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On line Mapping and Global Positioning for autonomous driving in

urban environment based on Evidential SLAM

Guillaume Trehard1, Evangeline Pollard1, Benazouz Bradai2 and Fawzi Nashashibi1

Abstract— Locate a vehicle in an urban environment remains
a challenge for the autonomous driving community. By fusing
information from a LIDAR, a Global Navigation by Satellite
System (GNSS) and the vehicle odometry, this article proposes
a solution based on evidential grids and a particle filter to
map the static environment and simultaneously estimate the
position in a global reference at a high rate and without any
prior knowledge.

I. INTRODUCTION

In the remaining challenges of autonomous driving in

urban areas, vehicle accurate positioning in its environment

is one of the most difficult tasks to tackle. A city offers

indeed a large amount of situations in which some sensors

are occluded (e.g. in urban canyons, traffic jams or crowded

streets) or the road have been modified (e.g. road works,

events) and at the same time, these situations require a

high level of interpretation and knowledge to be correctly

managed.

Current best answers to this problem are based on high

resolution data map (i.e. pre-recorded map close to sensors

representation) mostly coming from a 3D laser scanner [1]

but also from cheaper 2D LIDAR [2]. Even with low-cost

embedded sensors such as a camera [3], this map support

indeed enables to reach a centimetre accuracy. However,

these solutions could rapidly fail if their map is not updated

quickly enough, if the road users are too numerous and

occlude sensors or if the area is simply not mapped.

Another approach known as on-line Simultaneous Local-

ization And Mapping (SLAM) [4], [5] enables to build a

map of the crossed area while locating the vehicle in it. The

results at a local scale can be very accurate but suffer a drift

when considering long term driving or large maps.

On-line mapping supported by a GNSS information have

then been proposed, mostly based on landmarks maps which

are well adapted to visual SLAM [6], [7]. This GNSS support

indeed leads to compensate the natural drift of SLAM

solutions without any prior knowledge so that the estimate

of both the pose and the surrounding map can be corrected

with a GPS measure. If these landmark maps are interesting

for the localization, their description of the environment is

quite poor because limited to the landmarks themselves.

This information, without using high level 3D laser scan,

can however be extracted from a basic 2D LIDAR sensor. A

laser impact indeed provides both the information of the free
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area crossed and about the impacted obstacle. Using such a

sensor in urban environments becomes highly relevant when

it comes to map the surroundings of a vehicle in terms of

drivable areas and occupied zones.

If their mapping quality is not to be demonstrated any

more, the occupancy grids mostly used as a discretized map

of the surrounding area suffers from a drift which cannot be

easily corrected and which lead to a growing error in the

vehicle positioning. Moreover, this grid, applied to outdoor

applications can lead to significant computation costs which

are not suitable in an embedded system.

Based on the indoor localization solutions proposed in

[8] and in [9], this article then introduces a solution for

on-line mapping and global positionning using data from a

2D LIDAR sensor and a basic GNSS receiver. It enables to

preserve a quasi-insignificant drift in a short range mapping

and assure a consistent global positioning with a road level

precision.

Combining the mechanisms of an Evidential SLAM [10]

and of a Monte Carlo Localization close to the FastSLAM

algorithm [8], this solution uses a strong approximation on

the grid map construction which enables to scale the solution

up to a vehicle size with a fast execution.

After a brief introduction to the Evidential SLAM con-

cepts, this paper introduces the proposed Monte Carlo algo-

rithm with the common grid map assumption. Some results

and a discussion on the consistency of the filter are finally

proposed in the last section.

II. EVIDENTIAL SLAM

Using evidential theory in a Simultaneous Localization

And Mapping algorithm has been proposed by the authors in

[10] and validated in [11]. The contribution was to propose to

switch from the classic probabilistic framework to the Trans-

ferable Belief Model (TBM) framework enables to bypass

the static world assumption in most of the current SLAM

processes. The developed algorithm was an adaptation of

a Maximum-Likelihood SLAM (ML-SLAM) for evidential

grids and with data coming from a LIDAR sensor. The output

of the system was a 2D evidential grid which is used as the

map of the environment and the position of the vehicle in

this same map. An overview of the algorithm is proposed in

Fig. 1 and the crucial points of the process are discussed in

this section.

A. Evidential grids

The main advantage of TBM over probabilities is to ex-

plicitly model the not-known and the incoherent information.
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Fig. 1: Overview of the Evidential SLAM algorithm

Applied to occupancy grids, this property enables to describe

the state of each cell of the grid with a set of four masses:

{Free, Occupied, Not-known, Conflict} also denoted {F, O,

Ω, ∅}. This set is defined as the Basic Belief Assignment

(BBA) of the cell and is updated through the time t with

information coming from a LIDAR and according to the

sensor model proposed by Moras et al. in [12].

This sensor model enhances both the area crossed by the

laser beam and the laser impact itself. As illustrated in Fig. 2,

a polar grid is used to model and discretize the laser scan.

For each cell of the polar grid map, defined by its angle

θ and radius r, the measured BBA, denoted
∼
m

Ω

r,θ,t, is then

filled as follows:

{
∼
m

Ω

r,θ,t (A) = λ
∼
m

Ω

r,θ,t (Ω) = 1− λ
with A =

{
O if impacted

F if crossed
(1)

with λ the confidence accorded to the LIDAR sensor.

By converting those polar grids in a Cartesian reference

and searching for the best match with the previously built

evidential grid map, the SLAM process updates each cell

status in the surrounding environment of the vehicle.

∼

m
Ω
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Fig. 2: Filling the polar grid map with a new laser scan

B. Mapping quasi static environment

The Conflict represented in the TBM framework stands for

the pieces of information which have been incoherent among

different sources of information. In the current system, the

evidential grid map is updated at each new laser scan so

that the only source of information is the laser sensor. These

incoherences can then occur in cases of differences between

the measured states of a cell and the corresponding grid map

cell. In an urban scenario and with a correct ego-localization,

the two events which can change a cell state detected by the

LIDAR are the noise of the sensor itself (i.e. false alarms)

or a moving obstacle, passing from one cell to another.

If the reliability of the laser sensor is good enough, one

can assume that most of Conflict situations are the result of

the mobile obstacles in the surrounding of the vehicle.

In its matching and merging operation, the proposed

algorithm then balances the impact of these mobile objects in

the SLAM process without any additive tracking system. The

obtained evidential grid map is then assumed to represent

the quasi static part of the environment. The adjective quasi

static refers here to a period of time depending on the vehicle

dynamics (e.g. High speed vehicles could see a large part of

slow obstacles as static). In this article, terms static and quasi

static will be used indistinctly to ease the read.

C. Matching operator

The key part of the Evidential SLAM lays in its matching

step. It aims at finding the optimum match between a new

laser scan
∼

M t, discretized as discussed in Sec. II-A, and the

previously built evidential grid map M̂t−1.

The idea of the Evidential SLAM algorithm was to pro-

pose a set of candidates around an a priori displacement

which corresponds to the possible matches between the polar

grid (i.e. the new measure) and the evidential grid (i.e. the

past measurement). Each candidate C is represented by a

transformed version of the evidential grid M̂C
t . It is then

scored to select the most likely candidate as the estimated

vehicle displacement. In [10], the a priori displacement

was computed with a basic Constant Velocity model and a

discussion on the choice of the matching operator Op led to

the following one:

Op(M̂C
t−1

,
∼

M t) =
∑

∀cells

f(m̂Ω,C
i,j,t−1

,
∼
m

Ω

i,j,t) (2)

where m̂
Ω,C
i,j,t−1

is the BBA of a cell (i, j) in the occupancy

grid reference and with the displacement corresponding to C

and
∼
m

Ω

i,j,t is the corresponding BBA in the polar grid map.

This has the effect to sum scores of all the couples of cells

from the measured polar grid map and the stored one. The

function f is then defined:

f(m̂Ω,C
i,j,t−1

,
∼
m

Ω

i,j,t) =
(m̂Ω,C

i,j,t−1
∪©

∼
m

Ω

i,j,t)(O)

1− (m̂Ω,C
i,j,t−1

∩©
∼
m

Ω

i,j,t)(∅)
(3)

where ∪© denote the disjunctive rule and ∩© the conjunctive

rule of the TBM [13].

This operator favourites the cells with a BBA concentrated

on the Occupied mass but balances their impact according to

the conflict they create. Conflict situations (i.e. false alarms

or mobile obstacles) will then be ignored or their impact

will be limited in comparison to the static environment (cf

Sec. II-B).

In the following sections of this article, another way to

build a set of candidates will be proposed but the same

operator Op will be used.



III. SYSTEM ARCHITECTURE AND DETAILS

The system introduced in this publication aims at linking a

local mapping provided by an Evidential SLAM (cf. Sec II)

and a global positioning coming from a GNSS receiver. This

fusion must be operated on-line so that a vehicle or a mobile

robot can be located in real-time. As commented in [14],

Monte Carlo Localisation (MCL) has several advantages to

tackle the vehicle global positioning problem. MCL indeed

performs well in non-linear and non-Gaussian situations, it

does not require a complex initialization and it is partic-

ularly easy and fast to implement. Moreover, it eases the

fusion of information from different kinds of sources and at

different rates because its mathematical mechanism is more

flexible with regards to different sensor models. This section

introduces the theoretical background of the MCL and the

architecture proposed to fuse global localization and local

mapping.

A. Monte Carlo Localization

The MCL algorithm is based on Bayes filtering [9] and

applied to mobile robot localization. It aims at estimating the

belief denoted Bel (i.e. the posterior density) of a dynamical

state xt at time t, knowing all the past measurement data.

Using the same notation as proposed in [14] the Bayes

recursive filter theory then provides the following update

equation:

Bel(xt) = ηp(ot|xt)

∫
p(xt|xt−1, at−1)Bel(xt−1)dxt−1

(4)

whith η a normalization factor, ot the observation data and

at the action data at time t.

In this equation, the densities p(ot|xt) and

p(xt|xt−1, at−1) are respectively known as the perceptual

model and motion model which are both assumed as time

invariant. Their notation are then simplified in [14] by

p(o|x) and p(x′|x, a).

The key idea of the MCL is to assume that a set of N

weighted particles could sample the belief Bel(xt). Each

particle is defined as a couple of a state xi
t - a sample of xt

- and a weight wi.

The algorithm is then divided in three main steps:

• A set of N particles is computed according to

Bel(xt−1) approximated by the set {xi, wi}i=1...N,t−1.

• A new set is then proposed by following the motion

model p(x′|x, a) for each particle i.

• Each particle is then weighted according to its impor-

tance regarding the perceptual model p(o|x).

The so formed new set of particles {xi, wi}i=1...N,t rep-

resents the posterior density Bel(xt).

In practice, a resampling step is required when the set of

particles is not efficient anymore to describe Bel(xt). To do

so, the Sequential Importance Resampling algorithm [15] is

used in the proposed system.

B. Evidential SLAM and MCL coupled

Since the proposed solution aims at estimating the global

position of a mobile robot while building the map of its

surrounding, the dynamical state xt seen in Sec. III-A

theoretically represents both the complete pose (position X ,

Y and heading Θ in Cartesian reference and displacement

∆r and ∆Θ in current vehicle polar reference) of the robot

itself and the evidential grid map of its surroundings M .

xt =




X

Y

θ

∆r

∆θ

M




t

(5)

Applying the MCL algorithm to this dynamic state then

leads to a set of N particles containing a sample xi
t of

Bel(xt) and an importance factor wi. It is important to

notice that this sample then represents a realisation of both

the vehicle pose and the grid map of its surrounding.

The motion model applied to each particle is chosen as

the following non-linear evolution:

xi
t =




X i

Y i

θi

ai

M i




t

(6)

where ait =

(
∆r

∆Θ

)i

t

, the action sensor information, is a

sample of the odometry measure density, M i
t is the grid

map transformed with the displacement represented by ait
and the evolution of the pose is proposed according to a

bicycle model:



X

Y

θ




i

t

=



X

Y

θ




i

t−1

+



∆rtcos(θt−1 +∆θt)
∆rtsin(θt−1 +∆θt)

∆θt




i

(7)

Considering only the laser scanner as an observation

sensor in this section, the perceptual model p(o|x) of the

MCL (cf. Sec. III-A) can then be seen as the likelihood of

the new laser scan knowing the a priori state, i.e. the a priori

position and grid map corresponding to the vehicle at time

t. The MCL is based on a set of samples so this perceptual

model is equivalent to score each particle according to its

state and the new laser scan. The proposition is then to use

the matching operator seen in II-C to update the importance

weight of each particle. This weight is updated following

this equation:

wi = Op(M i
t ,

∼

M t) (8)

A normalization step then occurs to assure that the sum

of wi over the N particles equals one.



C. Common grid map assumption

If the MCL theory leads each particle to represent the pose

of the vehicle along with the grid map of its environment,

the amount of memory and computation power required to

manage N grid maps can quickly increase and overpass

reasonable resources. To bypass this limitation and obtain

a fast algorithm, the proposition is to assume that the grid

map obtained by merging each new scan according to the

posterior estimation of the displacement

(
∆̂r

∆̂Θ

)
is a good

approximation, for each particle, of its own grid map M i
t .

The same grid map can then be used to test each particle

displacement using the same new laser scan:

M i
t ≃ M̂ i

t|t−1
(9)

where M̂ i
t|t−1

is the previous estimated grid map M̂t−1

transformed with the displacement corresponding to particle

i.

It enables to store a single grid map in memory which

decreases the required computer resources. The importance

weight of each particle is then updated using the following

equation:

wi = Op(M̂ i
t|t−1

,
∼

M t) (10)

If this can be seen as a strong assumption, results in

Sec. IV show that the map itself is not more affected but

only drifts as if there was no fusion. Since the algorithm

aims at providing a correct map of the direct surrounding

along with a global position, this drift is really soft in the

concerned window so the common grid assumption softly

affects the global positioning.

D. GNSS updating

In addition to the laser scanner a GNSS receiver is

assumed to be available as an observation sensor. The quality

of this receiver is considered to be the same as a standard

GPS. Its horizontal precision without any map-matching is

then around 10 m and its rate is supposed to be 1 Hz. This

rate is different from the laser one (i.e. approximately 10
times slower) so that it is assumed that a GNSS measure

never occurs at the exact same time of a laser scan. Following

the same process as in [14], the algorithm is then ran each

time a new measure is coming, using either the laser scan or

the GNSS measure. Considering this GNSS measure oSat,

the perceptual model proposed in Sec. III-B is not adapted

any more since GNSS information only contains a global

position. Assuming that this position is affected by a white

noise with a covariance of σSat, proportional to the Hori-

zontal Dilution Of Position (HDOP), the importance weight

of each particle is then updated following this equation:

wi ∼ N (

(
X

Y

)i

, oSat, σSat) (11)

i.e. the probability of the particle position

(
X

Y

)i

from

the Gaussian distribution with the average oSat, the GNSS

measure, and the standard deviation σSat.

The Gaussian distribution used to represent the GNSS

noise certainly appears as a strong simplification regarding

other models but this system aims at highlighting the validity

of the common grid map assumption (cf. Sec. III-C) via

simulated GNSS measure. A more advanced model will be

used in future works.

IV. VALIDATION

A. Results

In all the following results, the KITTI database is used

as raw data input [16]. The following sensors are then

simulated:

• A one layer, 360 deg LIDAR data is extracted from

KITTI’s Velodyne data.

• An odometry measure is created by adding a white

noise with standard deviations σv = 0.3 m/s and σw =
0.5 rad/s to the true velocity and rotation speed.

• A GNSS measure is generated using the MATLAB GPS

toolbox [17] with a standard deviation σSat = 8 m to

simulate a classic GNSS signal.

As an example of result, the Root Mean Squared Error

(RMSE) of the global position on a 2.2 km sequence of

the KITTI database has been computed over 50 runs of the

algorithm and plotted on Fig. 3. In addition, a example of

an obtained result on another 2.5 km sequence can be found

in Fig. 4.
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Fig. 3: RMS Errors of 50 runs of the algorithm on the

same KITTI sequence

These results shows that the proposed filter converges to

an RMSE approximately half of the standard deviation of

the GNSS signal used. If this is still a 3 m error, it is worth

noticing that it is achieved with low cost odometry and GNSS

system supported by a reasonable cost LIDAR. Moreover,

these results are obtained without any prior knowledge or

map support so it shows the potential of this algorithm if

those information were added.

In addition, the time of execution of the algorithm was be-

tween 60 ms and 70 ms (depending on the laser impact num-

ber) with 5000 particles and a local map of 100 m × 100 m



and a resolution of 0.2 m. The processor used was an Intel

i5 without gpu support.
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Fig. 4: Example of global positioning on a KITTI

sequences

B. Consistency

To measure the consistency of the proposed filter, the

Normalized Estimation Error Squared (NEES) is used [18],

[19]. It is used to check whether or not a filter can be

considered as consistent by measuring, knowing the true state

xt, the NEES coefficient ǫt:

ǫt = (xt − x̂t)P
−1

t (xt − x̂t)
T (12)

where P−1

t denote the inverse covariance matrix associated

to the estimated state x̂t.

This coefficient is averaged over M Monte Carlo runs of

the algorithm. When M approaches the infinite, the proof of

consistency is validated if ǫt tends to the dimension of the

considered state for each step t of the algorithm.

A simulation has then been run over M = 50 Monte Carlo

tests on the same sequence of the KITTI database as the one

used to compute the RMSE (cf. Sec. IV-A). The results are

plotted in Fig. 5.
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The first plot refers to the NEES of the pose




X

Y

Θ
∆r

∆Θ




introduced in Sec. III-B. It shows fast augmentations of the

NEES coefficient largely over its supposed limit (i.e. the

state dimension: 5 here) which signifies that the filter is

optimistic. This results might be linked with the one obtained

by T. Bailey et al. in [18]. A particle filter is indeed used to

perform a SLAM algorithm and the optimistic character of

the filter is linked to the resampling step which leads to loose

track of some displacement hypotheses of the SLAM itself.

The common grid map approximation explained in Sec. III-

C is moreover strongly inconsistent so that the displacement

related part of the state might suffers this approximation too.

The second plot confirms these hypotheses. The NEES

refers there to the global position part of the state



X

Y

Θ




and the plot shows a much more reasonable result of a filter

slightly conservative.

It enables to conclude that the global positioning of the

proposed filter is a safe approximation of the true position

but that the drift which affects the mapping part remains.

C. SLAM drift

As explained in Sec III-C, a common grid map is used

for each particle of the MCL algorithm to approximate the

correct map. This hypothesis is assumed to be valid since

only the direct surrounding of the environment is considered

and the corresponding grid map then not suffer a strong

drift. To validate this approximation, the algorithm was tested

over 11 different sequences of the KITTI database and the

drift affecting the grid map was computed according to the

method proposed in [16].
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Fig. 6: Drift of the map on 11 sequences of the KITTI

database

The results plotted on Fig. 6 show the drift which affects

the map and illustrate that it is under 5 % in displacement

and 0, 03 deg/m in rotation. Those results are similar to the

ones obtained with the Evidential SLAM in terms of local

positioning [11], [10]. An example of the tested series is

plotted Fig. 7.
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Fig. 7: Example of local positioning on a KITTI sequence

The common grid map assumption can then be validated

as an interesting alternative for on-line mapping of the direct

environments of the vehicle.

D. Discussion

One can notice that the SLAM algorithm could be seen

as an odometry measure in the proposed system. Through

the observation model p(o|x) seen in Sec. III-B, the SLAM

process indeed balances the displacement of each particle. As

a consequence, the SLAM score infers on the global process

only via the estimation of the vehicle displacement, exactly

like an odometry.

On another hand, the GNSS signal only provides infor-

mation about the global positioning part of the algorithm.

Its impact on the global process is then restricted to the the

global pose on the vehicle.

This way of fusing a GNSS and a local mapping then

enables to provide a good local navigation while searching

for its coordinates in global references. If these global

coordinates are only at a road level of accuracy, the measured

displacement is accurate around the decimetre so can support

a planning or control system.

In addition, the global navigation quality is sufficient to

be matched with a map database so can provide a direct link

between a local and a global description of the scene.

V. CONCLUSION

A solution to fuse a GNSS localization with an Evidential

SLAM using a particle filter have been proposed and tested

in this article. This solution enables to both locate a vehicle

in a global reference and map its surrounding. The map of

the surrounding suffers a drift which can be ignored when

considering only the direct direct environment so that it can

be used for control purpose. The filter is slightly conservative

so that the output position provided is a safe estimation which

can then be used in a map-matching algorithm. If the global

performances still have to be improved, this system is a fast

solution which can easily be implemented on an embedded

system. It finally opens lots of perspectives for urban driving

such as on-line mapping using both the information of a

global map database and of the embedded sensors.
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