LuM(U,V)
' = (X ^ ', (U 0

, V

0
+ {X 7! k(n) ^ δ(⌧,)}))

U(u) = X

LuM(U,V)
' = (X ^ ', (U, V))

Figure 10. Translation of a unit type into a formula

Given a regular expression r on the alphabet ⌃(⌧), we define
its interpretation in terms of set of values as JrK⌧ = JRK, where R

is obtained by replacing all ↵ in r by form(↵). Lemma 1 means
that if r does not contain !, this interpretation coincides with its
interpretation as a type, i.e. we have JrK" = JrK⌧ .

In order to decide R <: ⌧ , we translate R into a regular
expression on ⌃(⌧). There is no reason why the denotation of a
formula in R should be included in a single unit type from ⌃(⌧);
rather, it may have a nonempty intersection with several of them.
Thus a formula will in general be translated by a choice expression.
We use the following notation: if r1 . . . rn are regular expressions,
we write

S
i2{1...n}

ri for the regular expression (r1 | r2 | · · · | rn).

DEFINITION 5. Let ⌧ be a regular expression of unit types. For any
formula ', we define:
⌃⌧ (') = {↵ 2 ⌃(⌧) | hh' ^ form(↵)ii 6= ;}.

The regular expression on ⌃(⌧) corresponding to a formula
' is defined by reg⌧ (') =

S
↵2⌃⌧ (') ↵. This transformation is

extended to regular expressions of formulas R in the obvious way.

The expression reg⌧ (R) is an over-approximation of R, however it
is precise enough that we can replace R by reg⌧ (R) for the specific
purpose of comparing it to ⌧ :

LEMMA 2. Let R and ⌧ be a focused-tree type and a classical type
respectively. Then R <: ⌧ if and only if Jreg⌧ (R)K⌧ ✓ J⌧K⌧ .

Proof. For the right-to-left implication, we first notice that for
any ' we have hh'ii ✓

S
↵2⌃⌧ (')hhform(↵)ii. Indeed, we haveS

↵2⌃(⌧)hhform(↵)ii = F and ⌃⌧ (') is obtained from ⌃(⌧) by
removing all ↵ such that hh'ii \ hhform(↵)ii is empty: hh'ii must be
included in the union of the remaining ones. By a straightforward
induction, this yields JRK ✓ Jreg⌧ (R)K⌧ , which allows us to
conclude: Jreg⌧ (R)K⌧ ✓ J⌧K⌧ implies JRK ✓ J⌧K⌧ .

For the left-to-right implication, we suppose R <: ⌧ , i.e.
JRK ✓ J⌧K". As remarked above, this is equivalent to JRK ✓ J⌧K⌧
because ⌧ does not contain !. What we need to prove is that
any word on ⌃(⌧) which matches reg⌧ (R) also matches ⌧ (then
Jreg⌧ (R)K⌧ ✓ J⌧K⌧ is immediate by definition of J·K⌧). So let
↵1 . . . ↵n be a word on ⌃(⌧) which matches reg⌧ (R). From the
way reg⌧ (R) is constructed, we can deduce that there exists a word
'1 . . . 'n of formulas which matches the regular expression R and
is such that ↵i 2 ⌃⌧ ('i) for all i. For all i, since ↵i 2 ⌃⌧ ('i),
there exists a focused tree fi 2 hh'i ^ form(↵i)ii, by definition of
⌃⌧ ('i). We have [f1 . . . fn] 2 JRK, and since JRK ✓ J⌧K⌧ , there
must exist a word β1 . . . βn on ⌃(⌧) which matches ⌧ and verifies
fi 2 hhform(βi)ii for all i. But since the hhform(↵)ii are pairwise
disjoint and we already have fi 2 hhform(↵i)ii, the only possibility
is βi = ↵i. Hence ↵1 . . . ↵n matches ⌧ . ⇤

This result yields the following procedure to decide a relation
R <: ⌧ :

1. Compute ⌃(⌧).

2. For all ' in R, compute ⌃⌧ (') using a logical solver.

3. Compute reg⌧ (R).

4. Test regexp inclusion between reg⌧ (R) and ⌧ .

3.5 Complexity of the Type System

Let |R| be the number of formulas in R and |⌧ | the number of unit
types in ⌧ . In terms of complexity, the most expensive step is step
2; all the others are polynomial with respect to |R| + |⌧ | (due, in
the case of step 4, to the fact that ⌧ is 1-unambiguous; note that the
size of reg⌧ (R) is at worst |R| ⇥ |⌧ |). Step 2 involves a polynomial
(|R| ⇥ (|⌧ | + 1)) number of exponential-time satisfiability tests.
The exponent is linear with respect to the size of the formula tested,
which is at worst one ' in R plus all form(u) for u in ⌧ . form(u)

has the same size as the classical binary representation of the regular
tree type u defined in [24]. Thus the cost is simple-exponential
overall.

Notice that this is a worst-case complexity. Our approach is
specifically designed to issue many calls to the exponential-time
logical solver but with logical formulas of small size. Therefore,
in practice the execution time is much less than if we had a
single exponential-time test in terms of the whole problem instance
size. This “divide and conquer” principle is further illustrated and
quantified with concrete examples in Section 4.

3.6 Soundness of the Type System

In this section, we prove the soundness of our type system. Classi-
cally, it relies on a subject-reduction lemma.

The type system we described up to here is for top-level expres-
sions only. Runtime expressions can in addition be focused-tree or
sequence literals. In order to state our lemma, we add the following
four rules:
T-ITEM

f 2 J(', u)K
E; Γ ` f : (', u)

T-VALSEQ
s 2 J⇢K

E; Γ ` s : ⇢

T-SUB
E; Γ ` e : ⇢ J⇢K ✓ J⇢0K

E; Γ ` e : ⇢

0

T-VALAXIS
f 2 J(', u)K

E; Γ ` f/axis::n : follow-axis(axis, (', u), n)

As opposed to the others, these rules do not give a way to infer
the type from the environment and the expression, but they will be
used only in the proofs since these expressions cannot appear in
programs.

Our type system thus enriched enjoys the following properties.

8 2015/5/26

LEMMA 3 (Substitution). Let e be an expression containing a se-
quence variable $v, and suppose E; Γ, $v : ⇢1 ` e : ⇢2. Let
s 2 J⇢1K. Then E; Γ ` e [s/$v] : ⇢2.

Similarly, let e be an expression containing an item variable $v,
and suppose E; Γ, $v : (', u) ` e : ⇢. Let f 2 J(', u)K. Then
E; Γ ` e

⇥
f
/$v

⇤
: ⇢.

Proof. In the case of the sequence variable, the typing derivation
for e directly yields a typing derivation for e [s/$v] by replacing all
occurrences of T-SEQVAR with T-VALSEQ. In the case of the item
variable, we prove the result by induction on the typing derivation
for e and distinguish cases depending on the last rule used. For most
rules, the result is immediate from the induction hypothesis. The
exceptions are T-ITEMVAR, which can be directly replaced with
T-ITEM, T-AXIS, which can be directly replaced with T-VALAXIS,
and T-IFAXIS. In this last case, ⇢ is of the form ⇢1 | ⇢2, e is of the
form if non-empty($v/axis::n) then e1 else e2, and we have:

E; Γ, $v : (' ^ has-axis(k(n)), u) ` e1 : ⇢1 (1)
E; Γ, $v : (' ^ ¬has-axis(k(n)), u) ` e2 : ⇢2 (2)

We distinguish two cases:

• if f 2 hhhas-axis(k(n))ii, then f 2 J('^has-axis(k(n)), u)K,
since we already know f 2 J(', u)K. Thus, by induction
hypothesis and (1) we have:

E; Γ ` e1
h
f
/$v

i
: ⇢1 (3)

The formula (' ^ has-axis(k(n))) ^ ¬has-axis(k(n)) is
trivially unsatisfiable, therefore, according to the definitions,
follow-axis(axis, ('^has-axis(k(n)), u), n) is not nullable
(see Fig. 8, last rule: the empty sequence is removed from the
result).
Therefore, from T-VALAXIS and (3) we can derive E; Γ `
if non-empty(f/axis::n) then e1

⇥
f
/$v

⇤
else e2

⇥
f
/$v

⇤
: ⇢1

using T-IFNONEMPTY. This last expression is actually e
⇥
f
/$v

⇤
,

and since J⇢1K ✓ J⇢1 | ⇢2K we can conclude by T-SUB.
• if f /2 hhhas-axis(k(n))ii, then we have:

f 2 J(' ^ ¬has-axis(k(n)), u)K.
Thus, by induction hypothesis and (2) we have:

E; Γ ` e2
h
f
/$v

i
: ⇢2 (4)

We can check that navigate-axis(¬has-axis(k(n)))^k(n) is
always unsatisfiable. We will not detail it, but intuitively, such a
formula says that, starting from the current node which satisfies
k(n) and following the path corresponding to axis, you will
reach a node such that, by following the same path in reverse
from there, you cannot reach a node satisfying k(n). This is
impossible since in our data model you can always go back to
your starting point by following the same path in reverse.
Therefore, the formula navigate-axis(¬has-axis(k(n))^'^
form(u)) ^ k(n) is also unsatisfiable (by an induction on
the definition of navigate, we can see that it implies the
previous formula). This implies that Jfollow-axis(axis, (' ^
¬has-axis(k(n)), u), n)K ✓ J()K. Thus, by T-VALAXIS and
T-SUB we can derive E; Γ ` f/axis::n : (). From there and (4),
we can conclude using T-IFEMPTY and T-SUB.

LEMMA 4 (Subject reduction). Let e be a runtime expression (as
defined in Section 2.3), let E be a well-formed environment defining
all references in e, and suppose we have E; ; ` e : ⇢. Then either:

• e is a value s and s 2 J⇢K, or
• there exists e0 such that e −! e0, and E; ; ` e0 : ⇢.

Proof. The proof is by induction on nested contexts, i.e., for expres-
sions of the form E [e0], we assume the lemma is true for e0 in order
to prove it for E [e0].

If e = E [e0] and e0 is not a value, then we can see that in
all cases (T-TREE, T-SEQ, T-FOR, T-IFANY, T-IFEMPTY, T-
IFNONEMPTY6), the typing judgement for e has a typing judgement
for e0 as one of its premises. Then the induction hypothesis tells us
that e0 reduces (since it is not a value) to an expression e00 satisfying
the same typing judgement, which cannot be ! since ! is not typable.
Thus e reduces by R-CONTEXT to E [e00], and the typing rule which
typed e also types E [e00].

We now treat all cases where either e is not of the form E [e0] or
e0 is a value s.

• if e = f , the only possibility is that the judgement is the result
of T-ITEM, thus ⇢ = (', u) and f 2 J(', u)K. The expression
reduces by R-SINGLETON to [f].

• if e = s, the judgement must be the result of T-VALSEQ; the
first branch of the alternative in the lemma is then immediate.

• if e = <σ>{s}</σ> : x, the judgement must be the result
of T-TREE; thus ⇢ = form(x), x = element n {⌧} where
n matches σ, and E; ; ` s : ⇢ with ⇢ <: ⌧ . By induction
hypothesis, s 2 J⇢K. Since ⇢ <: ⌧ , we also have s 2 J⌧K".
Write s = [(t1, c1) . . . (tn, cn)], and let t = σ[[t1 . . . tn]].
By definition of J⌧K", we have [t1 . . . tn] 2 J⌧K, hence [t] 2
Jelement n {⌧}K = JxK. Therefore e reduces by R-TREE to
s

0
= [(t,Top)]. Since [t] 2 JxK, we have s

0 2 JxK", thus
s

0 2 Jform(x)K; therefore we can conclude E; ; ` s

0
: form(x)

by T-VALSEQ.
• if e = s1, s2, the judgement must be the result of T-SEQ, so
⇢ = ⇢1, ⇢2 with s1 2 J⇢1K and s2 2 J⇢2K. e reduces by R-
CONCAT to a value s which is the concatenation of s1 and s2

and therefore is in J⇢1, ⇢2K. We conclude by T-VALSEQ.
• if e = for $v in s return e2, the judgement must be the result

of T-FOR and we have E; ; ` for $v : ⇢1 return e2 : ⇢ for
some ⇢1 such that s 2 J⇢1K. Then either:

s = ✏, in which case ⇢ = (), e reduces to ✏ by R-
FOREMPTY, and we can conclude by T-VALSEQ;

or s = f :: s

0. We only give a proof sketch in this
case. Since s 2 J⇢1K, there exist (', u) and ⇢01 such that
f 2 J(', u)K, s0 2 J⇢01K, and J(', u), ⇢01K ✓ J⇢1K (standard
regular expression property). Now from the rules for for
expressions we can deduce that there exist ⇢02 and ⇢002 such
that J⇢02, ⇢002 K ✓ J⇢K and :

E; $v : (', u) ` e2 : ⇢

0
2 (1)

and E; ; ` for $v : ⇢

0
1 return e2 : ⇢

00
2 . (2)

e reduces to: e0 = e2
⇥
f
/$v

⇤
, for $v in s

0
return e2 (by

R-FOR). From the substitution lemma and (1) we deduce:

E; ; ` e2
h
f
/$v

i
: ⇢

0
2 (3)

and we conclude:

(3)

s

0 2 J⇢01K
(T-VALSEQ)

E; ; ` s

0
: ⇢

0
1 (2)

(T-FOR)
E; ; ` for $v in s

0
return e2 : ⇢

00
2 (T-SEQ)

E; ; ` e0 : ⇢02, ⇢
00
2(T-SUB)

E; ; ` e0 : ⇢

6 It cannot be T-IFAXIS because that would require $v/axis::n to be typable
with an empty Γ.

9 2015/5/26

• if e = if non-empty(s) then e1 else e2, the judgement must
be the result of T-IFANY, T-IFEMPTY or T-IFNONEMPTY. In
the case of T-IFANY, the expression reduces to either e1 and
e2, and both ⇢1 and ⇢2 are such that J⇢iK ✓ J⇢1 | ⇢2K, so
we can conclude by T-SUB. In the case of T-IFEMPTY and
T-IFNONEMPTY, the result is straightforward.

• if e = f/axis::n, the judgement must be the result of T-
VALAXIS and T-AXIS. The result is mostly straightforward
by a case analysis on the reduction rule which applies; as there
are 16 cases, we leave this as an exercise for the reader.

• e = $v, e = $v/axis::n or e = $v are impossible since they can
only be typed with a non-empty Γ.

We can now prove our main soundness theorem.

THEOREM 1 (Soundness). Let e be an expression and let E be
a well-formed environment comprising definitions for all type
references x appearing in e.

If there exists ⇢ such that E; ; ` e : ⇢, then there is a finite
reduction sequence e [s1...sn/$v1...$vn] −! · · · −! s and we have
s 2 J⇢K.

Proof. The fact that the derivations are finite is actually independent
of typing: it is a property of the fragment of XQuery we consider.
We can see that rule R-FOR always consumes one element of
the sequence, which is finite, and that all navigation steps in a
given direction (either ‘backward’, involving only h2i and h1i, of
‘forward’, involving only h1i and h2i) reduce to navigation steps
which go in the same direction from a node that is strictly further
in that direction. It has to end eventually because focused trees are
finite and acyclic. The other cases either yield a value or yield an
expression smaller than the initial one.

Then the fact that the final result of the reduction sequence
matches the expected type is just a straightforward consequence of
the substitution lemma (for the initial parameter replacement) and
of subject reduction. ⇤

3.7 Extensions to the Core

The XQuery navigational core we defined our type system on is
quite small; we can ask how it would scale to a larger fragment of
the language. In particular, it would be interesting to add function
declaration and application, which raises the question of type
annotations. Function declarations in XQuery are, indeed, type-
annotated, but the annotations are classical XQuery types. These
can be straightforwardly added to our system; however, to fully
benefit from our improvements in precision, it would be more
interesting to specify formula-enriched input and output types for
the functions; this requires a user-friendly syntax in which to write
the annotations, such as Schematron [27] and RelaxNG [13], which
our type language represents an ideal compilation target for.

4. Experimental Results

To evaluate the gain in typing precision and the feasibility of our
approach in practice, we implemented a type-checker prototype.
Our implementation, written in Scala, relies on two external third-
party implementations to which it delegates computations when
performing subtype checks:

1. the Haskell implementation of the syntax-directed algorithm for
inclusion of (word) regular expressions described in [25];

2. and the Java implementation of the logical satisfiability-testing
solver described in [22].

To illustrate the gain in typing precision, we compared our
prototype to implementations of existing techniques. Among the

numerous XQuery implementations available [37], only very few
actually implement XQuery static typing features. We retained the
following:

1. Galax [35]: an open-source implementation, by two authors of
the XQuery recommendation;

2. XQuantum [14]: a commercial implementation, freely available
for one month.

We extensively tested our prototype against those implementa-
tions, and we report below on a few examples. These examples are
kept very simple for the sake of brevity, and for giving an intuition
on how frequent are code patterns for which we can expect a gain in
precision using our approach.

Our prototype takes four parameters as input: an XQuery expres-
sion (such as the one of Listing 1), input and output types, given
under the form of e.g. DTDs, and the name of some element to be
considered as root in the input type.

l e t $v := / s e l f : : ⇤ return

<body> {

i f ($v / descendant : : t ab l e) then

<div> I npu t conta ins a t ab l e .< /div>

else

for $ i in $v / body return

for $ j in $ i / ⇤ return $ j

}< /body>

Listing 1. Sample XQuery with Conditional Statement.

The simple XQuery expression shown in Listing 1 is meant to
be applied to some input web page, valid with respect to some type
such as the one illustrated on Listing 2 (intentionally simplified here
for presentation purposes). One might check that any tree generated
by the code snippet of Listing 1 is indeed valid with respect to an
output type such as the one of Listing 3 that defines an even simpler
content model for the body element. This is because the expression
of Listing 1 either generates a div element or copies the contents of
the body in the absence of table elements.

< !ELEMENT html (head? ,body) >

< !ELEMENT body ((d i v | t ab l e) +)>

Listing 2. An Excerpt from Input Type (DTD notation).

< !ELEMENT body ((d i v) +)>

Listing 3. An Excerpt from Output Type (DTD notation).

Such a static type check fails with the XQuantum and Galax
implementations that both report false alarms7. Our prototype
succeeds in type-checking the conditional statement of Listing 1,
notably because the negation of the condition is propagated for
typing the “else” clause. This kind of propagation is typically
made possible by the use of recursive logical formulas in our type
language. Our prototype type-checked this example in a total time
of 158 ms, including 2 external calls for checking regular expression

7 XQuantum fails with:
“type error: cannot promote element(div, text()) |
(element(div, xs:string) | element(table, Tr+))+ to
element(div, xs:string)+”
and Galax fails for a very similar example with:
“Expecting type: element div* but expression has type:
(element div | element table)*”.

10 2015/5/26

inclusion, and 6 calls to the logical solver for a total solver time of
82 ms.

Our approach brings increased typing precision in any situation
where the XQuery expression uses a backward axis (e.g. parent,
ancestor, preceding, etc.) or an horizontal axis (e.g. a navigation
to any preceding or following sibling). In practice, a key-value store
constitutes a very common situation in which horizontal navigation
is essential for accessing the value of a given key (or reciprocally
a key from a given value). For example, the code of Listing 4
is intended to be used with documents valid with respect to the
official Apple DTD that defines 11 elements8 for representing nested
property lists in general, such as ITunes audio libraries in particular.
For a given music library, the code generates a list of referenced
files with the corresponding track number. This list is expected to
be valid with respect to the same DTD.

l e t $r := / s e l f : : ⇤ return

<dict> {

for $ i in $r / descendant : : d i c t return

for $ j in $ i / key [t e x t () =" Locat ion "] return

l e t $v := $ j / f o l l o w i n g−s i b l i n g : : ⇤ [1] return

l e t $p := $ j / parent : : ⇤ return

($p / preced ing−s ib l ing : : ⇤ [1] , $v)

}< /dict>

Listing 4. Sample XQuery with Sibling Navigation.

The XQuantum implementation does not parse the code of List-
ing 4 because it does not support horizontal/backward axes. The
Galax implementation parses the code but is not capable of inferring
any precise type information for those axes. Interestingly, the static
type-checking of Listing 4 by Galax fails with the error “element
dict but expression has type: element dict of type

xs:untyped” unless we surround the constructed element “dict”
(line 2) with a validate{·} function call. However, in that case
only a dynamic type check (validation) is performed at runtime,
but no static type check is done9. In contrast, the purpose of our
tool is to perform this check at compile-time (once for all) so that
validation of the output can be avoided at runtime. Our tool succeeds
in static type-checking the code of Listing 4 in a total time of 465
ms, including 2 calls for regular expression inclusion and 380 ms
spent in a total of 27 calls to the logical solver.

The pattern “following-sibling::*[1]”, widely found in prac-
tice, simply corresponds to “h2i>” in logic.

The purpose of our prototype implementation is also to give
insights on practical costs with current commodity hardware. All
reported evaluations were performed on an Intel Core i7 with 16GB
of RAM running OS X 10.9.4. Consider the example of Listing 5
for which our approach also provides a gain in typing precision,
and whose size is quite representative of a real XQuery function
body size. Our prototype succeeds in analysing the code snippet of
Listing 5 in the presence of input and output types (with 12 and 10
different element names, respectively) in a total time of 1970 ms,
including 13 checks for regular expression inclusion and 1769 ms
spent in a total of 42 solver calls.

Notice that the total time spent in the satisfiability-testing solver
calls accounts for 90% of the total type-checking time. Our prototype
type-checks XQuery expressions of similar or slightly larger size,
in the presence of types of small to moderate size in a few seconds
(same order of magnitude). The important observation is that the
proportion of the time spent in solver calls stays roughly in the 88%
to 96% range of the total analysis time. This confirms in practical

8 http://www.apple.com/DTDs/PropertyList-1.0.dtd
9 This can easily be observed by e.g. generating an element which is not a
member of the output type.

l e t $par ts :=

for $ i in / ⇤ return

i f ($ i / descendant : : pa r t) then

for $par t in $ i / descendant : : pa r t return

<part> {

$par t / t i t l e ,

$ i / descendant : : author ,

$par t / chapter

}< /part>

else

<part> {

for $ j in $ i / head return $ j / ⇤ ,

for $ j in $ i / body return $ j / chapter

}< /part>

return

l e t $bookcontents :=

i f (count ($par ts) =1) then

(for $ i in $par ts return $ i / chapter)

else $par ts

return

<book> {

<title /> ,

(for $ i in $par ts return $ i / author) ,

$bookcontents

}< /book>

Listing 5. Sample XQuery Function Body.

terms what we know from theory: the dominant cost in the analysis
is the time spent in the logical solver.

5. Related Work

Static typing for XQuery has been standardized by the W3C [17].
The type-system proposed by the W3C has been inspired by the
seminal work from Hosoya and Pierce [23], which is itself based
on finite tree automata containment [24]. The current W3C type-
system [17] has a polynomial-time complexity (except for nested let
clauses, as noticed by Colazzo and Sartiani [15]). A more precise
typing of for loops than what made it into the standard had been
studied by Fernández et al. [19], at a time when XQuery was not yet
a standard but still a proposal in early form [18]. Colazzo et al. [16]
also separately introduced a very similar type system. Both type
systems are more precise than the one of the W3C while having
an exponential-time complexity. Colazzo and Sartiani [15] provide
an analysis that illustrates in which cases these type systems differ
in terms of precision and complexity. None of these type systems
supports non-downward navigation in XML trees, despite it being
an essential part of the XQuery standard, since the very beginning.
This issue, that our proposal addresses, was clearly reported 14
years ago by Fankhauser et al. [18]. Nevertheless, to the best of our
knowledge, this problem has only been indirectly considered so far,
as we review below, with the exception of Castagna et al. [10].

Benedikt and Cheney [1] introduce a type system for the W3C’s
XQuery Update Facility language [11], in which the existence of a
sound type-checker for XPath backward axes is assumed. In follow-
up works, backward axes are either absent (as in e.g. Cheney and
Urban [12]) or they are dealt with using earlier work on XPath
static analysis [21] (as in e.g. Benedikt and Cheney [2]). The
work by Genevès et al. [21] provides an algorithm to decide query
containment for a fragment of XPath with backward axes. The query
containment problem consists in statically checking whether the
set of nodes returned by one XPath query are always contained in
the set returned by another query, for any tree. This work also
uses the logic language for XML trees which we described in
Sec. 3.2.1 and the associated satisfiability solver. However, this paper
is limited to XPath and does not consider XQuery. In comparison,

11 2015/5/26

we consider a core fragment of XQuery which supports not only
XPath but also control flow operators, and, most importantly, the
element construction. The element construction, unlike what it might
seem at first sight, is far from trivial, as we discuss in Section 3.3.
Furthermore, a fundamental difference with Genevès et al. [21]
is that the values we consider are sequences of nodes (instead of
sets of nodes). Our sequences of nodes may come from different
trees. Nodes have a position in the sequence (used for element
construction) and also retain their original tree context independently
(used for navigation). None of these aspects, which are essential
for XQuery, were considered or discussed in this previous work.
Finally, our type system is based on regular expressions of formulas,
rather than single formulas. The present proposal is a novel approach
which allows us to deal with both the sequence and context aspects,
which, to the best of our knowledge, no other system does.

Calcagno et al. [8] introduced context logic, a generalisation
of separation logic, for reasoning about both (unordered XML)
data and contexts. This reasoning is extended by Gardner et al.
[20] to ordered XML and while-programs over atomic tree updates,
modeled after the DOM tree update library [36]. These works do not
consider high-level language constructs similar to the ones found
in XQuery. They seem however promising for reasoning about low-
level DOM updates, e.g. in JavaScript programs. The non-trivial
connection between context logic and modal logic is explored by
Calcagno et al. [9].

The XML type-checking problem has also been studied for other
domain-specific languages such as CDuce [4], XSLT [28] or with
specific transformers like transducers [30–32]. For a recent survey
on type-checking for XML, see Benzaken et al. [5] and references
thereof.

The language fragment we decided to study formally is inspired
by what can be found in the literature. Other formally-studied
fragments include XQ (‘core XQuery’) [29], recently extended into
XQH by Benedikt and Vu [3] who added higher-order functions, and
µXQ (‘micro XQuery’) [16], extended into µXQ

+ (‘mini XQuery’)
by Colazzo and Sartiani [15]. The papers defining XQ and XQH

focus on the semantics of the language and the complexity of
query evaluation. The papers defining µXQ and µXQ

+ focus on
typing and correctness. None of these fragments includes axes other
than child and desc. This allows XQ and XQH to have a formal
semantics where items are simply trees without the need for a store,
because it is not possible in these fragments to go from a node to
its parent or siblings. Our XQuery fragment is basically XQ/µXQ+

with the upward and sideways axes added.
Very recently, Castagna et al. [10] have defined a larger fragment

with backward axes, that they translate into an extension of the
CDuce language, which they study. However, neither the precision
nor the computational complexity obtained for typing XQuery are
studied. No implementation is reported.

6. Conclusion

The work presented in this paper is a type-checking system for
XQuery, that takes all navigation expressions properly into account.
This solves an open issue reported 14 years ago [18], and improves
the type-system that finally made it into the standard [17].

Our contribution is fourfold. First, we defined a novel focused-
tree-based operational semantics for a fragment of the XQuery
language; this fragment was kept small here to concentrate on the
core issues but can be easily extended. Second, we formulated the
difficulty of typing XQuery expressions with backward axes in terms
of a discrepancy between the language’s semantics and type algebra,
and demonstrated that this difficulty cannot be overcome without
changing, at least locally, one of the two. Third, we proposed a
logic-based type language to represent the missing information
and showed how to combine it with the existing one. Fourth,

we proposed a sound type-system which offers a net increase in
precision.

References

[1] M. Benedikt and J. Cheney. Semantics, types and effects for
XML updates. In DBPL’09, pages 1–17, 2009. doi: 10.1007/
978-3-642-03793-1_1.

[2] M. Benedikt and J. Cheney. Destabilizers and independence of XML
updates. Proc. VLDB Endow., 3(1-2):906–917, Sept. 2010. doi:
10.14778/1920841.1920956.

[3] M. Benedikt and H. Vu. Higher-order functions and structured
datatypes. In WebDB’12, pages 43–48, 2012. URL http://db.disi.
unitn.eu/pages/WebDB2012/papers/p13.pdf.

[4] V. Benzaken, G. Castagna, and A. Frisch. CDuce: an XML-centric
general-purpose language. In ICFP’03, pages 51–63, 2003. doi:
10.1145/944705.944711.

[5] V. Benzaken, G. Castagna, H. Hosoya, B. C. Pierce, and S. Vansum-
meren. XML typechecking. In Encyclopedia of Database Systems,
pages 3646–3650. Springer, 2009.

[6] S. Boag, D. Chamberlin, M. Fernández, D. Florescu, J. Robie, and
J. Siméon. XQuery 1.0: An XML Query Language (2nd ed.). W3C
Recommendation, 2010. http://www.w3.org/TR/xquery/.

[7] A. Brüggemann-Klein and D. Wood. One-unambiguous regular
languages. Information and Computation, 140(2):229 – 253, 1998.
doi: 10.1006/inco.1997.2688.

[8] C. Calcagno, P. Gardner, and U. Zarfaty. Context logic and tree
update. In POPL’05, pages 271–282, 2005. doi: 10.1145/1040305.
1040328.

[9] C. Calcagno, P. Gardner, and U. Zarfaty. Context logic as modal
logic: Completeness and parametric inexpressivity. In POPL’07, pages
123–134, 2007. doi: 10.1145/1190216.1190236.

[10] G. Castagna, H. Im, K. Nguy˜ên, and V. Benzaken. A core calculus
for XQuery 3.0. In ESOP ’15, pages 232–256, 2015. doi: 10.1007/
978-3-662-46669-8_10.

[11] D. Chamberlin, D. Florescu, and J. Robie. XQuery Update Facility.
W3C WD, http://www.w3.org/TR/xqupdate/, 2006.

[12] J. Cheney and C. Urban. Mechanizing the metatheory of mini-
XQuery. In CPP’11, pages 280–295, 2011. doi: 10.1007/
978-3-642-25379-9_21.

[13] J. Clark and M. Murata. RELAX NG home page. http://relaxng.
org/, 2014.

[14] I. Cognetic Systems. XQuantum XML database server, 2014. http:
//www.cogneticsystems.com/xquery/xquery.html.

[15] D. Colazzo and C. Sartiani. Precision and complexity of XQuery type
inference. In PPDP’11, pages 89–100, 2011. doi: 10.1145/2003476.
2003490.

[16] D. Colazzo, G. Ghelli, P. Manghi, and C. Sartiani. Types for path
correctness of XML queries. In ICFP’04, pages 126–137, 2004. doi:
10.1145/1016850.1016869.

[17] D. Draper, M. Dyck, P. Fankhauser, M. Fernández, A. Malhotra,
K. Rose, M. Rys, J. Siméon, and P. Wadler. XQuery 1.0 and XPath
2.0 formal semantics, W3C recommendation, December 2010. http:
//www.w3.org/TR/xquery-semantics/.

[18] P. Fankhauser, M. Fernández, A. Malhotra, M. Rys, J. Siméon,
and P. Wadler. The XML query algebra, W3C work-
ing draft, December 2000. http://www.w3.org/TR/2000/
WD-query-algebra-20001204/.

[19] M. F. Fernández, J. Siméon, and P. Wadler. A semi-monad for semi-
structured data. In ICDT’01, pages 263–300, 2001. doi: 10.1007/
3-540-44503-X_18.

[20] P. A. Gardner, G. D. Smith, M. J. Wheelhouse, and U. D. Zarfaty.
Local Hoare reasoning about DOM. In PODS’08, 2008. doi: 10.
1145/1376916.1376953.

12 2015/5/26

[21] P. Genevès, N. Layaïda, and A. Schmitt. Efficient static analysis
of XML paths and types. In PLDI’07, pages 342–351, 2007. doi:
10.1145/1250734.1250773.

[22] P. Genevès, N. Layaïda, A. Schmitt, and N. Gesbert. Efficiently
deciding µ-calculus with converse over finite trees. ACM Transactions
on Computational Logic, 16(2):16:1–16:41, 2015. doi: 10.1145/
2724712.

[23] H. Hosoya and B. C. Pierce. XDuce: A statically typed XML processing
language. ACM Trans. Internet Technol., 3(2):117–148, 2003. doi:
10.1145/767193.767195.

[24] H. Hosoya, J. Vouillon, and B. C. Pierce. Regular expression types
for XML. ACM Trans. Program. Lang. Syst., 27(1):46–90, 2005. doi:
10.1145/1053468.1053470.

[25] D. Hovland. The inclusion problem for regular expressions. Journal
of Computer and System Sciences, 78(6):1795 – 1813, 2012. doi:
10.1016/j.jcss.2011.12.003.

[26] G. P. Huet. The zipper. J. Funct. Program., 7(5):549–554, 1997.
[27] ISO/IEC. Document schema definition language – schematron. http:

//www.schematron.com, 2012.
[28] C. Kirkegaard, A. Møller, and M. I. Schwartzbach. Static analysis

of XML transformations in Java. IEEE Transactions on Software
Engineering, 30(3):181–192, March 2004.

[29] C. Koch. On the complexity of nonrecursive XQuery and functional
query languages on complex values. ACM Trans. Database Syst., 31

(4):1215–1256, Dec. 2006. doi: 10.1145/1189769.1189771.
[30] S. Maneth, A. Berlea, T. Perst, and H. Seidl. XML type checking

with macro tree transducers. In PODS’05, pages 283–294, 2005. doi:
10.1145/1065167.1065203.

[31] S. Maneth, T. Perst, and H. Seidl. Exact XML type checking in
polynomial time. In ICDT’07, pages 254–268, 2007. doi: 10.1007/
11965893_18.

[32] T. Milo, D. Suciu, and V. Vianu. Typechecking for XML transformers.
J. Comput. Syst. Sci., 66(1):66–97, 2003.

[33] J. Robie, D. Chamberlin, M. Dyck, D. Florescu, J. Melton, and
J. Siméon. XQuery update facility 1.0, W3C recommendation, March
2011. http://www.w3.org/TR/xquery-update-10/.

[34] J. Robie, D. Chamberlin, M. Dyck, and J. Snelson. XQuery 3.0:
An XML Query Language. W3C Last Call Working, July 2013.
http://www.w3.org/TR/xquery-30/.

[35] J. Siméon, M. Fernández, et al. Implementation of xquery 1.0, 2008.
http://galax.sourceforge.net/.

[36] W3C. Document object model (DOM), W3C recommendation, 2004.
http://www.w3.org/DOM/.

[37] W3C. Xml query (xquery) implementations, 2014. http://www.w3.
org/XML/Query/#implementations.

[38] P. Wadler. XQuery: A typed functional language for querying XML.
In Advanced Functional Programming, pages 188–212, 2002.

13 2015/5/26

