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Abstract

Reformulation-based query answering is a query proces-
sing technique aiming at answering queries against data, un-
der constraints. It consists of reformulating the query based
on the constraints, so that evaluating the reformulated query
directly against the data (i.e., without considering any more
the constraints) produces the correct answer set.

In this paper, we consider optimizing reformulation-based
query answering in the setting of ontology-based data access,
where SPARQL conjunctive queries are posed against RDF
facts on which constraints expressed by an RDF Schema
hold. The literature provides solutions for various fragments
of RDF, aiming at computing the equivalent union of
maximally-contained  conjunctive queries w.r.t. the
constraints. However, in general, such a union is large, thus
it cannot be efficiently processed by a query engine.

Our contribution is (i) to generalize the query reformu-
lation language so as to investigate a space of reformula-
ted queries (instead of having a single possible choice), and
then (ii) to select the reformulated query with lower esti-
mated evaluation cost. Our experiments show that our tech-
nique enables reformulation-based query answering where
the state-of-the-art approaches are simply unfeasible, while
it may decrease their costs by orders of magnitude in other
cases.
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Résumé

La technique de réponse aux requétes par reformulation
vise a répondre a des requétes sur des données sous
contraintes. Elle consiste de reformuler la requéte en fonc-
tion des contraintes, de sorte que ’évaluation de la requéte
reformulée, directement sur les données (c’est-a-dire en ne
tenant plus compte des contraintes), produit 'ensemble de
réponses correctes.

Dans cet article, nous considérons 1’optimisation de la ré-
ponse aux requétes par reformulation dans le cadre de 1'acces
aux données au travers d’ontologies, ot des requétes conjonc-
tives SPARQL sont posées sur des faits RDF associés a des
contraintes de schéma RDF. La littérature fournit des solu-
tions pour divers fragments de RDF, visant & calculer I'union
équivalente de requétes conjonctives maximalement conte-
nues par rapport aux contraintes. Mais, en général, une telle
union est grande et ne peut étre efficacement traitée par un
moteur de requétes.

Notre contribution est (i) de généraliser le langage de re-
formulation de requétes afin de couvrir un espace de requétes
reformulées équivalentes (au lieu d’avoir une seule reformu-
lation possible), puis (ii) de sélectionner la requéte reformu-
lée avec le cout d’évaluation estimée le plus bas. Nos ex-
périences montrent que notre technique permet la réponse
aux requétes par reformulation ou les approches sur ’état
de l’art sont tout simplement irréalisable, tandis qu’elle peut
diminuer leurs cotits de plusieurs ordres de grandeur dans les
autres cas.

1. INTRODUCTION

The Resource Description Framework (RDF) |1] is a graph-
based data model promoted by the W3C as the standard for
Semantic Web applications. As such, it comes with an on-
tology language, RDF' Schema (RDFS), that can be used to
enhance the description of RDF graphs, i.e., RDF datasets.
The W3C standard for querying RDF is SPARQL Protocol
and RDF Query Language (SPARQL) [2]. The present work
is placed in the setting of efficiently querying RDF graphs
in the presence of an RDFS ontology, which also motivates
our previous work [3]. We borrow from [3] the following in-
troduction to scientific issues arising in this context, before
describing the novel contribution of this work.

Answering SPARQL queries requires to handle the im-
plicit information modeled in RDF graphs, through the es-
sential RDF reasoning mechanism called RDF entailment.
Observe that query answers are defined w.r.t. both explicit
and implicit RDF information in an RDF graph, thus ig-
noring implicit information leads to incomplete answers [2].
There are two trends for answering SPARQL queries, both
of which consists of a reasoning step, either on the graph or
on the query, then followed by a query evaluation step.

Saturation and reformulation. A popular reasoning
method is graph saturation (closure). This consists of pre-
computing (making explicit) and adding to the RDF graph
all implicit information. Answering queries using satura-
tion amounts to evaluating the queries against the saturated
graph. While saturation leads to efficient query processing,
it requires time to be computed, space to be stored, and
must be recomputed upon updates. The alternative reason-
ing step is query reformulation. This consists in turning the
query into a reformulated query, which, evaluated against
the original graph, yields the exact answers to the original
query. Since reformulation is made at query run-time, it
is intrinsically robust to updates; the query reformulation
process in itself is also typically very fast, since it only oper-



ates on the query, not on the data. However, reformulated
queries are often syntactically more complex than the orig-
inal ones, thus their evaluation may be costly.

Reformulation-based query answering has been studied for
the Description Logics (DL) 4] fragment of RDF and the re-
lational conjunctive SPARQL subset [5} (6} |7], and extensions
thereof (8, 19, |10, [11], including the so far most expressive
Database fragment of RDF we introduced in [3]. Most solu-
tions aim at reformulating a query into the equivalent union
of maximally-contained conjunctive queries w.r.t. the RDF
Schema. However, in general, such a union is large thus
cannot be efficiently processed by a query engine. In [3],
we studied saturation-based and reformulation-based query
answering for the database fragment, designed to work on
top of any RDBMS. Our experiments have shown that the
most efficient between saturation and reformulation depends
on the database, the schema, and the frequency of updates
(insertions or deletions) to the data and the schema.

Saturation has been quite well studied by now, and ef-
ficient algorithms exist, including incremental ones, which
derive implicit data based on triples added to or removed
from the data and/or schema, and using as little as possible
the other triples [3| [12]. In contrast, the efficient evalua-
tion of reformulated queries on very large data volumes is
still challenging, due to their size and complexity. Most real
RDF data management systems use saturation-based query
answering; only a few marginally use reformulation-based
query answering (see the related work in Section @)

In this paper, we focus on optimizing reformulation-based
query answering in RDF.

We consider the setting in which SPARQL conjunctive
queries, once reformulated, are handled for evaluation to a
query evaluation engine, which can be: a relational database
management system (RDBMS), a dedicated RDF storage
and query processing engine, or more generally any sys-
tem capable of evaluating selections, projections, joins and
unions, since these are the operations one encounters in re-
formulated queries. As our experiments have shown, the
evaluation of reformulated queries may be very challenging
even for well-established relational or native RDF proces-
sors; this is because reformulated queries may consist of
unions of hundreds or thousands of terms.

Concretely, the present work uses the query reformula-
tion algorithm introduced in [3] for the so-called database
fragment of RDF, the largest such fragment for which query
reformulation has been investigated. However, since (as ex-
plained above) query reformulation leads to large unions
of joins in many other settings, the performance-improving
techniques presented here apply more generally to any of
these settings.

Contributions. The solution we bring to the problem of
efficient evaluation of reformulated queries can be outlined
as follows (see Figure [I)):

1. We generalize the state-of-the-art query reformulation
language, so as to go beyond a single possible refor-
mulated query. This leads to a space of (equivalent)
alternative reformulated queries having different query
processing costs - in some cases much lower, in other
cases much higher than the cost of the plain refor-
mulated query. This space corresponds to the yellow-
background box in Figure [} We characterize the size
of this space and show that it is oftentimes too large

to be completely examined.

2. We define a cost model for the evaluation of our refor-
mulated queries through a relational engine.

3. Based on this cost model, we devise an novel algo-
rithm which selects one alternative reformulated query,
namely ¢***? in Figure which () computes the same
result as the original (plain) reformulated query, and
(#t) reduces significantly the query evaluation cost (or
simply makes it possible when evaluating the plain re-
formulation fails!)

4. We implemented this algorithm and deployed it on
top of the PostgreSQL RDBMS [13|. Extensive ex-
periments with large RDF datasets confirm that our
algorithm () makes possible the evaluation, through
reformulation, of conjunctive queries which previous
state-of-the-art techniques were incapable of handling,
and (i) brings performance improvements of several
orders of magnitude.

5. Finally, we put our efficient reformulation-based query
answering technique in perspective by comparing them
against saturation-based query answering, both based
on PostgreSQL and through the dedicated Semantic
Web data management platform Virtuoso. Our ex-
periments show that our technique is, overall, getting
closer to the performance of saturation-based query
answering.

The work is organized as follows. Section [2] introduces
RDF, basic graph pattern queries, query reformulation and
illustrates the performance issues raised by the evaluation
of reformulated queries. Section |3| characterizes our solu-
tion search space and formalizes our problem statement. In
Section[d] we present our cost model and introduce our algo-
rithm, which we evaluate through experiments in Section
We discuss related work in Section [B] then we conclude.

2. PRELIMINARIES

In Section [2.1] we introduce RDF graphs, modeling RDF
datasets. Section [2.2] presents the SPARQL conjunctive
queries, a.k.a. Basic Graph Pattern queries. Finally, Sec-
tion[2-3|recalls the reformulation-based query answering tech-
nique to optimize.

2.1 RDF Graphs

An RDF graph (or graph, in short) is a set of triples of the
form s p o. A triple states that its subject s has the prop-
erty p, and the value of that property is the object o. We
consider only well-formed RDF triples, as per the RDF spec-
ification [1], using uniform resource identifiers (URIs), typed
or un-typed literals (constants) and blank nodes (unknown
URISs or literals).

Blank nodes are essential features of RDF allowing to
support unknown URI/literal tokens. These are conceptu-
ally similar to the variables used in incomplete relational
databases based on V-tables |14, [15].

Notations. We use s, p, o and _:b in triples as placeholders.
Literals are shown as strings between quotes, e.g., “string”.
Finally, the set of values — URIs (U), blank nodes (B), lit-
erals (L) — of an RDF graph G is denoted Val(G).

Figure [2| (top) shows how to use triples to describe re-
sources, that is, to express class (unary relation) and prop-
erty (binary relation) assertions. The RDF standard [1] pro-
vides a set of built-in classes and properties, as part of the
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Figure 1: Outline of our approach for efficiently evaluating reformulated RDF queries.
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Figure 2: RDF (top) & RDFS (bottom) statements.

rdf: and rdfs: pre-defined namespaces. We use these names-
paces exactly for these classes and properties, e.g., rdf:type
specifies the class(es) to which a resource belongs.

Example 1 (RDF graph). The RDF graph G below
describes information about a book. The book is identified
by the resource doii, and properties of its outgoing edges
describe information about the author (a blank node _:b1 re-
lated to a literal node for the author name), title and date
of publication.

{doi; rdf:type Book,
doi; writtenBy _:b1,

G = doi; hasTitle “Game of Thrones”,
_:b1 hasName “George R. R. Martin”,
doi; publishedIn “1996” }

RDF Schema. A valuable feature of RDF is RDF Schema

(RDFS) that allows enhancing the descriptions in RDF graphs.

RDFS triples declare semantic constraints between the classes
and the properties used in those graphs.

Figure 2| (bottom) shows the allowed constraints and how
to express them; domain and range denote respectively the
first and second attribute of every property. The RDFS
constraints (Figure [2]) are interpreted under the open-world
assumption (OWA) |14]. For instance, given two relations
R1, Re, the OWA interpretation of the constraint R;1 C
Ry is: any tuple ¢ in the relation Ri is considered as be-
ing also in the relation Rs (the inclusion constraint prop-
agates t to R2). More specifically, when working with the
RDF data model, if the triples hasFriend rdfs:domain Person
and Anne hasFriend Marie hold in the graph, then so does
the triple Anne rdf:type Person. The latter is due to the
rdfs:domain constraint in Figure

RDF entailment. Implicit triples are an important RDF
feature, considered part of the RDF graph even though they
are not explicitly present in it, e.g., Anne rdf:type Person
above. W3C names RDF entailment the mechanism through

|
[ “Game of Thrones” | | ‘George R‘ R. Martin” |

Figure 3: Sample RDF graph.

which, based on a set of explicit triples and some entail-
ment rules, implicit RDF triples are derived. We denote
by Fipr immediate entailment, i.e., the process of deriving
new triples through a single application of an entailment
rule. More generally, a triple s p o is entailed by a graph G,
denoted G Fror s p o, if and only if there is a sequence of
applications of immediate entailment rules that leads from
G to s p o (where at each step of the entailment sequence,
the triples previously entailed are also taken into account).

Example 2 (RDFS constraints). Assume that the
RDF graph G in Ezample |1 is extended with the following
RDFS constraints.

— books are publications:

Book rdfs:subClassOf Publication
— writing something means being an author:
writtenBy rdfs:subPropertyOf hasAuthor
— books are written by people:
writtenBy rdfs:domain Book
writtenBy rdfs:range Person
The resulting graph is depicted in Figure [ Its implicit
triples are those represented by dashed-line edges.

Saturation. The immediate entailment rules allow defin-
ing the finite saturation (a.k.a. closure) of an RDF graph
G, which is the RDF graph G* defined as the fixed-point
obtained by repeatedly applying Fipr rules on G.

The saturation of an RDF graph is unique (up to blank
node renaming), and does not contain implicit triples (they
have all been made explicit by saturation). An obvious con-
nection holds between the triples entailed by a graph G and
its saturation: G Fror s p o if and only if s p 0 € G™.

RDF entailment is part of the RDF standard itself; in
particular, the answers of a query posed on G must take into
account all triples in G°°, since the semantics of an RDF



graph is its saturation.

2.2 BGP Queries

We consider the well-known subset of SPARQL consisting
of (unions of) basic graph pattern (BGP) queries, modeling
the SPARQL conjunctive queries. Subject of several recent
works [3] [16] |17} [18], BGP queries are the most widely used
subset of SPARQL queries in real-world applications [18]. A
BGP is a set of triple patterns, or triples/atom in short. Each
triple has a subject, property and object, some of which can
be variables.

Notation. In the following we use the conjunctive query
notation ¢(Z):- ti1,...,ta, where {t1,...,ta} is a BGP; the
query head variables T are called distinguished variables,
and are a subset of the variables occurring in t1,...,ts; for
boolean queries Z is empty. The head of g is ¢(Z), and the
body of qis t1,...,ta. We use x, y, z etc. to denote variables
in queries. We denote by VarBl(q) the set of variables and
blank nodes occurring in the query gq.

Query evaluation. Given a query g and an RDF graph
G, the evaluation of q against G is:

q(G) = {Z, | p : VarB1(q) — Val(G) is a total assignment
such that t € G,t5 €G,... th € G}

where we denote by t* the result of replacing every occur-
rence of a variable or blank node e € VarB1(g) in the triple
t, by the value u(e) € Val(G).

Note that evaluation treats the blank nodes in a query
exactly as it treats non-distinguished variables |19]. Thus,
in the sequel, without loss of generality, we consider queries
where all blank nodes have been replaced by (new) distinct
non-distinguished variables.

Query answering. The evaluation of g against G uses only
G’s explicit triples, thus may lead to an incomplete answer
set. The (complete) answer set of q against G is obtained by
the evaluation of ¢ against G*°, denoted by ¢(G™).

Example 3 (Query answering). The following query
asks for the names of authors of books somehow connected
to the constant 1996:

q(z3):- 1 hasAuthor z2, 2 hasName x3, z1 x4 “1996”

Its answer against the graph in Figure @ is q(G™) =
{(“George R. R. Martin”)}. The answer results from G Frpr
doi; hasAuthor _:b1 and the assignment p = {z1 < doii,

Zg + b1, z3 + “George R. R. Martin”, x4 + publishedIn}.

Observe that evaluating q directly against G leads to the in-
complete answer q(G) = 0.

2.3 Query answering against RDF databases

The database (DB) fragment of RDF [3] is, to the best
of our knowledge, the most expressive RDF fragment for
which both saturation- and reformulation-based RDF query
answering has been defined and practically experimented.
The fragment is thus named due to the fact that query an-
swering against any graph from this fragment, called an RDF
database, can be easily implemented on top of any RDBMS.
This DB fragment is defined by:

— Restricting RDF entailment to the RDF Schema con-

straints only (Figure, a.k.a. RDFS entailment. Con-
sequently, the DB fragment focuses on the application

domain knowledge only, a.k.a. ontological knowledge,
and not on the RDF meta-model knowledge which
mainly begets high-level typing of subject, property,
object values found in triples with abstract built-in
classes, e.g., rdf:Resource, rdfs:Class, rdf:Property etc.
— Not restricting graphs in any way. In other words, any
triple allowed by the RDF specification is also allowed
in the DB fragment.
We will use db = (8, D) to denote a graph from the DB frag-
ment of RDF, where the schema S contains RDFS constraint
triples and the data D contains RDF assertion triples (Fig-
ure . Observe that S and D form a partition of any RDF
graph, as a triple belongs to exactly one of them.

Saturation-based query answering amounts to precomput-
ing the saturation of a database db using its RDFS con-
straints in a forward-chaining fashion, so that the evalua-
tion of every incoming query g against the saturation yields
the correct answer set [3|: ¢(db™) = g(Saturate(db)). This
technique follows directly from the definitions in Section 2-]]
and and the W3C’s RDF and SPARQL recommenda-
tions.

Reformulation-based query answering, in contrast, leaves
the database db untouched and reformulates every incoming
query ¢ using the RDFS constraints in a backward-chaining
fashion, Reformulate(q,db) = ¢**f, so that the relational
evaluation of this reformulation against the (non-saturated)
database yields the correct answer set [3]: ¢(db™) = ¢"*(db).
The Reformulate algorithm, introduced in [17] and ex-
tended in |3|, exhaustively applies a finite set of 13 refor-
mulation rules. Starting from the incoming BGP query ¢
to answer against db, these rules produce a union of BGP
queries retrieving the correct answer set from the database,
even if the latter is not saturated. As usual, the BGP queries
in this union are those maximally-contained in ¢ w.r.t. the
constraints in db. This process is exemplified below.

Example 4 (Query reformulation). The reformula-
tion of the query q(x,y):- x rdf:type y w.r.t. the database db
(obtained from the RDF graph G from Figure @), asking for
all resources and the classes to which they belong, is:

0) gq(z,y):- = rdf:type y U

q(x, Book):- x rdf:type Book U
x,Book):- x writtenBy z U
x,Book):- « hasAuthor z U

x, Publication):- z rdf:type Publication U
x, Publication):- z rdf:type Book U
z, Publication):- z writtenBy z U
x, Publication):-  hasAuthor z U
(z, Person):- x rdf:type Person U
q(x,Person):- z writtenBy z U

0) g(x,Person):- z hasAuthor z

The disjuncts (1), (4) and (8) result from (0) by instan-
tiating the variable y with classes from db, namely {Book,
Publication, Person}. Item (5) results from (4) by using the
subclass constraint between books and publications. (2), (6)
and (9) result from their direct predecessors in the list, by
making use of the domain and range constraints. Finally,
(3), (7) and (10) result from their direct predecessors in the
list by applying the information given by the sub-property
constraint in the database.

FEvaluating this reformulation against db returns the same
answer as q(G*°), i.e., the answer set of q.

q
q
q
q
q
q
q

(
(
(
(
(
(
(
(



3. PROBLEM STATEMENT

This work focuses on identifying techniques for efficient
reformulation-based query answering. We first introduce the
performance issues raised by the evaluation of state-of-the-
art reformulated queries using the following motivating ex-
amples. We then formalize the query optimization problem
we address.

Motivating Example 1. Consider the siz atoms query
q1 shown below, corresponding to Query 9 of the LUBM
benchmark @/ This query asks for tuples made of a stu-
dent, a professor and a course, such that this student takes
this course of this advising professor.

qi1(z,y, 2) ;- x rdf:type ub:Student, (1
y rdf:type ub:Faculty, (2
z rdf:type ub:Course 3
z ub:advisor vy, (4
y ub:teacherOf z, (5
z ub:itakesCourse z (6

The next table gives some intuitions about the difficulty of
answering q1 over a 100-million triples LUBM dataset:

The performance improvement of qi’ over ¢ is due to the
intelligent grouping of the atoms t1 and ts4 together, and sim-
tlarly to the grouping of ts with ts. Such groups of atoms help
reduce the cardinality of the respective reformulated queries.
Thus, (t1,t4)"% has 1,107, 545 answers, while (t3,t5)" has
1,510,695 answers. A comparison with the cardinalities of
(1), (t3)™¢, (ta)™ and (t5)"¢f, shown in the table at
the beginning of our example, helps see the reduction in the
number of tuples to be joined.

Motivating Example 2. Consider now the four atoms
query q2 (labeled Qo4 in Section@ asking for resources, their
type, and organizations they are members of, such that the
resource holds a doctoral degree from a university.

q2(z,y,2) - z rdf:type y, 1
u rdf:type ub:University, (2
x ub:doctoral DegreeFrom u, (3
x ubmemberOf z (4

NS AN

We detail again the query atom information, when evalu-
ated over a LUBM dataset of 100 million triples:

Triple #answers | #reformulations | #answers after
reformulation Triple #answers | #reformulations | #answers after
1) 0 D) 5,537,082 reformulation
(2) 0 13 4,884,254 (1) 18,999, 082 188 33,328,108
(3) 755, 582 5 3,412,304 (2) 2,928, 828 6 6,201,632
(4) 2,870,164 1 2,870,164 (3) 503, 395 1 503, 395
(5) 1,510,695 1 1,510,695 (4) 7,299,701 3 7,817,083

(6) 20,139,138 1 20,139,138

The saturation-based approach needs to evaluate the join
of the sixz atoms corresponding to relations whose sizes range
from a 1.5 million to a 20 million triples. The evaluation of
q1, delegated to a standard RDBMS installation (described
n Section@ where qu is labeled Qos) takes 56 seconds.

In contrast, reformulation-based query answering needs to
evaluate a reformulated query qy, which is a union of 130
congunctive queries, each of which consists of six atoms (one
for the reformulation of each atom in the original q1). Ob-
serve that in q}, many sub-expressions are repeated; for in-
stance, the three-way join over the single atoms resulting
from the reformulation of atoms 4, 5 and 6 will appear in all
of the 130 queries. Evaluating qy on the LUBM 100 million
triples dataset takes more than 178 seconds, in the same
experimental setting.

Alternatively, one could consider the equivalent query qi =
(t1)7 pa (82)7F pa (t3)™ ba (8a)7F b 5 pa (t)™,
where (.)Tef stands for the reformulation of the subquery ob-
tained from the set of triples in parenthesis. In other terms,
qi reformulates each atom first (into, respectively, unions of
2,15,5 respectively 1,1 and 1 atom), and then joins them.
This avoids the repeated work, yet it still requires about 45
seconds to evaluate.

Let us now consider the following equivalent query
¢ = (t1,ta)" a (t2)" pa (t3,t5)" >4 (t6)" where
ti,...,te are the triple atoms of the query qi. Evaluating
q! in the same experimental setting takes just 27 seconds,
more than stx times faster than the initial reformulationlﬂ.

1. Incidentally, in this example, this is also twice as fast as
the saturation-based approach, without requiring the effort
to saturate the database!

In this case the saturation-based query answering time is
561 seconds, while the reformulation leads to a query gh
corresponding to a union of 3,384 four atoms queries. Due
to the large number of queries in the reformulation and their
considerable number of results, ¢5 could not be evaluated
in the same experimental setting|’|

FEvaluating the equivalent reformulated query
@y = (t2)™ > (t1,t3)"% >a (ta)"%, where t1,...,ts are
the triple atoms of q2, in the same setting returns the an-
swer in only 58 seconds. As in the previous example, qy
gains over q' by first, reducing repeated work, and second,
intelligently grouping atoms so that the query corresponding
to each atom group can be efficiently evaluated and returns
a result of manageable size. In particular, the biggest-size
atom (1) has been grouped with the third one, and thus the
number of results of (t1,t3)"% is 2,432,964. Since the query
(t1,t3)"% is evaluated first, one then only needs to join its
result, instead of manipulating the individual atoms (t1)"*f
and tgef (especially the former, with its 33,328, 108 results).

Finally, consider the query ¢ = (t2)"F b<a (t1,t3)" 1<
(t3,t2)™%, also equivalent to ¢b. Evaluating ¢y takes 49
seconds. This performance improvement w.r.t. q¢5 is achieved
by making the subqueries more selective: (t2)" and (t1,t3)"%
are the same as for ¢5, but (t3,ta)"! has only 503,395 an-
swers. Similarly, this makes it easier to “handle” the atom
ta (recall that t}7 has 7,817,083 results).

2. Concretely, an I/O exception was thrown by the
DBMS, in connection with a failed attempt to materialize an
intermediary result. While it may be possible to tune some
parameters to make the evaluation of such queries possi-
ble, the same error was raised by many large-reformulation
queries, a signal that their peculiar shape is problematic.




As the above examples show, generalizing the state-of-the-
art query reformulation language of unions of BGP queries
to that of join of unions of BGP queries offers a great po-
tential for query processing optimizations. We introduce:

DEFINITION 3.1  (JUCQ). A Join of Unions of Conjunc-
tive Queries (JUCQ) is defined as follows:

— any conjunctive query (CQ) is a JUCQ;

— any union of CQs (UCQ) is a JUCQ;

— any join of UCQs is JUCQ.

In this work, we address the challenge of finding the best-
performing JUCQ reformulation of a BGP query against an
RDF database, among those that can be derived from a
query cover. We introduce:

DEFINITION 3.2  (JUCQ REFORMULATION). A JUCQ refor-
mulation ¢’ of a BGP query q w.r.t. a database db; is a
Jucq such that ¢’ (dbs) = q(dbs®), for any RDF database
dbs having the same schema as dby.

Recall that two RDF databases have the same schema iff
their saturations have the same RDFS statements.

BGP query fragmentation is a technique we introduce for
exploring a space of JUCQ reformulations of a given query.
The idea is to cover a query ¢ with (possibly overlapping)
subqueries, so as to produce a JUCQ reformulation of g by
joining the (state-of-the-art) UCQ reformulations of these sub-
queries, obtained through any reformulation algorithm in
the literature (e.g., |3]). Formally:

DEFINITION 3.3 (BGP QUERY COVER). A cover of a
BGP query q(T):- t1,...,tn is a set F = {f1,...,fm} of
non-empty subsets of q’s triples, called fragments, such that
UL, fi =A{t1,...,ta}, no fragment is included into another,
te, fi L fj for 1 <i,5 <m andi# j, and if F consists of
more than 1 fragment then any fragment joins at least with
another, i.e., they share a variable.

DEFINITION 3.4 (COVER QUERIES OF A BGP QUERY).
Let q(Z):- t1,...,tn be a BGP query and F = {f1,..., fm}
one of ils cover. A cover query q;;1<i<m 0f ¢ w.r.t. F is the
subquery whose body consists of the triples in f; and whose
head variables are the distinguished variables T of q appear-
ing in the triples of fi, plus the variables appearing in a
triple of fi that are shared with some triple of another frag-
ment fj1<j<m,j#i, %-€., on which the two fragments join.

The theorem below states that evaluating a query ¢ as
the join of the cover queries resulting from one of its covers,
yields the answer set of g:

Theorem 3.1 (COVER-BASED REFORMULATION). Let
q(Z):- t1,...,tn be a BGP query and F = {f1,..., fm} be
any of its covers,

JucQ /-y . ucQ ucq
g (@) gy M Mg

is a JUCQ reformulation of q w.r.t. any database db, where
every q?ﬁq is a UCQ reformulation of the cover query qys,, for
1<i<m.

An upper bound on the size of the JUCQ cover-based refor-
mulation space for a given query of n triples is given by the
number of minimal covers of a set S of n elements [21], i.e., a
set of non-empty subsets of S whose union is S, and whose

union of all these subsets but one is not S. It is worth noting
that this bound grows extremely rapidly as the number n of
triples in a query’s body increases, e.g., 1 for n = 1, 2 for
n = 2, 8 for n = 3, 49 for n = 4, 462 for n = 5, 6424 for
n = 6 (http://oeis.org/A046165). In practice, however,
we require each fragment to share a variable with another
(if any). Therefore, the number of JUCQ cover-based refor-
mulations is smaller than the number of minimal covers of
its set of atoms.

In order to select the best performing JUCQ reformulation
within the above space, we assume given a cost function c
which, for a JUCQ ¢, returns the cost ¢(g(db)) of evaluating
it through an RDBMS storing the database db. Function
¢ may reflect any (combination of) query evaluation costs,
such as I/O, CPU etc. As customary, we rely on a cost es-
timation function c®, which statically provides an approxi-
mate value of c¢. For simplicity, in the sequel we will use ¢
to denote the estimated cost.

The problem we study can now be stated as follows:

DEFINITION 3.5 (OPTIMIZATION PROBLEM). Let db be
a RDF database and q be a BGP query against it. The
optimization problem we consider is to find a JUCQ refor-
mulation ¢""% of ¢ w.r.t. db, based on a cover of q, which
has the lowest cost among all the cover-based JUCQ reformu-
lations of q.

Optimized queries vs. optimized plans. As stated
above and illustrated in Figure [} the problem we consider
is finding the best query that is the optimized reformulation
of q against db, and take advantage of existing query evalua-
tion engines for optimizing and executing the query. Alterna-
tively, one could have placed this study within an evaluation
engine and investigate optimized plans. We comment more
on the reasons for prefering our approach in Section [6}

4. EFFICIENT QUERY ANSWERING

We present now the ingredients for setting up our cost-
based query answering technique. We introduce, in Sec-
tion [4.1] our cost model for JUCQ evaluation through an
RDBMS. We then provide, in Section [4.2] an anytime al-
gorithm that outputs the best cover of a BGP query found
so far, i.e., whose corresponding cover-based reformulation
has the lowest cost found so far. This cover is then used to
evaluate the query as stated by Theorem

4.1 Cost model

In this section we detail the cost of evaluating a JUCQ
sent to the RDBMS. Recall that a JUCQ, denoted ¢’", is-
sued from a cover F' = {fi, f2,..., fm} of a BGP query
q(T):- t1,t2,...,tn, is the join of the set of UCQ sub-queries
F(q) = {¢¥% 5%, ..., >} built from the aforementioned
fragments: ¢;°% = qf;-

The evaluation cost of ¢?" is:

JUCQ) JUCH)

= Cap + Cunique(q +

cQ cQ
Z Ceval(q;'J ) + C]'Oin(q?,lgigm)+
@ NEF(q)

c(q

Cmat(qg,cf)gigm,i;&k) 1)

reflecting:


http://oeis.org/A046165

(i) the fixed overhead of connecting to the RDBMS cav;
(74) the cost of eliminating duplicate rows from the result;
(ii7) the cost to evaluate each of its UCQ sub-queries ¢/** €
F(q);
(iv) the cost of eliminating duplicate rows from each of its
UCQ sub-queries results;
(v) the cost to join these sub-query results; and
(vi) the materialization costs: the SQL query correspond-
ing to a JUCQ may have many sub-queries. At exe-
cution time, some of these subqueries will have their
results materialized (i.e., stored in memory or on disk)
while at most one sub-query will be executed in pipeline
mode. We assume without loss of generality, that
the largest-result sub-query, denoted qch, is the one
pipelined (this assumption has been validated by our
experiments so far).

Notations. For a given query g over a database db, we
denote by |g|+ the estimated number of tuples in ¢’s answer
set. Recall that g|(+,} stands for the restriction of ¢ to its
i-th atom. Using the notations above, the number of tuples
in the answer set of ¢, is denoted |q|(s,}|¢-

Elimination of duplicate rows. RDBMS implements
several techniques to eliminate duplicate rows from the re-
sult, each suitable for a distinct scenario. The choice among
them is based on the number of results (including duplicates)
and configuration parameters (such as allocable memory).
When hash aggregation is suitable we estimate the cost of

eliminating duplicate rows from ¢”"® (and ¢"*¥ as a particu-
lar case) result as:
Jucq Jucq
Cunique(q ) = ¢ X |[q7 ¢

where ¢; is the CPU and I/O effort involved in sorting the
results.

When the results are large enough that disk merge sort is
needed, we estimate the cost of eliminating duplicate rows
from ¢”? (and ¢"®® as a particular case) result as:

JUCQ) Jucq ‘t

cunique(q =cCi X |qJUCQ|t X lOg ‘q

where ¢, is the CPU and I/0O effort involved in (disk-based)
sorting the results.

UCQ evaluation cost. We estimate the cost of evaluating
a UCQ based the cost of evaluating all the CQs in this union:

cevaz(qfcm) = cumque(qgw) + Z Ceval(qcu)

uc
q®eq! Q

The cost of evaluating one conjunctive query cwal(ch),
where ¢°%(%):- t1,t2,. .., ts, through the RDBMS is made of
the scan cost for retrieving the tuples for each of its atoms,
and the cost of joining these tuples:

4*) + ¢join(¢™)

We estimate the scan cost of ¢*® to:

Ceval (ch) = Cscan(

Cocan (@) = c0 X 3 laf{i,yl

t;€q%0

where ¢; is the fixed cost of retrieving one tuple.

The join cost of g™ represents the CPU and I/O effort
involved in making the comparisons for the joins; assuming
efficient join algorithms such as hash- or merge-based etc.
are available, this cost is linear in the total size of its inputs:

Cjoin(ch) =¢j X Z |qlcgti}|t

t; €qQ

Therefore, we have:

Z Z |Q|{t}|t (2)

qeeqi t; €40

Ceval (Q?CQ) Ct + C]

UCQ join cost. As before, we consider the join cost to be
linear in the total size of its inputs:

Do D lafle 3

P uc cl
¢ QEF(q) qcugql Q ¢, €q%

(e —
CJOWL(qi,lS'LSm) =¢ X

UCQ materialization cost. Finally, we consider the mate-
rialization cost associated to a query ¢ is ¢, X |g|¢ for some
constant cp,:

> o > gyl

ucl Ucl Cl
ayNEF(q),iztk ¢®eq) o t; €q%

ucq _
Cmat(qz',1gigm,i¢k) =Cm X

(4)
where qgm is the largest-result sub-query, and the one which
is picked for pipelining (and thus not materialized).

Injecting the equations and @ into the global cost for-
mula[T]leads to the estimated cost of a given JUCQ. This for-
mula relies on estimated cardinalities of various subqueries
of the JUCQ, as well as on the system-dependent constants
Cdb, Cscan, Cjoin and Cmq: which can be determined by run-
ning a set of simple calibration queries on the RDBMS be-
ing used. The details are straightforward and we omit them
here.

4.2 Anytime cover algorithm (GCov)

We now describe a search algorithm (GCov) which ex-
plores covers of the query, that is, decompositions into sets
of atoms which may overlap. Intuitively, the algorithm at-
tempts to identify fragments such that each fragment once
reformulated can be efficiently evaluated by the underlying
database engine. The key to doing so is to include highly
selective, few-reformulations atoms in several fragments in
order to speed up their evaluation.

Algorithm [1] (GCov) is based on this observation. GCov
starts with a simple cover consisting of one atom fragments
and explores possible mowves starting from this state. A move
consists of adding an atom to one fragment such that the es-
timated cost of the larger fragment thus obtained is smaller
than the original fragment cost. Possible moves based on
the initial cover are developed and added to a list, which
is sorted in the decreasing order of the cost reduction they
bring. Next the algorithm starts the exploration of possi-
ble moves. It picks the most promising one from the queue
and applies it, leading to a new fragmentation F’. If the es-
timated cost of this fragmentation is smaller than the best
(least) cost encountered so far, the best solution is updated
to reflect this F’. Thus, the algorithm is anytime, meaning
that at any point during the search the best cover found so



far is known. The algorithm explores covers in breadth-first
fashion adding to the queue possible moves starting from
the current cover.

As described in Algorithm[I] GCov is greedy, i.e., it makes
the move that produce the maximum cost reduction at each
step, and avoids moves that do not decrease the current
cost (and their derived moves). In practice, one could easily
change the stop condition, for instance to return the best
found cover as soon as its cost has diminished by a certain
ratio, or after time-out period has elapsed, etc.

Algorithm 1: Anytime cover algorithm (GCov)
,tn), database

Input : BGP query q(Z:- t1,...
db = (S,D)
Output: Fragmentation F' for the BGP query ¢

1 FO%F:{{tl}v{tQ}w'w{tn}};

2T<—F:{t1,t2,...,tn};

3 Fbest — FOy

4 moves + 0;

5 foreach f € Fy,t €T st. t € f do

6 TRy, f,t + estimated cost reduction obtained by
adding ¢ to the fragment f of Fp

7 if rry,r,¢ >0 then

8 | moves < moves U (Fo, f,t,7F,,1,t);

9 visited <+ 0;

10 while moves # 0 do

11 (F, f,t,r) < moves.head();

12 F' + F.add(f,t);

13 visited < visited U F';

14 if F' has a lower estimated cost than Fpes; then
15 | Foest < F';

16 foreach fe F',teT st. t¢g f do

17 TF 5+ < estimated cost reduction obtained by
adding ¢t to the fragment f of F’

18 if rp/ ;>0 AND F'.add(f,t) ¢ visited then

19 L moves < moves U (F', f,t, 7 ¢4);

20 return Fics¢;

S. EXPERIMENTAL EVALUATION

This section presents an experimental assessment of our
approach. Section [5.1] describes the experimental settings.
Section [5.2] studies the efficiency and effectiveness of our op-
timized query reformulation algorithm GCov. Section
compares them with the alternative saturation-based query
answering method previously introduced in [3]. Finally, Sec-
tion[5.4] widens our analysis to include RDF query answering
through a native RDF data management engine.

5.1 Settings

Data. For our experimental evaluation we use data from
the Lehigh University Benchmark (LUBM, in short) |20,
which has been extensively used in RDF data management
works. We report on experiments conducted using 1 and
100 millions triples, respectively.

Queries. We used a set of 30 BGP queries for our evalua-
tion; the queries appear in Tables and while the main

3. For readability and without loss of information, the

query characteristics (their number of union terms in their
plain reformulation, denoted |¢"*f|, as well as the number of
query results on 1M and 100M triples, are shown in Table[T]
The queries have between 2 and 9 atoms, with an average
of 4.66 atoms. Some of the queries are part of the LUBM
benchmark itself; we designed the others so that (i) they
are plausible, i.e., they have an intuitive meaning, (iz) they
exhibit a variety of result cardinalities and (i7i) their re-
formulations are syntactically complex, in order for these
queries to allow a study of the performance issues involved.

In all our tests, schema-level triples are kept in memory,
while instance-level triples are stored in a Triples(s,p,o)
table, indexed by all permutations of the (s, p, o) columns,
leading a total of 6 indexes. Our indexing choice is inspired
by [22} 23], to give the RDBMS efficient query evaluation
opportunities.

Software.  All our algorithms are fully implemented in
Java™6 [24] and we deployed them on top of PostgreSQL [13],
version 9.3 (shared buffers = 2Gb; work_ mem = 4Gb; effec-
tive_cache_size = 6Gb) as the database back-end. We chose
Postgres since it is a (free) efficient platform, used in several
works [9, |17} |23]. All measured times are averaged over 5
executions, since no major variations were detected between
the different executions.

As in |3 |17} |22, [23], for efficiency we stored the data in
a dictionary-encoded Triples(s,p, o) table, using a unique
integer for each distinct value (URIs and literals) in the s,
p and o positions of the dataset. The encoded Triples ta-
ble is indexed by all the possible combinations of the three
columns (i.e., a total of six indexes). Moreover, the encoding
dictionary is stored as a separate table, indexed both by the
code and by the encoded value (URI or literal).

Before each experiment, the VACUUM ANALYZE com-
mand is run. Moreover, before measuring each query we
warm up the database cache by executing the query once.
Queries whose evaluation requires more than 3 hours were
interrupted, and pointed out when describing the experi-
ments.

Hardware. The PostgreSQL [13] server ran on a 8-core
Intel Xeon (E5506) 2.13 GHz machine with 16GB RAM,
running Mandriva Linux release 2010.0 (Official). The same
machine was used for the experiments on a Virtuoso [25]
server, described in Section

5.2 Optimized reformulation

In this section, we study well the fragmentation algorithm
GCov (described in Section performs in recommending
a fragmentation that leads to a fast evaluation of the refor-
mulated query.

For these experiments, we left the GCov algorithm to run
up to completion or when reaching a 1 minute timeout. In
practice, most runs stopped earlier than that, with the short-
est taking 5 ms while the longest took around 10 seconds.
This is obviously still quite high, especially since this time is
counted as part of optimizing the query. We are aware of at
least one source of inefficiency, namely repeated calls to our
Reformulate algorithm and to the cost estimation module,
where we have identified opportunities to reuse some results
to save time. Work to make the search more efficient is thus
ongoing.

URIs starting with "http://www.lehigh.edu” were slightly
shortened by eliminating a few /-separated steps



q Qo1 | Qo2 | Qos Qo4 Qos Qos | Qo7 | Qos | Qoo | Qo Q11 Qi2 | Qi Q14 Q15
\qref\ 136 | 136 34 3384 130 1220 | 156 | 123 | 492 | 8496 221 221 | 1105 26 376
[g(ao)] (IM) | 123 | 123 | 41 | 26048 | 982 | 5537 | 0 | 719 | 269 0| 47268 | 1530 | 88 | 4041 | 20205
|g(ab)] (100M) | 123 | 123 41 | 2432964 | 92026 | 523319 0| 719 | 269 0 | 4409039 | 142337 | 7773 | 376792 | 1883960
Q16 Q17 Qs Q19 Q20 Q21 Q22 Q23 Q23 Q25 | Q26 | Q27 | Q2s | Qo Q30
g 28458 650 65 940 2444 697 2788 697 65 752 52 156 | 2256 | 156 | 318096
g(db)| 0 5364 5388 47348 60342 107610 228086 60342 16134 100 12 19 5 1 0
(1M)
|g(ab)] 0 | 501063 | 503395 | 4425553 | 5632454 | 10041493 | 21289440 | 5632454 | 1510695 | 11820 | 1508 | 1463 5 1 495
(100M)
Table 1: Characteristics of the queries used in our study.
1000000 Query evaluation times (1M triples) B Plain Reformulation
T B Optimized Reformulation
100,000 O One-atom Fragmentations
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Figure 4: Query answering through plain, optimized and one-atom fragmentation reformulation.
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Figure 5: Query answering through saturation, plain and optimized reformulation.

Is an optimizer needed? The first question we ask is

whether exploring the space of alternatives is actually needed,

or could one just rely on a simple (fixed) fragmentation?
Keeping all atoms in one fragment corresponds to the plain
reformulation option, whose drawbacks we have illustrated
in our motivating examples. Another simple alternative is
to put each atom alone in one fragment (which we call one-
atom fragmentation in the sequel). Figure [4| shows the eval-
uation time on 1M triples, for these two simple options to-
gether with our GCov-optimized reformulation (again, ob-
serve the logarithmic time axis). We see that optimized
reformulation is in all but two cases (Q17 and Qis, where
the difference is not very large) the best of the three al-
ternatives. While plain reformulation is overall the worst,
one-atom fragmentation can still be more than one order of
magnitude slower than the optimized one, as for instance in
the case of Qo2.

(Optimized) reformulation compared with satura-
tion. Figure [5| shows the evaluation times of: (i) queries
over the saturated table; (i) the plain reformulated query as
produced by the algorithm of [3| . 141) the GCov-optimized
reformulation. Notice the logarithmic vertical axis. Missing
bars correspond to executions which could not complete on
the Postgres server and that we stopped after 1 hour.

Figure [5] shows that GCov makes the evaluation of refor-
mulated queries feasible in some cases where through plain
reformulation it is not; this is, for instance, the case of Q1s,
Q20 and Q21. Further, for the queries where plain refor-
mulation succeeds (and thus we can compare it with the
optimized one), the GCov-chosen fragmentation is system-
atically faster than the plain reformulation, by up to two
orders of magnitude.

SQL-specific discussion: reformulated query syntax.
To complete our discussion of optimized reformulated query




performance, we include here a short discussion of the im-
pact of the SQL syntax used to express such queries, on their
performance.

A cover-based JUCQ reformulation of a query ¢ may be
expressed in SQL in several ways, as the following example
shows:

Example 5 (SQL variants). Consider the JUCQ
q(z):- 7% i, (g5°" U g5°"), where

gi(xz) -z dblp:author nsl:Ann
g2(z) - z rdf:type Article
gs(xz) -z rdf:type Book

Two distinct SQL syntazes for this query are provided be-
low. The first one, shown in Figure@ defines q3°* on one
hand, and (¢;°*Uq5®") on the other hand, as Common Table
Ezxpressions (or CTEs, in short), then it uses them in the
main query.

An alternative syntax, shown in Figure @ nests qgQL and
(¢7°" U ¢5°") within the FROM clause.

WITH authors AS (
SELECT DISTINCT s FROM triples AS p3
WHERE p3.p="dblp:Author’
AND p3.0o="nsl:Ann’),
publications AS (
SELECT DISTINCT s FROM triples AS pl
WHERE pl.p="rdf:type’
AND pl.o="dblp:Article’
UNION
SELECT DISTINCT s FROM triples AS p2
WHERE p2.p="rdf:type’
AND p2.0="dblp:Book’
)
SELECT DISTINCT authors.s FROM authors, publications
WHERE authors.s=publications.s

Figure 6: CTE SQL syntax for the JUCQ in Example

SELECT DISTINCT authors.s FROM
(SELECT DISTINCT s FROM triples AS p3
WHERE p3.p="dblp:Author’ AND p3.0="ns1:Ann’)
AS authors,
(SELECT DISTINCT s FROM triples AS pl
WHERE pl.p='rdf:type’ AND pl.o='dblp:Article’
UNION
SELECT DISTINCT s FROM triples AS p2
WHERE p2.p='rdf:type’ AND p2.0="dblp:Book’)
AS publications

WHERE authors.s=publications.s

Figure 7: Nested SQL syntax for the JUCQ in Example

The two SQL syntaxes illustrated in Example |5| corre-
spond to the following methods of composing the SQL query
corresponding to the JUCQ:

— Define each union subquery as a Common Table Ez-
pression (or CTE, in short), used by the top-level join
query. CTEs can be thought of as temporary tables
that exist just for the duration of processing one query,
and are supported by all major RDBMSs such as Or-
acle [26], DB2 |27], SQLServer [28] or Postgres [29].

— Defining each union subquery as a nested query and
use it in the FROM clause of the top-level join query.

Figure[g shows the evaluation time of the two SQL syntac-
tic variants for our optimized reformulation as well as for the

one-atom fragmentation. It can be seen that the CTE syn-
tax is almost always faster (Q13 for the GCov-optimized re-
formulation being the lonely exception). However, the one-
atom fragmentation evaluation times demonstrate that in
some cases the speed-up obtained by using the CTE syntax
is quite significant, above two orders of magnitude.

5.3 Trade-offs between saturation- and
reformulation-based query answering

In this section, we compare the benefits and drawbacks of
the two approaches by a quantitative analysis of all the costs
involved. When relying on saturation, one has to take into
account the time to saturate the database, maintain it when
schema/data tuples are added to/deleted from the database,
and saturation-based query answering. When reformulation
is used, the only cost to consider is the one of (possibly
optimized) reformulation-based query answering.

Table [2| summarizes the times to perform various oper-
ations related to saturation in the context of instance and
schema updates.

To assess the trade-offs between reformulation and satu-
ration, and following [3|, we rely on a set of thresholds which
quantify how many times must a query run, for the fixed
cost of database saturation to be amortized (for saturation
to pay off). More specifically, the saturation threshold of a
query g, or st(q), the smallest integer n such that:

n x t7f(q) > n x t°2%(q) + tsatt

In other words, n is the minimum number of times one needs
to run ¢ in order for the whole saturation cost to amortize.

Figure[J]shows the query specific saturation thresholds for
the plain and optimized reformulation, in the case of the 1
million and 100 million triples datasets. Notice that for our
optimized reformulation algorithm the thresholds increase
(often by an order or magnitude), meaning that it takes
much longer to compensate for the initial table saturation
cost, making saturation a less convenient option. Also notice
that some thresholds are missing in the case of plain refor-
mulation marking the cases where the RDBMS was unable
to run the reformulated queries.

Similarly, a second set of thresholds shows how many
times ¢ should run in order for the maintenance overhead
due to one instance update to pay off. We formalize this as
follows.

Let t;"

triple
and tJ, be the time to propagate the insertion of one triple
to the sat relation. Then, the saturation threshold for an in-
stance insertion, denoted st;(g), is the smallest n for which:

be the time to insert one statement in triple(s, p, 0),

n x t™f (q) + t

triple

>n X 5% (q) 4t

In other words, st;"(q) is the minimum number of times one
needs to run g in order for the maintenance overhead due to
the insertion of one triple (recall Table [2) to amortize. Fig-
ure [10(a)| shows the query specific thresholds for instance
insertions. Maintaining the saturation after a one triple in-
sertion does not create a high computation overhead, there-
fore the insertion cost is amortized in one query execution
for the majority of the tested queries. Exceptions here are
the cases where the query evaluation time through reformu-
lation is lower than the one obtained when using saturation.
In such cases, the insertion cost can never be amortized.
Similarly, we define the saturation threshold for an in-
stance deletion, denoted st; (q). Figure m shows the
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Figure 8: Impact of SQL syntax on GCov-optimized reformulation (top) and one-atom fragmentation (bottom).
Operation Time (ms) | Time (ms) Time (ms)
1M 10 M 100 M
a) saturate triple table allowing maintenance 60, 376 595, 870 5,728,652
b) insert into triple table 6.97 8.62 44.50
¢) delete from triple table 6.51 8.54 38.94
d) insert into and maintain saturation table 9.78 9.77 49.64
e) delete from and maintain saturation table 122.83 1,075.67 34,682.84
) insert into the schema and maintain saturation table 1,408.85 | 21,717.78 364, 285.57
g) delete from the schema and maintain saturation table 1,951.12 | 32,265.10 | 1,210,486.43
Table 2: LUBM saturation, instance and schema update times.
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Figure 9: Saturation threshold.

threshold for instance deletion. We observe here the same
trend as for saturation: the threshold increases as we opti-
mize query reformulations, proving the interest of our refor-
mulation alternatives.

Similar to st(q), we define the saturation threshold for a

schema insertion std (q) and deletion st; (q), as the mini-
mum number of times one needs to run ¢ in order for the
schema update cost to amortize. These thresholds (Fig-

ure and [10(d)) again illustrate the improved perfor-

mance of our reformulation alternatives.
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(b) Saturation threshold for one instance deletion.
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Figure 10: Saturation thresholds for one triple updates.



5.4 Comparison with query answering through
Virtuoso

To investigate the interest of our RDBMS-based query
answering technique, and to compare it with a quite different
approach, we have also loaded the LUBM datasets within
Virtuoso using the version 6.1.6 of the open source multi
threaded edition. We loaded the already saturated LUBM
datasets on the Virtuoso server and evaluated our 30 queries
through Virtuoso’ engine.

Figure [[I] compares the query answering times through:
Virtuoso evaluation over the saturated dataset on one hand,
and Postgres-based saturation, respectively optimized refor-
mulation (through the GCov algorithm) on the other hand,
for two of the database sizes that we consider (note the log-
arithmic time axis).

We first comment on the saturation-based alternatives,
that is those corresponding to the evaluation through Virtu-
oso and Postgres, on the saturated database. In almost all
cases, the Postgres-based solution is faster than the Virtoso
one, by up to three orders of magnitude (Qso on 100 million
triples); only for the query Qo4, Virtuoso is faster than Post-
gres and saturation-based query answering, by one order of
magnitude. This validates the interest of a Postgres-based
solution (where SQL query evalution is leveraged to handle
large data volumes) to the problem of RDF query answering,
and demonstrates its performance is competitive to that of
a well-known dedicated RDF engine.

Second, comparing these saturation-based solution with
the ones based on our optimized reformulation, we notice
that optimized reformulation is overall comparable with sat-
uration especially for expensive queries, whereas for some of
the least expensive ones (such as Qos, Qog or Q1¢, while the
trend is globally followed, even optimized reformulation is
still a few orders of magnitude slower than saturation-based
solutions. This must be put into perspective according to
the following two observations.

First, saturation-based strategies leverage the benefits of
pre-computing all the instances of each atom from the orig-
inal query, thus when considering a single query evaluation,
it is to be expected that saturation is faster. Our focus in
this work was to make reformulation possible (even in cases
where it was not) and as efficient as possible (not to outper-
form saturation in all cases, although in some cases we do,
e.g., Q4,Q12 and Q22 on 100M triples in Figure etc‘).

Second, reformulation is especially interesting when the
database changes frequently, and optimized reformulation
strengthens that advantage, as demonstrated by the some-
times dramatic increase in the saturation threshods (Sec-

tion .

5.5 Experiment conclusion

From our experiments we draw the following conclusions.

First, exploring the space of alternative JUCQs is interest-
ing, and our proposed algorithm GCov does it efficiently, as
witnessed by its performance superior to that of either plain
reformulation or one-atom reformulation (Figure |4). The
fragmentations identified by GCov make possible the eval-
uation of queries where plain reformulation is simply too
expensive to evaluate (as illustrated by the missing bars in
Figure; further, GCov-optimized reformulation may be up
to two orders of magnitude faster than plain reformulation.

Second, given the particular shape of (plain) reformu-
lated queries, which are joins of unions, when evaluation

is made through an SQL engine, two syntaxes can be used.
In our experiments with Postgres, the common table expres-
sion (CTE) option is best understood and evaluated by the
server. Given that CTEs are supported in many systems
(and also considering the associated implementation, suited
for factorizing repeated sub-expressions), we believe it is the
most reliable option.

Third, optimized reformulation is overall getting closer to
the performance of saturation-based query answering, al-
though the latter remains more efficient in most cases, as
expected. However, when the saturation needs to be main-
tained due to data and schema updates, the number of runs
needed for saturation to pay off (the so-called thresholds we
studied in Section may be quite high. As expected,
insertions are easier to handle than deletions, and schema
updates more difficult to handle than data updates. Many
RDF data management scenarios (in particular integration
of distinct datasets, or operational databases where data is
continuosly added and deleted) involve frequent changes to
the database; (optimized) reformulation is an attractive op-
tion for these.

6. RELATED WORK

The problem addressed in our work can be stated as an-
swering conjunctive queries against RDF' data, in the pres-
ence of RDFS constraints.

A first dimension characterizing the problem is the RDF
dialect considered. Previous works have focused on the de-
scription logic [4] fragment of RDF and the relational con-
junctive SPARQL subset [5} |6l |7], and extensions thereof [8|
9, 110, 11]. This work is placed in the database fragment of
RDF |3| which is currently the most expressive dialect of
RDF for which reformulation-based query answering algo-
rithms are available.

A second classification dimension is whether the reason-
ing required by query answering takes place: (i) statically
(independently of a query being asked), or (i7) dynamically
(at runtime), dictated by the needs of the query. Works
belonging to each of these classes are discussed below.

Static reasoning (saturation). When using static rea-
soning (or, equivalently, saturation), all the implicit triples
are computed and explicitly added to the database; query
answering then reduces to query evaluation on the saturated
database. Well-known SPARQL compliant RDF platforms
such as 3store 30, Jena [31], OWLIM [32], Sesame [33]|,
Oracle Semantic Graph [34] support saturation-based query
answering, based on (a subset of) RDF entailment rules.

RDF platforms originating in the data management com-
munity, such as Hexastore [23] or RDF-3X [22], ignore en-
tailed triples and only provide query evaluation on top of
the RDF graph, which is assumed to be saturated. Thus,
query answering in the presence of implicit triples in such
systems also belongs to the saturation category.

Parallel RDF saturation algorithms have been proposed
in the literature. In WebPie [35], an RDF graph is stored
in a distributed file system and the saturation of the graph
is computed using MapReduce jobs. A similar approach,
based on C/Message Passing Interface, is presented in [36].

The drawbacks of saturation w.r.t. updates have been
pointed out in [37], which proposes a truth maintenance
technique implemented in Sesame. It relies on the stor-
age and management of the justifications of entailed triples



10,000,000 Virtuoso (1M)

1,000,000
100,000

10,000
1,000
100

10

1

ms

A
s

—&- Saturation (1M)
—&— Virtuoso (100M) —»— Saturation (100M)

=)

Optim Ref (1M)
Optim Ref (100M)

Q02 Q04 Q06 Q08 Q10 Q12 Q14 Q16 Q18 Q20 Q22 Q24 Q26 Q28 Q30

Q01 Q03 Q05 Q07 Q09 Q11

Q13 Q15 Q17 Q19 Q21

Q23 Q25 Q27 Q29

Figure 11: Query answering through Virtuoso and Postgres (via saturation, respectively, optimized reformulation).

(which triples beget them). While efficient on graphs with
few entailed triples, the technique is pegged by the high over-
head of handling justifications when their number and size
grow. Therefore, proposes to compute only the relevant
justifications w.r.t. an update, at maintenance time. This
technique is implemented in OWLIM, however points
out that schema-level deletions can lead to poor perfor-
mance. A more efficient saturation maintenance technique
is provided in based on the number of times triples are
entailed; this is easier to store and manipulate. A distinct
yet related problem is finding which triples to delete from an
RDF graph, so that an implicit triple no longer holds .

Run-time reasoning (reformulation). The alterna-
tive approach is based on run-time reasoning, or reformulat-
ing a given BGP query into a target language, whose eval-
uation (by an appropriate run-time engine) computes the
query answer. Among the well-established RDF data man-
agement systems, the only ones supporting run-time reason-
ing are Virtuoso (which supports only the rdfs:subClassOf
and rdfs:subPropertyOf RDFS rules) and AllegroGraph
which supports the four RDFS rules but whose reasoning
implementation is incompleteﬂ

Simple dialects of SQL have been used as the reformula-
tion language in and also in Virtuoso. The former work
corresponds to one point in the space of alternatives consid-
ered in the present work, namely: the fragmentation consist-
ing of the set of all the query atoms. In contrast, in Virtuoso,
the only alternative considered corresponds to another point
in the space of alternatives considered in the present work,
namely: the fragmentation consisting of one set per query
atom. Our technique may make more complex choices, and
our experiments have shown that these alternative may lead
to very significant performance improvements.

A distinct approach is to use Datalog as a target refor-
mulation language. For instance, Presto reformu-
lates queries in a DL-Lite setting into non-recursive Dat-
alog programs. These works rely on DL-Lite formalisms,
strictly more expressive from a semantic constraint view-
point than the RDFS constraints we consider. Thus, their
method could be easily transferred (restricted) to the DL
fragment of RDF which, as previously mentioned, is a subset
of the database fragment of RDF that we consider. How-

4. As stated at http://franz.com/agraph/support/
documentation/current /reasoner-tutorial. html#header2-
13.

ever, reformulation methods under DL-Lite constraints and
using Datalog as a target language did not consider cost-
driven performance optimization based on data statistics
and a query evaluation cost model as we do in our work.
From a database optimization perspective, the performance
advantage we gain by clustering selective atoms next to very
large ones is akin to the semi-join reducers technique, well-
known from the distributed database context . It has
been shown e.g., in that semi-join reducers can also
be beneficial in a centralized context by reducing the over-
all join effort. In this work, we use a technique reminiscent
of semi-joins in order to pick the best query-level formula-
tion of a large (union of joins) query, to make its evaluation
possible and efficient; this contrasts with the traditional us-
age of semi-joins at the level of algebraic plans. On one
hand, working at the plan level enables one to intelligently
combine traditional joins and semi-joins to obtain the best
performance. On the other hand, producing (as we do) an
output at the query (syntaz) level (recall Figure [1) enables
us to take advantage of any existing system, and of its op-
timizer which will figure out the best way to evaluate such
queries, a task at which many systems are good once we
brought the query to a "reasonable” shape. Further, ex-
pressing optimized reformulations as queries allows us not
to (re-)explore the search space of join orders etc. together
with the (already large) space of possible fragmentations.

7. CONCLUSION

An important class of applications requiring scalable data
processing and flexible semantic constraints originates in the
Semantic Web.

Our work is placed in the setting of query answering against
RDF graphs in the presence of RDF Schema constraints.
Two methods have been investigated in this context. First,
one may derive all consequences of the constraints, or, equiv-
alently in our context, compute all the entailed or derived
triples, and store them in the database next to the explicit
data; this is termed saturation. On a saturated database,
query answering is reduced to query evaluation. Alterna-
tively, one can leave the database unchanged and reformu-
late queries asked against the data, so that the reformu-
lated query, when evaluated (through standard query eval-
uation techniques) against the database, returns the same
answer as if the original query was evaluated on the satu-
rated database.

While the performance of saturation has been the focus of



many previous works, little or no effort has been invested in
making reformulation-based query answering more efficient;
this is the goal of the present work.

We have identified a space of alternative JUCQ reformula-
tions, whose evaluation (based on a standard, semantics-
unaware query processor) may be (i) feasible even when
plain reformulation is not, and (i¢) more efficient, in some
cases by orders of magnitude. Further, we have presented a
cost model for such JUCQ alternatives, and proposed an any-
time greedy cost-based algorithm capable of identifying such
efficient alternatives. We have shown that through this op-
timization, reformulation-based query answering is a better
alternative than saturation-based answering, and may actu-
ally reach (and overcome) its performance in some cases.

Generally speaking, saturation-based query answering has
an obvious performance advantage, due to the significant
amount of precomputed results; thus, it is probably prefer-
able in static contexts where the RDF database changes
little if at all, and less interesting in dynamic ones where
changes to the data and schema are frequent.

Our work has focused in particular on conjunctive query
reformulation for the database fragment of RDF, and we
have mostly experimented with Postgres. However, our study
applies in a broader setting, as outlined below.

First, as we have shown, the performance of our Postgres-
based solution is comparable with (and typically better than)
an efficient native RDF system, namely Virtuoso.

Second, while different RDBMSs may implement other
optimization strategies, the observation that the evaluation
of plain reformulated queries is really challenging is inde-
pendent of the system being tested, and in particular of
Postgres that we used. Recall from Table [I] that these are
very large queries, with many repeated subexpressions, and
their evaluation is inherently hard.

Third, our approach improves the performance of reform-
ulation-based query answering in any setting where the plain
reformulated query is evaluated by a conjunctive query pro-
cessor, which could for instance be a SPARQL endpoint, not
necessarily an RDBMS.

Fourth and finally, as we have discussed in the introduc-
tion, reformulated queries such as the ones we consider can
be produced by other reformulation algorithms, potentially
using different (classes of) constraints.

As part of our future work, we plan to enlarge the set
of platforms on which to study reformulation-based query
answering, and to investigate heuristic search algorithms for
identifying efficient fragmentations faster, and possibly iden-
tifying better ones.
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QO1(?X ?Y ) :-

?X “http://www.w3.0rg/1999/02/22-rdf-syntax-ns#type” “http://www.lehigh.edu/univ-bench.owl#Employee”,
?X “http://www.lehigh.edu/univ-bench.owl#worksFor” “http://www.Department0.University0.edu”,

?X “http://www.lehigh.edu/univ-bench.owl#degreeFrom” 7Y

QO2(7X 7Y 70U 7V TW ) -

?X “http://www.w3.0rg/1999/02/22-rdf-syntax-ns#type” “http://www.lehigh.edu/univ-bench.owl#Employee”,
?X “http://www.lehigh.edu/univ-bench.owl#worksFor” “http://www.Department0.University0.edu”,

?X “http://www.lehigh.edu/univ-bench.owl#degreeFrom” 7Y,

?X “http://www.lehigh.edu/univ-bench.owl#name” ?U,

?X “http://www.lehigh.edu/univ-bench.owl#emailAddress” 7V,

?X “http://www.lehigh.edu/univ-bench.owl#telephone” ?W

QO3(7X 7Y ) -

?X “http://www.w3.0rg/1999/02/22-rdf-syntax-ns#type” “http://www.lehigh.edu/Univ.owl#Employee”,
?X “http://www.lehigh.edu/univ-bench.owl#worksFor” “http://www.Department0.University0.edu”,

?X “http://www.lehigh.edu/univ-bench.owl#doctoralDegreeFrom” 7Y

QO4(?X ?Y ?Z) :-

?X “http://www.w3.org/1999/02/22-rdf-syntax-ns#type” 7Y,

?7U “http://www.w3.org/1999/02/22-rdf-syntax-ns#type” “http://www.lehigh.edu/univ-bench.owl#University”,
?X “http://www.lehigh.edu/univ-bench.owl#doctoralDegreeFrom” ?U,

?X “http://www.lehigh.edu/univ-bench.owl#memberOf”’ ?7Z

QO5(7X 7Y 7Z) -

?X “http://www.w3.0rg/1999/02/22-rdf-syntax-ns#type” “http://www.lehigh.edu/univ-bench.owl#Student”,
7Y “http://www.w3.org/1999/02/22-rdf-syntax-ns#type” “http://www.lehigh.edu/univ-bench.owl#Faculty”,
?Z “http://www.w3.0org/1999/02/22-rdf-syntax-ns#type” “http://www.lehigh.edu/univ-bench.owl#Course”,
?X “http://www.lehigh.edu/univ-bench.owl#advisor” 7Y,

7Y “http://www.lehigh.edu/univ-bench.owl#teacherOf” ?Z,

?X “http://www.lehigh.edu/univ-bench.owl#takesCourse” 77

QU6(7X TW 7Y 7Z) -

?X “http://www.w3.0rg/1999/02/22-rdf-syntax-ns#type” TW,

7Y “http://www.w3.org/1999/02/22-rdf-syntax-ns#type” “http://www.lehigh.edu/univ-bench.owl#Faculty”,
?Z “http://www.w3.org/1999/02/22-rdf-syntax-ns#type” “http://www.lehigh.edu/univ-bench.owl#Course”,
?X “http://www.lehigh.edu/univ-bench.owl#advisor” 7Y,

7Y “http://www.lehigh.edu/univ-bench.owl#teacherOf” ?Z,

?X “http://www.lehigh.edu/univ-bench.owl#takesCourse” ?Z

QO7T(7X 7Y ) -

?7X “http://www.w3.0rg/1999/02/22-rdf-syntax-ns#type” “http://www.lehigh.edu/univ-bench.owl#Faculty”,
?X “http://www.lehigh.edu/univ-bench.owl#degreeFrom” 7Y,

?X “http://www.lehigh.edu/univ-bench.owl#memberOf’ 7Y

QO8(7?X ) :-
?X “http://www.w3.0rg/1999/02/22-rdf-syntax-ns#type” “http://www.lehigh.edu/univ-bench.owl#Person”,
?X “http://www.lehigh.edu/univ-bench.owl#memberOf’ “http://www.Department0.University0.edu”

QO9(?X 7Y ) :-

?7X “http://www.w3.0rg/1999/02/22-rdf-syntax-ns#type” “http://www.lehigh.edu/univ-bench.owl#Person”,
?X “http://www.lehigh.edu/univ-bench.owl#degreeFrom” 7Y,

?X “http://www.lehigh.edu/univ-bench.owl#memberOf’ “http://www.Department0.University0.edu”

Q10(?X ?Y ) :-

?X “http://www.w3.0rg/1999/02/22-rdf-syntax-ns#type” “http://www.lehigh.edu/univ-bench.owl#Professor”,
7Y “http://www.w3.org/1999/02/22-rdf-syntax-ns#type” “http://www.lehigh.edu/univ-bench.owl#Professor”,
?X “http://www.lehigh.edu/univ-bench.owl#degreeFrom” ?U,

7Y “http://www.lehigh.edu/univ-bench.owl#degreeFrom” 7V,

?X “http://www.lehigh.edu/univ-bench.owl#memberOf’ 7V,

?Y “http://www.lehigh.edu/univ-bench.owl#memberOf’ 7U

Table 3: Queries Q1-Q10.




QIITW 7X 7Y ) =

W “http://www.w3.0org/1999/02/22-rdf-syntax-ns#type” “http://www.lehigh.edu/univ-bench.owl#Publication”,

?7X “http://www.w3.0rg/1999/02/22-rdf-syntax-ns#type” “http://www.lehigh.edu/univ-bench.owl#GraduateStudent”,
7Y “http://www.w3.0rg/1999/02/22-rdf-syntax-ns#type” “http://www.lehigh.edu/univ-bench.owl#Faculty”,

W “http://www.lehigh.edu/univ-bench.owl#publicationAuthor” 7X,

?W “http://www.lehigh.edu/univ-bench.owl#publicationAuthor” 7Y

Q12(?W ?X 7Y ) :-

W “http://www.w3.0rg/1999/02/22-rdf-syntax-ns#type” “http://www.lehigh.edu/univ-bench.owl#Publication”,

?X “http://www.w3.0rg/1999/02/22-rdf-syntax-ns#type” “http://www.lehigh.edu/univ-bench.owl#GraduateStudent”,
7Y “http://www.w3.org/1999/02/22-rdf-syntax-ns#type” “http://www.lehigh.edu/univ-bench.owl#Faculty”,

?X “http://www.lehigh.edu/univ-bench.owl#advisor” 7Y,

W “http://www.lehigh.edu/univ-bench.owl#publicationAuthor” ?7X,

W “http://www.lehigh.edu/univ-bench.owl#publicationAuthor” 7Y

QI3(?W 7X 7Y ) :-

W “http://www.w3.0org/1999/02/22-rdf-syntax-ns#type” “http://www.lehigh.edu/univ-bench.owl#Publication”,

?7X “http://www.w3.0rg/1999/02/22-rdf-syntax-ns#type” “http://www.lehigh.edu/univ-bench.owl#GraduateStudent”,
7Y “http://www.w3.org/1999/02/22-rdf-syntax-ns#type” “http://www.lehigh.edu/univ-bench.owl#Faculty”,

?Z “http://www.w3.org/1999/02/22-rdf-syntax-ns#type” “http://www.lehigh.edu/univ-bench.owl#Course”,

?X “http://www.lehigh.edu/univ-bench.owl#advisor” 7Y,

7Y “http://www.lehigh.edu/univ-bench.owl#teacherOf” ?7Z,

?X “http://www.lehigh.edu/univ-bench.owl#takesCourse” ?Z,

W “http://www.lehigh.edu/univ-bench.owl#publicationAuthor” ?7X,

W “http://www.lehigh.edu/univ-bench.owl#publicationAuthor” 7Y

Q14(?Z ) -

?X “http://www.w3.0rg/1999/02/22-rdf-syntax-ns#type” “http://www.lehigh.edu/univ-bench.owl#Student”,

7Y “http://www.w3.0rg/1999/02/22-rdf-syntax-ns#type” “http://www.lehigh.edu/univ-bench.owl#GraduateStudent”,
?Z “http://www.w3.0org/1999/02/22-rdf-syntax-ns#type” “http://www.lehigh.edu/univ-bench.owl#Faculty”,

?X “http://www.lehigh.edu/univ-bench.owl#advisor” ?Z,

7Y “http://www.lehigh.edu/univ-bench.owl#advisor” ?Z

QI5(7Z TW ) -

?X “http://www.w3.0rg/1999/02/22-rdf-syntax-ns#type” “http://www.lehigh.edu/ zhp2/univ-bench.owl#Student”,
7Y “http://www.w3.org/1999/02/22-rdf-syntax-ns#type” “http://www.lehigh.edu/univ-bench.owl#GraduateStudent”,
?Z “http://www.w3.org/1999/02/22-rdf-syntax-ns#type” 7W,

?X “http://www.lehigh.edu/univ-bench.owl#advisor” ?Z,

7Y “http://www.lehigh.edu/univ-bench.owl#advisor” ?Z

Q16(7X ) -

?X “http://www.w3.0rg/1999/02/22-rdf-syntax-ns#type” “http://www.lehigh.edu/univ-bench.owl#University”,
7Y “http://www.w3.org/1999/02/22-rdf-syntax-ns#type” “http://www.lehigh.edu/univ-bench.owl#Publication”,
?7U “http://www.w3.0rg/1999/02/22-rdf-syntax-ns#type” ?Z,

7Y “http://www.lehigh.edu/univ-bench.owl#publicationAuthor” ?U,

?U “http://www.lehigh.edu/univ-bench.owl#memberOf’ 7X

Q17(?Z ) -

?Z “http://www.w3.org/1999/02/22-rdf-syntax-ns#type” “http://www.lehigh.edu/univ-bench.owl#Faculty”,

?X “http://www.w3.0rg/1999/02/22-rdf-syntax-ns#type” “http://www.lehigh.edu/univ-bench.owl#Student”,

7Y “http://www.w3.0rg/1999/02/22-rdf-syntax-ns#type” “http://www.lehigh.edu/univ-bench.owl#GraduateStudent”,
?7U “http://www.w3.0rg/1999/02/22-rdf-syntax-ns#type” “http://www.lehigh.edu/univ-bench.owl#Course”,

7V “http://www.w3.0rg/1999/02/22-rdf-syntax-ns#type” “http://www.lehigh.edu/univ-bench.owl#Course”,

?Z “http://www.lehigh.edu/univ-bench.owl#teacherOf’ ?U,

?Z “http://www.lehigh.edu/univ-bench.owl#teacherOf’ 7V,

?X “http://www.lehigh.edu/univ-bench.owl#takesCourse” ?7U,

7Y “http://www.lehigh.edu/univ-bench.owl#takesCourse” 7V

Q18(7X ) :-

?7X “http://www.w3.org/1999/02/22-rdf-syntax-ns#type” “http://www.lehigh.edu/univ-bench.owl#Faculty”,

?Y “http://www.w3.0rg/1999/02/22-rdf-syntax-ns#type” “http://www.lehigh.edu/univ-bench.owl#GraduateCourse”,
?Z “http://www.w3.org/1999/02/22-rdf-syntax-ns#type” “http://www.lehigh.edu/univ-bench.owl#Course”,

?X “http://www.lehigh.edu/univ-bench.owl#teacherOf’ 7Y,

?X “http://www.lehigh.edu/univ-bench.owl#teacherOf” 77

Table 4: Queries Q11-Q18.




QIO(7X W ) -

?X “http://www.w3.0rg/1999/02/22-rdf-syntax-ns#type” TW,

7Y “http://www.w3.0rg/1999/02/22-rdf-syntax-ns#type” “http://www.lehigh.edu/univ-bench.owl#GraduateCourse”,
?Z “http://www.w3.org/1999/02/22-rdf-syntax-ns#type” “http://www.lehigh.edu/univ-bench.owl#Course”,

?X “http://www.lehigh.edu/univ-bench.owl#takesCourse” 7Y,

?X “http://www.lehigh.edu/univ-bench.owl#takesCourse” ?Z

Q20(?X ?7Z W ) :-

?X “http://www.w3.org/1999/02/22-rdf-syntax-ns#type” “http://www.lehigh.edu/univ-bench.owl#Faculty”,
?Z “http://www.w3.org/1999/02/22-rdf-syntax-ns#type” 7W,

?Z “http://www.lehigh.edu/univ-bench.owl#publicationAuthor” 7X

Q2I(7X 7Y ) -

?7X “http://www.w3.0rg/1999/02/22-rdf-syntax-ns#type” “http://www.lehigh.edu/univ-bench.owl#Person”,

7Y “http://www.w3.0rg/1999/02/22-rdf-syntax-ns#type” “http://www.lehigh.edu/univ-bench.owl#Publication”,
7Y “http://www.lehigh.edu/univ-bench.owl#publicationAuthor” 7X

Q22(?X 7Y ?Z) :-

?X “http://www.w3.org/1999/02/22-rdf-syntax-ns#type” “http://www.lehigh.edu/univ-bench.owl#Person”,

7Y “http://www.w3.org/1999/02/22-rdf-syntax-ns#type” “http://www.lehigh.edu/univ-bench.owl#Publication”,
?X “http://www.lehigh.edu/univ-bench.owl#degreeFrom” ?Z,

7Y “http://www.lehigh.edu/univ-bench.owl#publicationAuthor” 7X

Q23(7X Y 77 ) :-

?X “http://www.w3.org/1999/02/22-rdf-syntax-ns#type” “http://www.lehigh.edu/univ-bench.owl#Person”,

7Y “http://www.w3.0rg/1999/02/22-rdf-syntax-ns#type” “http://www.lehigh.edu/univ-bench.owl#Publication”,
?X “http://www.lehigh.edu/univ-bench.owl#doctoralDegreeFrom” ?Z,

7Y “http://www.lehigh.edu/univ-bench.owl#publicationAuthor” 7X

Q24(7X 7Y ) -

?X “http://www.w3.0rg/1999/02/22-rdf-syntax-ns#type” “http://www.lehigh.edu/univ-bench.owl#Faculty”,
7Y “http://www.w3.0rg/1999/02/22-rdf-syntax-ns#type” “http://www.lehigh.edu/univ-bench.owl#Course”,
?X “http://www.lehigh.edu/univ-bench.owl#doctoralDegreeFrom” ?Z,

?X “http://www.lehigh.edu/univ-bench.owl#teacherOf” 7Y

Q25(7X 7Y ) -
?7X “http://www.w3.org/1999/02/22-rdf-syntax-ns#type” 7Y,
?X “http://www.lehigh.edu/univ-bench.owl#degreeFrom” “http://www.University0.edu”

Q26(7X) -
?X “http://www.w3.0rg/1999/02/22-rdf-syntax-ns#type” “http://www.lehigh.edu/univ-bench.owl#Faculty”,
?X “http://www.lehigh.edu/univ-bench.owl#degreeFrom” “http://www.University0.edu”

Q77X 7Y) -

?X “http://www.w3.0rg/1999/02/22-rdf-syntax-ns#type” “http://www.lehigh.edu/univ-bench.owl#Faculty”,
?X “http://www.lehigh.edu/univ-bench.owl#degreeFrom” “http://www.University532.edu”,

?X “http://www.lehigh.edu/univ-bench.owl#memberOf’ 7Y

Q28(7X 7Y) :-

?7X “http://www.w3.org/1999/02/22-rdf-syntax-ns#type” 7Y,

?X “http://www.lehigh.edu/univ-bench.owl#degreeFrom” “http://www.University532.edu”,

?X “http://www.lehigh.edu/univ-bench.owl#memberOf’ “http://www.Departmentl.University7.edu”

Q29(7X 7Y) -

?X “http://www.w3.0rg/1999/02/22-rdf-syntax-ns#type” “http://www.lehigh.edu/univ-bench.owl#Faculty”,
?X “http://www.lehigh.edu/univ-bench.owl#degreeFrom” “http://www.University532.edu”,

?X “http://www.lehigh.edu/univ-bench.owl#memberOf’ “http://www.Departmentl.University7.edu”

Q30(7X 7Y) :-

?7X “http://www.w3.0org/1999/02/22-rdf-syntax-ns#type” 7U,

7Y “http://www.w3.0rg/1999/02/22-rdf-syntax-ns#type” 7V,

?X “http://www.lehigh.edu/univ-bench.owl#mastersDegreeFrom” “http://www.University532.edu”,
7Y “http://www.lehigh.edu/univ-bench.owl#doctoralDegreeFrom” “http://www.University532.edu”,
?X “http://www.lehigh.edu/univ-bench.owl#memberOf’ ?Z,

7Y “http://www.lehigh.edu/univ-bench.owl#memberOf’ ?Z

Table 5: Queries Q19-30.
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