
HAL Id: hal-01149248
https://inria.hal.science/hal-01149248

Submitted on 6 May 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Reasoning with Style
Martí Bosch, Pierre Genevès, Nabil Layaïda

To cite this version:
Martí Bosch, Pierre Genevès, Nabil Layaïda. Reasoning with Style. International Joint Conference
On Artificial Intelligence (IJCAI 2015), Jul 2015, Buenos Aires, Argentina. �hal-01149248�

https://inria.hal.science/hal-01149248
https://hal.archives-ouvertes.fr

Reasoning with Style

Martı́ Bosch∗ † ‡
∗ Universitat Politècnica de Catalunya

Pierre Genevès† ‡
† CNRS, LIG

Nabil Layaı̈da† ‡
‡ Inria

Abstract
The Cascading Style Sheets (CSS) language constitutes a key
component of web applications. It offers a series of sophis-
ticated features to stylize web pages. Its apparent simplicity
and power are however counter-balanced by the difficulty of
debugging and maintaining style sheets, tasks for which de-
velopers still lack appropriate tools. In particular, significant
portions of CSS code become either useless or redundant, and
tend to accumulate over time. The situation becomes even
worse as more complex features are added to the CSS lan-
guage (e.g. CSS3 powerful selectors). A direct consequence
is a waste of CPU that is required to display web pages, as
well as the significant amount of useless traffic at web scale.
Style sheets are designed to operate on a set of documents
(possibly generated). However, existing techniques consist
in syntax validators, optimizers and runtime debuggers that
operate in one particular document instance. As such, they
do not provide guarantees concerning all web pages in CSS
refactoring, such as preservation of the formatting. This is
partly because they are essentially syntactic and do not take
advantage of CSS semantics to detect redundancies.
We propose a set of automated refactoring techniques aimed
at removing redundant and inaccessible declarations and
rules, without affecting the layout of any document to which
the style sheet is applied. We implemented a prototype that
has been extensively tested with popular web sites (such as
Google Sites, CNN, Apple, etc.). We show that significant
size reduction can be obtained while preserving the code
readability and improving maintainability.

1 Introduction
Cascading Style Sheets (CSS) [Consortium, 2014; Lie,

2005] is a style sheet language used to format documents
written in markup languages, and nowadays it is widely used
to style web pages. To suit the current context, where so much
attention is paid to the user experience in different kinds of
devices, it includes a series of sophisticated features that offer
a very wide range of possibilities to designers and developers.

Despite its widespread use and increasingly important
role, CSS received very little attention from the research
community [Quint and Vatton, 2007; Marden and Munson,
1999] with the notable exceptions of [Genevès et al., 2012;

Mesbah and Mirshokraie, 2012]. The simplicity of CSS syn-
tax may be misleading as it hides the complexity of its most
advanced aspects. For this reason, developers increasingly
rely on frameworks that automatically generate CSS files.
This often results in a code that is very hard to maintain. This
also leads to redundant declarations and inaccessible selec-
tors, that unnecessarily increase resources required to transfer
the CSS files (and therefore web traffic at a global scale) and
to process the page layout. Previous studies [Meyerovich and
Bodik, 2010] showed that the visual layout of web pages con-
sumes 40–70% of the processing time of the browser. Simpli-
fying CSS code is essential in reducing this cost. Current syn-
tax optimizers1 perform only syntactic analyses, and are un-
aware of the CSS semantics. Therefore, they can only achieve
a fraction of the potential optimizations.

The standard CSS development practice involves the use of
empirical methods such as runtime debuggers. While these
tools are useful in testing, they depend strongly on the doc-
ument instance on which the style sheet is applied. How-
ever, as style sheets usually apply to a wider set of docu-
ments, modifications achieved on a particular instance might
undesirably alter the presentation of other documents. On
the other hand, CSS code very often comes from different
sources, such as external files, the HTML’s style element,
or inline styles set directly as attributes on specific elements.
This makes it hard to spot the origin of bugs, and incurs sig-
nificant debugging costs. The tool we propose is intended to
remove redundant code, clean and refactor CSS files, lessen-
ing the reliance on debuggers as well as reducing file’s sizes.
Our tool involves automated analysis of the style sheet se-
mantics for performing size reductions which are not achiev-
able by existing (syntactic) compressors.

Contributions and Outline We recall the main concepts
of CSS in Section 2. We propose automated refactoring tech-
niques in Section 3 that aim at removing redundant and in-
accessible CSS declarations and rules, while preserving the
layout of documents to which the style sheet is applied2. We
implemented a prototype described in Section 4. We report
on experimental results with CSS of popular web sites (such
as Google Sites, CNN, Apple, etc.) in Section 5. We show

1For example: cleancss.com, codebeautifier.com, csslint.net, etc.
2Work partially supported by ANR TYPEX ANR-11-BS02-00.

that we obtain significant size reductions for these sites that
represent a considerable fraction of web traffic.

2 The CSS Language
Cascading Style Sheets play nowadays a key role in the

web infrastructure and in enhancing the user experience. Be-
sides web developers, the simplicity of its syntax has attracted
also graphical and web designers. CSS permits separating the
content from presentation and a few rules are capable of pro-
ducing impressively fancy presentations. A style sheet C can
be seen as a sequence of rules, where each ruleR consists of a
selector S, and a set of declarations called declaration blocks.
Selectors identify the set of elements that are styled by the
declarations di. Each declaration di is a pair of a property
pi and its associated value vi, that define how the elements
selected by S will look like in the browser.

2.1 Selectors
CSS selectors decide which elements will be styled by the

rules’ declarations. The selectors’ language is very expressive
and permits matching elements based on the elements’ struc-
ture and attributes, as well as grouping selectors that share the
same declarations. Selectors Level 3 [Çelik et al., 2011] also
includes a series of advanced features that empower CSS’
styling capabilities while inevitably making it more complex.
An efficient use of selectors is one of the key aspects towards
the conception of maintainable CSS code.

2.2 Specificity
When several rules apply to a given element, CSS priori-

tizes the declarations that have the !important specifier.
In case of equality, CSS picks the declaration whose selec-
tor has a highest specificity. The specificity of a selector is
represented by a four integer vector, whose components are,
from most to less important, determined as: (1) 1 if the prop-
erty is declared under the style attribute, 0 otherwise, (2)
the number of references to the id attribute with the # sym-
bol, (3) the number of class selectors, attribute selectors and
pseudo-classes, and (4) the number of element type selectors
and pseudo-elements. If the selectors have the same speci-
ficity, the latter rule in the syntactic order gets precedence.

2.3 Media Rules
A media rule starts by @media followed by a condition

called media query. This defines a block in which we can
add a set of CSS rules that only apply when the media query
is satisfied. The media queries define the style sheet target
according to expressions concerning devices’ features, as for
example the dimensions. Such features are key to define how
web pages look like on mobile devices. To adjust more pre-
cisely the style sheet scope, media queries might use several
logical operators to connect different expressions. It is impor-
tant to be aware that media rules do not alter the specificity.

3 CSS Refactoring Techniques
In this section, we introduce a series of refactoring tech-

niques capable of identifying and deleting unaccessible dec-
larations and combine rules in a way such that the same ren-
dering semantics is preserved with lighter CSS files. These

techniques do not require any information other than the style
sheet itself, regardless of which instance is under considera-
tion. For this purpose, our methods rely on the semantics
of the CSS components described previously. In particular,
our method aim at analysing and leveraging the fact that in
CSS, rules use selectors that match the set of elements that are
styled by the rule’s declarations. Our main method consists
in the detection of semantic relations between CSS selectors.
When some of these relations are detected, further analysis of
some CSS aspects might reveal that some declarations are in
fact unnecessary and can be deleted.

3.1 Deleting redundant declarations
In the context of this paper, we will state a CSS declaration

as redundant if (1) it is always masked by another declaration,
or (2) it is verbose as the styling that it provides is already
provided by some other declaration.

Masked declarations
A declaration da is always inactive iff it is masked by some

other declaration db concerning the same CSS property. In
order to mask da, db must apply to at least the same set of
elements as da, and this is why relations between the selectors
under which da and db are stated become crucial: selectors
must either hold an equivalence or a containment relation.

Listing 1: Example of masked declaration

1 li.foo { text-indent: none;
2 color: blue;
3 font-weight: bold }
4 li[class=’foo’] { text-indent: 10px;
5 color: blue }� �
In Listing 1 we have two rules with equivalent selectors:

“li.foo” and “li[class=’foo’]” both select an li
element with the class attribute set to “foo”. They just
use different syntax to achieve the same semantics. Any el-
ement matched by the first rule will also be matched by the
second one and viceversa, and as both rules have declarations
concerning the properties color and text-indent, CSS
specificity will decide which values will apply. In Listing 1,
both selectors have the same specificity, so the declarations
under the latter one “li[class=’foo’]” will have pref-
erence. Consequently, for these conflicting declarations, the
values from “li[class=’foo’]” will apply, and the ones
from “li.foo” will be always inactive (masked). By delet-
ing those declarations we achieve a lighter code with the same
rendering semantics: Listing 2.

Listing 2: Code after deleting the masked declarations

1 li.foo { font-weight: bold }
2 li[class=’foo’] { text-indent: 10px;
3 color: blue }� �
Consider we replace “li[class=’foo’]” by

“li[class]” in Listing 1. The selector “li[class]”
matches any li element with the class attribute set (to
any value). Notice then that “li.foo” ⊂ “li[class]”,

given that any li element with the class attribute set to
“foo” does indeed have the class attribute set, but not
all the li elements with the class attribute defined need
to have it set to the value “foo”. Observe then that the set
of elements pointed by “li.foo” will also be pointed by
“li[class]”, so the declarations concerning the properties
color and text-indent set under “li.foo” will be
completely masked by those set under “li[class]”, as
“li[class]” gets preference as it has the same specificity
but is stated after “li.foo”.

Let us note by db∧p the set of declarations concerning a
CSS property that is stated under both selectors Sb and Sp.
When there are two rules with selectors such that Sb ⊆ Sp

and Sp has preference over Sb, the deletion of declarations
that are masked is carried automatically by Procedure 1:

Procedure 1: Sb ⊆ Sp with Sp preferred over Sb

foreach di in db∧p do
delete di from Sb

end

Verbose declarations
A CSS declaration might be active in some occasions and

yet not provide any additional styling. In the context of this
paper, they will be noted as verbose declarations. To under-
stand how we might find them, consider Listing 3.

Listing 3: Example of verbose declarations

1 div div > a { font-size: 14px;
2 text-decoration: none }
3 div a { font-size: 14px;
4 text-decoration: underline }� �
There are two rules whose selectors hold a containment

relation “div div > a” ⊂ “div a”. Note that any a
element with a div father and another div ancestor also
matches the pattern of a a element with a div ancestor. In
this case “div div > a” has highest specificity than “div
a”, so when their declarations conflict, the ones stated under
“div div > a” dominate. Consequently for an element
selected by the subset (and implicitly by the superset as well),
the value for text-decoration will be none. Neverthe-
less, for the same element, font-size is set to 14px by
both selectors, so although the value is pulled from the subset,
it would always be pulled from the superset as well, and thus
the declaration “font-size:14px” under “div div >
a” is verbose and can be deleted, yielding Listing 4.

Listing 4: Code after deleting the verbose declarations

1 div div > a { text-decoration: none }
2 div a { font-size: 14px;
3 text-decoration: underline }� �
This refactoring can be automatically performed by Proce-

dure 2. Such procedure can only be applied to a subset in
strict containment, as in the case of equivalence Procedure 1
would apply due to the symmetric nature of the relation.

Procedure 2: Sb ⊂ Sp with Sb preferred over Sp

foreach di in db∧p do
if di sets the same value under both Sb and Sp

then
delete di from Sb

end
end

3.2 Relations and Media Rules

Media queries may also cause certain inconsistencies. For
example, observe in Listing 5 that a device that satisfies
the first media query will always satisfy the second one as
well. And considering that media rules do not alter selec-
tor’s specificity, in this case “color: red” will never be
applied. Note that, if we reverse the order of the media
rules, “color: blue” will be active for devices wider than
800px but smaller than 1000px, so the color of the div
elements would be blue. One can reasonably guess that this
was the behaviour that the developer intended.

Listing 5: Relations and Media Rules

1 @media (min-width: 1000px) {
2 div { color: red } }
3 @media (min-width: 800px) {
4 div { color: blue } }� �

These inconsistencies can be detected too. Given two me-
dia rules, they will either hold: (a) no relation (which will be
the case most of the time), (b) a containment relation, like in
Listing 5 or (c) an equivalence relation. In order to perform
the refactoring procedures proposed in Section 3.1 in pres-
ence of media rules, we have to see how selectors’ relations
change according to their respective media context, which can
happen in two ways:
1. Destruction of relations consider a style sheet with Sa =
“div p” under a media query mQa = “all” and Sb = “p”
under mQb = “tv”. Note that “div p” ⊂ “p”, but “div
p” applies in all media contexts whereas “p” is only active
for tv media types. So whenever we are not under a tv
device, “div p” might point to elements that “p” would not,
and thus it breaks the nature of the containment relation, and
prevents our tool from performing the refactorings proposed
in Section 3.1, which become no longer safe to achieve.
2. Equivalence transformed into containment con-
sider again Listing 5. We have two identical selec-
tors Sa, Sb = “div”, in two different media contexts,
mQa = “(min-width: 1000px)” and mQb =
“(min-widith: 800px)”, being true that mQa ⊂
mQb. Under these circumstances, any device satisfying
mQa will also satisfy mQb, but not the other way around.
So whenever Sa selects all the div elements, Sb will do too,
but not conversely. In short, an equivalence relation is turned
into containment.

After both cases are considered, the refactoring procedures
from Section 3.1 can be performed in presence of media rules.

3.3 Deleting Empty Rules
The procedures above are meant to delete declarations

from CSS rules. Applying such procedures might result in an
empty rule containing a selector with no declarations. This
rule does select a set of elements but does not define any
styling for them. Consequently, it is safely deleted.

3.4 Merging Rules with Equivalent Selectors
Given two equivalent selectors Sa and Sb, merging their

respective rules Ra and Rb can reduce the style sheet’s size.
By merging Ra and Rb we mean the following: as Sa and Sb

affect the same set of elements, we group both rules’ declara-
tions. We keep Sa and move all the declarations from Rb to
Ra. If any declaration concerns the same property with dif-
ferent values set under Ra and Rb, Section 3.1 already takes
care of it. To exemplify the procedure, consider Listing 6.

Listing 6: Merging rules with equivalent selectors

1 a#nav { padding: 0px;
2 height: 20px }
3 a[id=’nav’] { margin: 5px }
4 p a[id=’nav’] { margin: 10px }� �

We have two equivalent selectors “a#nav” ⇔
“a[id=’nav’]”, so we keep the rule with “a#nav”,
and move “margin: 5px” from “a[id=’nav’]” to
“a#nav”. Instead of 2 rules with 2 and 1 declarations each,
after this refactoring we have 1 rule with 3 declarations.

However, we cannot perform this refactoring as it does
not preserve the style sheet’s semantics. The reason is be-
cause selectors confer its specificity to the declarations that
they encapsulate. For example, in Listing 6, when we move
“margin: 5px” from “a[id=’nav’]” to “a#nav”, for
an element pointed by “p a[id=’nav’]”, the decla-
ration “margin: 10px” will always be inactive as “p
a[id=’nav’]” ⊂ “a#nav”, and “a#nav” will confer its
higher specificity to its declaration “margin: 5px”, and so
it would override “margin: 10px”. If we do not refactor
Listing 6, “margin: 5px” has the specificity from its selec-
tor “a[id=’nav’]”, which is lower than the one from “p
a[id=’nav’]”. Therefore, for the set of elements matched
by “p a[id=’nav’]”, margin will be 10px.

Applicability of the Procedure To safely merge a pair of
rules Ra and Rb with equivalent selectors Sa ⇔ Sb, we need
to guarantee that there is no selector Sc or Sd in the style sheet
such that: (i) Sc ⊂ Sa with Sc preferred over Sa, and Sb pre-
ferred over Sc or (ii) Sd ⊃ Sa with Sd preferred over Sa,
and Sb preferred over Sd. Note that as Sa ⇔ Sb, the relation
Sc ⊂ Sa already implies that Sc ⊂ Sb, and the same applies
to Sd. More generally, a pair of rules with equivalent selec-
tors Sa ⇔ Sb might be merged if all the selectors that hold a
containment relationship with them, are either more specific
than both Sa and Sb, or are less specific than both Sa and Sb.
Observe that in Listing 6, the subset “p a[id=’nav’]” is
more specific than “a[id=’nav’]” but less specific than
“a#nav”, and that is why the rules cannot be merged.

However, if a rule Rx with a selector Sx fulfilling the con-
ditions of (i) or (ii) was found, the rules Ra and Rb might

still be merged only if the declarations we move among Ra

and Rb do not concern any of the properties declared under
Rx. In Listing 6, we can safely move “padding: 0px” and
“height: 20px” from the rule with the selector “a#nav”
to the one with “a[id=’nav’]”, and delete the resulting
empty rule “a#nav { }”. So after merging “a#nav” and
“a[id=’nav’] while preserving the semantics, we obtain
Listing 7. In realistic style sheets, a much larger set of rules
need to be considered in order to determine if this refactoring
is valid or not.

Listing 7: After merging rules the right way

1 a[id=’nav’] { margin: 5px;
2 padding: 0px;
3 height: 20px }
4 p a[id=’nav’] { margin: 10px }� �

4 Implementation techniques
4.1 Modeling & Analysis of Single Selectors

To detect relations between selectors, we first translate se-
lectors in a logic: each selector Si is associated with a logical
formula F(Si), and then we issue external calls to a logical
satisfiability solver such as the one of [Genevès et al., 2007;
Genevès et al., 2015] to check for the existence of relations
between the formulas. For instance, the validity of a contain-
ment relation Si ⊆ Sj is checked by testing for the unsatisfi-
ability of the negation of the logical implication F(Si) =⇒
F(Sj).

4.2 Grouped Selectors
A grouped selector is a list of n > 1 single selectors, sep-

arated by a comma character. The translation of a grouped
selector Sg intro tree logic requires the translation of each
one of the n single selectors. The comma character plays the
role of a logical “or” between the different single selectors
that compose the group, so the logical disjunction operator |
will be used to connect the single selectors’ translations, cap-
turing this way the semantics of the grouped selector. Given
a grouped selector Sg , composed by n single selectors sg,i,
we have: F(Sg) = F(sg,1) | F(sg,2) | . . . | F(sg,n)

Specificity and grouped selectors Given a pair of single
selectors, to determine which one gets precedence, we calcu-
late their specificity vectors, and compare their components.
Nevertheless, specificity cannot be determined for grouped
selectors. Instead, our tool includes an advanced mechanism
to determine, if possible, which selector will get precedence
when grouped selectors are present. Sometimes this cannot
be determined, and our tool does not refactor the code as it
might not preserve its semantics.

4.3 Traversal of Selectors
Given a style sheet with N rules, there will be N selectors

Si where i = 1, 2, . . . , N . To detect all the possible relations
between selectors, each Si has to be tested for logical inclu-
sion against the remaining N − 1 selectors. This adds up to a
total of N × (N − 1) tests, which for style sheets with more
than 1000 rules results in millions of tests. Since logical tests

are the heaviest computation of our tool, several mechanisms
can be used to avoid such explosion:
1. If two selectors point to elements with different names,
they will always represent disjoint sets

2. If a selector S1 refers to one or more attributes that S2

does not, S1 will never contain S2

3. Given a pair of selectors such that S1 ⇔ S2, and a third
selector S3, if (a) S3 ⊂ S1, (b) S3 ⊃ S1 or (c) S3 ⇔ S1,
then (a) S3 ⊂ S2, (b) S3 ⊃ S2 or (c) S3 ⇔ S2 due to the
transitivity of equivalence and containment binary relations

5 Experimental Results
We now report on the experimental evaluation of our refac-

toring methods with real-world style sheets used in some of
the most popular web sites.

5.1 Analysis of Single CSS Files
We have extracted in Table 1 the largest CSS file used in 20

different websites corresponding to various web applications
types and having different complexity levels. For the sake of
brevity, an identifier (integer) is used to identify each of them.
The number of CSS rules is shown in this table. This number
gives a clear idea of the style sheet’s size and constitutes a
relevant metric for the techniques described in this paper. The
file sizes range from 10 to 320 Kilobytes.

ID Web # CSS
Rules ID Web # CSS

Rules
1 ACM Digital Lib. 102 11 Google Sites4 1676
2 Aerolineas Argentinas 1284 12 IJCAI-15 384
3 Apple 784 13 Lamborghini 1472
4 Argentina Travel 651 14 Microsoft 702
5 Clarin 1188 15 Opera 708
6 CNN 2738 16 PayPal 1089
7 Coursera 3690 17 Salesforce 1158
8 Ebay 1573 18 Shell 1111
9 Facebook 2757 19 Univ. of Cambridge 845
10 Foundation3 800 20 YouTube 1841

Table 1: Dataset for the experiments

In the remaining part of this Section, whenever global av-
erages of percentages are calculated, we take the total dele-
tions in all files and compare it to the total files’ size. Our tool
prototype does not yet support all CSS3 selectors5, so the per-
centages are determined relative to the part of the style sheet
that our prototype supports.

For each file, the size reduction achieved by applying all
the refactoring techniques from Section 3 is shown in Fig-
ure 1. On average, the style sheets sizes have been reduced
a 7.75 %. A 7.79 % of the declarations have been safely
deleted, modifying a 13.66 % of the rules and leaving a
4.71 % of the total style sheet’s rules empty.

Deleting redundant declarations with the procedures from
Section 3.1 contributes to a 60.22 % of the total size reduc-
tion, whereas deleting the rules that became empty (as pro-
posed in Section 3.3), contributes to a 31.70 %. Merging rules

3ZURB Foundation framework’s default template
4Google Sites’ default template
5As of February 2015, 69.46 % of selectors in the dataset of Ta-

ble 1 are supported.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

0

5

10

15

20

Mean=7.75%

1
1
.6
9

8
.6
3

1
1
.2
4

6
.0
4

6
.4
8

1
0
.6
3

9
.7

4
.3
2

1
.5
5

4
.3
4

1
7
.8
3

4
.7
4

1
2
.5
8

4
.1
7

4
.7
4

5
.6
8

5
.3
6 6
.4
3

8
.3
7

1
.4
1

% of Deleted Bytes

Figure 1: % of deleted bytes for each data set entry

as explained in Section 3.4 only contributes by an 8.08 % size
reduction (in bytes). Media Rules are considered in this anal-
ysis, but they are not a procedure itself but transform selec-
tors’ relations, as explained in Section 3.2.

Besides the averages, the percentages of file size reduction
in bytes vary dramatically among the style sheets, and so does
the contribution of the different refactorings proposed in Sec-
tion 3. This shows that the inconsistencies found on the style
sheets depend mostly on the developers, which suffer from
the lack of tools like the one that we propose.

5.2 Style Sheets with Multiple Files
Modern web applications often use several CSS files to

define their presentation. Each file might correspond to the
styling of distinct sections of the application, different parts of
the same page, or some groupings which resembles libraries.

Regardless of the specific instances of the HTML involved,
our tool can achieve the refactoring procedures across several
CSS files. The information needed for the analysis is ex-
tracted from HTML documents: it consists in exploring the
!DOCTYPE declaration, and the link elements that are un-
der the head element. For each link element with the at-
tribute rel="stylesheet", we retrieve the CSS file ref-
erenced by the href attribute, and if the media attribute is
set, we extract its value. Such a value corresponds to a me-
dia query setting the style sheet’s media type. If the media
attribute is not set, then the style sheet’s media type takes
the default value as described in the specification: all in
HTML5 or screen in HTML 4 and XHTML 1, which is
why we need to extract !DOCTYPE specification.

To analyze style sheets with several files, we have retained
the web sites of our dataset whose main HTML page has more
than one CSS file referenced in link elements. This new
dataset is shown in Table 2, as well as the extra information
extracted for this analysis and the total number of rules.

One of the many CSS subtleties is that declarations from
one file might become redundant because of declarations
stated in some other files. To see how this might affect the
results of our refactoring procedures, in this section, we per-
form two experiments for each of the items listed in Table 2.
The first experiment consists in analyzing all of the item’s
CSS files separately, as if they were used in isolation and

ID Web DocType # CSS
Files Default Media # CSS

Rules
9 Facebook HTML5 5 all 3543
11 Google Sites4 XHTML 1 6 screen 2046
12 IJCAI-15 XHTML 1 14 screen 1170
15 Opera HTML5 2 all 890
16 PayPal HTML5 3 all 1186
18 Shell HTML5 6 all 1551
20 YouTube HTML5 4 all 3615

Table 2: Dataset for the experiments.

without interaction between them. For the second experi-
ment, we use the information extracted from the link ele-
ments to emulate the global compounded style sheet that the
browser will effectively use, and we then apply our refac-
toring over it. The refactoring that our tool performs in
this second experiment does not alter the presentation of any
HTML instance, as long as the instance: (1) has the same
!DOCTYPE declaration as the site’s default (listed in Table 2),
and (2) includes at least the same references to external CSS
files (the link elements under head). If (1) or (2) are
not satisfied, then our tool does not guarantee the semantic
preservation of the presentation.

The average time spent for the overall static analysis of a
dataset entry is 91 s, with an average time of 49 ms spent in
each logical solver test.

For each item in Table 2, Figure 2 shows the percentages
of deleted bytes for the two experiments. We can observe
that for every item there exists some interaction between the
different files, since more bytes are always deleted in the sec-
ond experiment. Overall, Figure 2 shows that, in the setting
of style sheets using several files, rules from different files
tend to collide, and in some cases this results in many more
inaccessible and redundant declarations.

9 11 12 15 16 18 20

0

10

20

30

1
.2
7

1
4
.2
4

2
.6
6 4
.7
1

5
.3
4

9
.4
1

1
.3
4

1
.6
1

2
2
.7
7

2
4
.4
2

4
.7
4 6
.5
6

3
2
.1
6

2
.9
1

Separated Together

Figure 2: % of deleted bytes on multiple-file style sheets.

6 Related Work
Little research effort has been dedicated to study the CSS

language and fewer have been dedicated to the quality of
widely deployed style sheets. The work found in [Liang et al.,
2013] explores a visual approach to track the effect of source
code modifications. This approach can be complementary
to existing runtime debuggers available in current browsers

[Mozilla, 2014; Google, 2014; Opera, 2014]. [Keller and
Nussbaumer, 2009; 2010; Benson, 2013; Sinha and Karim,
2013] focus on the reusability of CSS for different platforms,
whereas [Benson and Karger, 2013] introduces a formalism
to better separate CSS structural and styling components.

The work found in [Genevès et al., 2012] does not con-
sider CSS refactoring nor their compression, but it introduces
a translation of CSS selectors into a tree logic for the purpose
of detecting bugs. Our paper relies on an generalisation and
extension of such a translation for the part concerned with the
detection of relations between selectors.

Closer to our work we find [Mesbah and Mirshokraie,
2012] that proposed an analysis whose purpose is to dynam-
ically detect unused declarations. The most closely related
research work can be found in [Mazinanian et al., 2014]. The
authors present layout-preserving refactoring techniques for
CSS based on the detection of rules with very similar decla-
ration blocks. Selectors are grouped and shorthands are used
for recombining those rules. Their tool is tested with a large
dataset and also obtains interesting size reductions. A fun-
damental difference with our approach is that their analysis
is incomplete and conducted at runtime on a particular in-
stance. In contrast, our static analysis technique needs to be
performed only once and the size reduction is observed ev-
ery time a page is fetched by a different user. Furthermore,
the refactoring achieved by [Mazinanian et al., 2014] can be
used alongside those obtained in the present paper, as our
tool is capable of actually deleting declarations rather than
recombining or compressing them. One promising research
work would consist in investigating a technique combining
both static and dynamic analyses.

7 Conclusion and Perspectives
We present techniques and a tool capable of automatically

refactoring CSS files with the aim of reducing the sizes of
style sheets, while preserving their rendering semantics. In
contrast with the existing tools which are mostly dynamic
and operate with a particular document instance, our tech-
niques are based on the static analysis of semantic relations
between CSS selectors and media queries. Our refactoring
applies on a given style sheet, independently of any particu-
lar document instance, and reduces the style sheet size once
for all. Our technique can be used in combination with ex-
isting syntactic optimisers since it performs size reductions
that the latter cannot do. Experimental results show that our
approach is capable of reducing significantly the size of CSS
files of some of the most popular and sophisticated web sites.
For the CSS files tested separately, our preliminary prototype
has achieved an average size reduction of 7.75 %, with a max-
imum of 17.83 %. Furthermore, we showed that, with very
little information about the documents that use a style sheet,
the size reduction can increase up to 30 %.

One promising perspective for further work consists in ex-
tending the analyses by taking into account constraints, such
as DTDs or schemas (like those defined in e.g. the XHTML
Mobile Profile for mobile phones). The knowledge of addi-
tional structural constraints would certainly be beneficial in
detecting even more refactoring opportunities.

References
[Benson and Karger, 2013] Edward Benson and David R.

Karger. Cascading tree sheets and recombinant HTML:
better encapsulation and retargeting of web content. In
WWW’13, pages 107–118, 2013.

[Benson, 2013] Edward Benson. Mockup driven web devel-
opment. In Proceedings of the 22nd International Confer-
ence on World Wide Web Companion, WWW ’13 Com-
panion, pages 337–342, 2013.

[Çelik et al., 2011] Tantek Çelik, Elika J. Etemad, Daniel
Glazman, Ian Hickson, Peter Linss, and John Williams.
Selectors level 3. W3C recommendation, World Wide Web
Consortium, September 2011.

[Consortium, 2014] World Wide Web Consor-
tium. CSS specifications, November 2014.
http://www.w3.org/Style/CSS/current-work.

[Genevès et al., 2007] Pierre Genevès, Nabil Layaı̈da, and
Alan Schmitt. Efficient static analysis of XML paths and
types. In PLDI ’07, pages 342–351, 2007.

[Genevès et al., 2012] Pierre Genevès, Nabil Layaı̈da, and
Vincent Quint. On the analysis of cascading style sheets.
In WWW’12, pages 809–818, 2012.

[Genevès et al., 2015] Pierre Genevès, Nabil Layaı̈da, Alan
Schmitt, and Nils Gesbert. Efficiently Deciding µ-
Calculus with Converse over Finite Trees. ACM Trans-
actions on Computational Logic, 16(2), 2015.

[Google, 2014] Google. Chrome Developer Tools, Novem-
ber 2014. https://developer.chrome.com/devtools/.

[Keller and Nussbaumer, 2009] Matthias Keller and Martin
Nussbaumer. Cascading style sheets: a novel approach
towards productive styling with today’s standards. In Pro-
ceedings of the 18th international conference on World
wide web, WWW ’09, pages 1161–1162, 2009.

[Keller and Nussbaumer, 2010] Matthias Keller and Martin
Nussbaumer. CSS code quality: A metric for abstractness.
In Seventh International Conference on the Quality of
Information and Communications Technology (QUATIC),
pages 116–121, October 2010.

[Liang et al., 2013] Hsiang-Sheng Liang, Kuan-Hung Kuo,
Po-Wei Lee, Yu-Chien Chan, Yu-Chin Lin, and Mike Y.
Chen. SeeSS: Seeing what i broke – visualizing change
impact of cascading style sheets (CSS). In UIST’13, pages
353–356, 2013.

[Lie, 2005] Hkon Wium Lie. Cascading style sheets. Phd
thesis, Faculty of Mathematics and Natural Sciences, Uni-
versity of Oslo, 2005.

[Marden and Munson, 1999] Philip M. Marden and Ethan V.
Munson. Today’s style sheet standards: the great vision
blinded. Computer, 32(11):123–125, nov 1999.

[Mazinanian et al., 2014] Davood Mazinanian, Nikolaos
Tsantalis, and Ali Mesbah. Discovering refactoring
opportunities in cascading style sheets. In Proceedings
of the ACM SIGSOFT International Symposium on the
Foundations of Software Engineering (FSE), page 11
pages, 2014.

[Mesbah and Mirshokraie, 2012] Ali Mesbah and Shabnam
Mirshokraie. Automated analysis of CSS rules to support
style maintenance. In ICSE’12, pages 408–418, 2012.

[Meyerovich and Bodik, 2010] Leo A. Meyerovich and
Rastislav Bodik. Fast and parallel webpage layout. In
Proceedings of the 19th International Conference on
World Wide Web, WWW ’10, pages 711–720, 2010.

[Mozilla, 2014] Mozilla. Firebug, November 2014.
https://getfirebug.com/.

[Opera, 2014] Opera. Opera Dragonfly, November 2014.
http://www.opera.com/dragonfly/.

[Quint and Vatton, 2007] Vincent Quint and Irène Vatton.
Editing with style. In Proceedings of the 2007 ACM
symposium on Document engineering, DocEng ’07, pages
151–160, 2007.

[Sinha and Karim, 2013] Nishant Sinha and Rezwana
Karim. Compiling mockups to flexible uis. In Proceed-
ings of the 2013 9th Joint Meeting on Foundations of

Software Engineering, pages 312–322, 2013.

