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2D Laser Based Road Obstacle Classification for Road Safety
Improvement

Pierre Merdrignac!-2, Evangeline Pollard! and Fawzi Nashashibi!

Abstract— Vehicle and pedestrian collisions often result in
fatality to the vulnerable road users (VRU), indicating a strong
need of technologies to protect such persons. Laser sensors
have been extensively used for moving obstacles detection and
tracking. Laser impacts are produced by reflection on these
obstacles which suggests that more information is available for
their classification. This paper proposes a new system to address
this issue. We introduce the design of our system that is divided
in three parts : definition of geometric features describing
road obstacles, multiclass object classification from an adaboost
trained classifier and track class assignment by integrating
consecutive classification decision values. During this study, we
show how specific features adapted to urban obstacles enhance
the state of the art method for person detection in 2D laser data.
Hence, in this paper, we evaluate usefulness of each feature and
list the best ones. Moreover, we investigate the influence of laser
height for each class showing that classification performance
depends on the sensor position. Finally, we tested our system
on some laser sequences and showed that it can estimate the
class of some road obstacles around the vehicle with an accuracy
of 87.4%.

I. INTRODUCTION

According to the statistics [1], more than 3000 people die
daily due to dangerous driving. The main reason of accidents
is the inability of road users to detect and perceive oncoming
dangers before a sufficient amount of time so that reactions
for accident avoidance can be taken. Much attention has been
put in detecting pedestrians and predicting the possibility
of collisions using sensors and computer vision techniques
[2]. Pedestrian detection is known as a particularly hard
problem because each human being is unique. It results in
large appearance, shape and pose variation.

As mentioned in [2], most of existing pedestrian protection
systems rely on exteroceptive sensors such as laser, camera
or radar. Contrary to camera, laser range finder data are not
subject to illumination changes. Moreover, static targets (i.e.
a pedestrian waiting to cross the street) can be detected by
means of a laser which is not always possible with radar
Sensors.

Laser sensors use infra red light to illuminate the en-
vironment and obtain a 2/3D point cloud representing its
surrounding environment. In the past years, laser sensors
were mainly used for obstacle detection and tracking for
autonomous vehicles [3], [4], [5]. In this work, we are
addressing road obstacle classification based on laser measu-
rements. Once points are clustered in objects, one may like

1 Pierre Merdrignac, Evangeline Pollard, Fawzi Nashashibi are with
RITS Project-Team, INRIA Rocquencourt, Domaine de Voluceau, B.P. 105,
78153, Le Chesnay, FRANCE. name . surname@inria.fr

2 Pierre Merdrignac is with Institut VEDECOM, 77, rue des Chantiers,
78000, Versailles, FRANCE.

+ Pedestrian

50] Vehicle
Cyclist

4

0 Static obstacle|

L L L L L
30 20 10 -10 -20 -30

<ot

Fig. 1: Example of laser scan with labels associated to
every laser impact. The corresponding image of the scene
is displayed with bounding boxes around the objects.

to characterize these clusters and recognize objects that are
close to the vehicle. Thus, if a vehicle is able to distinguish
between static (buildings, trees, posts,...) and moving objects
(pedestrians, cyclists, vehicles,...) safer decisions can be
taken. In the past years, machine learning such as Adaboost
[6], [7], [8] or Support Vector Machines (SVM) [9] has been
applied to tackle the classification problem.

Automotive sensors produce data at a certain time fre-
quency. This information is exploited by adding tracking
of the road obstacles [5], [10], [11]. Indeed, usual objects
recognition methods in computer vision aim at classifying
objects for each available data [12], [13] and do not integrate
the information brought by consecutive observations. When
similar approaches have been applied with laser data [6],
[71, [8], the authors try only to get the best recognition
performances for each data. In our paper, road obstacles
are classified by considering time integration of consecutive
classification scores for every track.

In this paper, we are introducing a new system estimating
road obstacles classes from laser measurements. In this
approach, 2D features are calculated for each detected object
and a multiclass classifier is used to obtain decision values
about each possible class. Finally, these decision values are
integrated over time to refine classification. In this paper, 85
features are presented to describe the different road obstacles
classes and a strong classifier is build using adaboost trai-
ning. In the evaluation part, we provide insights about the
best features by analyzing which one are the most important
during the classification procedure.

The paper is organized as follows. Section II highlights
the related work. In Section III, our method for multiclass
object recognition from laser point cloud is described. The
performances of the method are evaluated in Section IV



Finally, Section V concludes this paper.

II. RELATED WORK

Moving obstacles recognition has been a topic of interest
for the past years in robotics. In indoor environments, it has
first been tackled by assuming that all moving targets were
pedestrians, so that, the remaining issue was to deal with
target tracking from laser measurements [14]. Arras et al
[6] were the first to apply learning methods to recognize
persons in 2D laser data. In this work, the authors define a
set of 14 features that can be extracted from laser segments
and learn a model describing people in indoor environment
by applying an adaboost strategy. Performances of this
method are evaluated from a confusion matrix comparing
classification of person and non person segments in a corridor
environment and an office environment. These results are
very promising with more than 90% of correct detection and
less than 5% of false alarms. However, performances are
decreased in a more cluttered environment (here, the office)
and when the classifier learned in the office is used in the
corridor environment. Thus, directly applying this method
to outdoor environment would be too difficult because the
clutter is far more important than in an indoor environment.

To achieve perfect recognition in outdoor environments,
using a single 2D laser scanner seems too much limited.
Hence, some researchers equipped their vehicles with came-
ras and used a combination of vision recognition methods
together with detection on 2D range data [15], [4]. Other
researchers decided to use 3D laser scanner to obtain more
dense representation of the environment [9], [16], [7] and
[8]. Indeed, some laser systems are made of multiple laser
sensors scanning the environment over multiple layers and
producing 3D point clouds of the surrounding of the vehicle.
In [9], the authors calculate features at a point level in order
to assign a label to each point of the point cloud. Then,
SVM classifier is used to recognize between “vehicle” and
“non-vehicle” data. In [16], the authors define two kinds of
descriptors in laser data : segment descriptors to describe the
appearance of an object and holistic descriptors to describe
more general properties such as speed and acceleration. In
this work, segment descriptors are calculated from various
appearance descriptors inspired by computer vision methods
such as spin images [12] and histogram of oriented gradients
(HOG) [13]. This last approach may face a computational
burden due to the high number of data required to calcu-
late segment descriptors. Layer-based approaches have been
proposed in [7] and [8]. Both rely on adaboost to train
the classifier. These approaches propose simpler solutions
that should reduce the computation cost with still acceptable
performances, but, they did not consider how consecutive
observations can be integrated to obtain a better estimation
of each track class.

Within this paper, we decided to focus on classification
with 2D lasers because we believe that more information can
be extracted from these measurements than what was done
in the previous works. The main contribution of the work
is the introduction of a new system to dynamically estimate

the class of road obstacles. This is made possible with 1) the
definition of a new feature set fitted to road obstacles, 2) the
design of a classifier using machine learning approach, and,
3) the integration of classification decision values given by
successive observations.

IIT. MULTICLASS OBJECT RECOGNITION WITH LASER
DATA

A. Problem statement

In this paper, we are considering a 2D or a 3D laser
points cloud has been correctly segmented and consecutive
observations of the same objects are associated. Let us define
¢ = {Ci;i = 1,...,c}, a set of ¢ classes of road obstacles
and a track as a temporal series of estimated states of a
dynamic target. A track Ty, at a time step k, is defined in
eq. (1) where Zy, is the estimated position and velocity and C
is the estimated class of T},. At time k, a new observation is
given by the laser sensor, called here a cluster S*. Moreover,
in this paper, we are focusing on estimating the class C of Ty,
We are assuming Zj is estimated using a standard tracking
method such as Kalman filtering.

Ty, = {#, C} (1)

In [17], the authors provide a wide review on statistical
pattern recognition. Following [17], a cluster S € ./, where
7 is the set of possible segments, is described by a vector
of [ feature values x = [z1, T3, ...x;] where z; is a real value
given by applying feature function f; : ¥/ — R to S. A
Bayesian decision rule is applied to x in order to classify
S. Here, a supervised learning approach has been chosen to
design the classifier, i.e., the decision rule is learned from a
training set with labeled clusters.

In our approach, we defined a large set of features des-
cribing road objects and applied adaboost method to learn a
strong classifier offline from a predefined feature set.

Finally, in this system, every cluster S* is classified from
statistical pattern recognition and classification results are
fused to estimate C.

B. Geometric features definition

In this work, we propose an extending set of 2D geometric
features from considerations about moving obstacle classes
(pedestrians, cyclists and vehicles) encountered in urban
environments such as :

— Pedestrians legs can be observed as two sub-clusters in

the pedestrian point cloud.

— Bicycles are roughly linear clusters.

— Depending on the point of view, vehicles can be either
observed with one line (usually its back or its front) or
two perpendicular lines.

In Table I, a list of 2D geometric features describing road
obstacles is given. This list is split in four categories : ge-
neric, vehicle, pedestrian, and, obstacle centered features. To
express these features, the following magnitude are defined :

— Og, the center of S.



Nr Feature Name [ Nr Feature Name [ Nr  Feature Name
fl Number of points 2 Width 3 Length
14 Standard deviation bal Mean deviation from median | f6 Linearity
Generic 17 Circularity f8 Radius 9 Boundary length
f10 Boundary regularity f11 Mean curvature f12 Mean angular difference
f13-fl4  Left & Right jump distance f15 Speed f16  Orientation
182 Normalized number of points | f83 Mean intensity f84  Max intensity
185 Intensity standard deviation f47-f51  f2-f5, f16 Derivative
Nr Feature Name [ Nr  Feature Name
Vehicle f17 Angle between s1 and so fI8 Length of s
f19-20  Max & Min length in {s1,s1} | f21  Ratio between length of s1 and s
Nr Feature Name [ Nr Feature Name
f22-f23  Min & Max distances in {Og01,0502} 24 Distance 0102
Pedestrian 25 Ratio between distances OgO1 and OsO2 | f26-f39  f2-f8 Min & Max in {L1,L2}
f40-f42  f8-f10 Ratio between L1 and Lo f52-f59  f2-f5 Derivative in {L1,L2}
f60-f63  f7-f8 in {L1,L2}
Nr Feature Name
f43-f46  f2-f5in Rg
f64-f69  Lateral & Longitudinal standard deviation in {Rg, R1, R2}
Obstacle Centered f70-f73  Min & Max lateral & longitudinal standard deviation in {R1, Rz}
f74-f75  Ratio between lateral & longitudinal standard deviation in R; and Ra
f76-f81  Lateral & Longitudinal standard deviation derivative in { R, R1, Ra}

TABLE I: List of 2D geometric features.

— Ly and Lo, the sub-clusters extracted by applying 2-
means clustering on S.

— O7 and O, the centroid positions of L1 and Lo.

— Rg, Ry and Rs, the sets S, Ly and Lo transformed in
the obstacle coordinate system, i.e., centered in Og and
oriented towards its direction of motion.

— s, a segment fitted on cluster S.

— s1 and so, the two segments fitted on S to describe two
sides of a vehicle.

Generic features are composed with the features intro-
duced in [6] to describe persons in 2D laser data, cluster
length and object orientation (fI-f16). Besides, f82 is dividing
number of points in S by distance to the sensor, i.e, fI is
normalized wrt distance, and, some descriptors are calculated
from laser points intensity (f83-f85).

Vehicle features are defined by fitting one or two seg-
ments in the cluster and calculating diverse values on these
segments (f17-f21).

Pedestrian features are defined from leg detection in
obstacles clusters. Various values are calculated from leg
sub-clusters such as distance between the two centroids O
and O, distance of these points to the cluster center Og
(f22-f25), and generic features applied to each sub-cluster
(f26-f42, f60-163).

Obstacle Centered are various descriptors extracted by
transforming the measured cluster in the obstacle coordinate
system (f43-f46, f64-f81).

Finally, association of consecutive measurements permits
to calculate the derivative of some characteristics (f47-f59,
J76-f81).

In conclusion, we define 85 features for road obstacle
description by combining already existing descriptors with
general characteristics concerning usual road obstacles. In
the next section, we explain how a classifier can be construc-
ted from all this set.

C. Adaboost based cluster classification

In this work, it has been chosen to apply supervised
learning method to generate a classifier from the previously
defined feature set. We briefly describe here the learning
method introduced in [18] and successfully applied to laser
data in [6] called adaboost.

Boosting has the ability to create a strong classifier from
N weak classifiers. The only requirement for the weak
classifiers is to perform slightly better than random guess.
Therefore, a common approach is to train a simple classifier
for each feature f;. This classifier is described in eq. (2)
where h; is the weak classifier for f;, 6; the threshold
between the two classes, and p; is either +1 or —1 modifying
the inequality direction.

m(s) = {

+1,
~1,

if pifi(S) < pib

otherwise

2)

During the training phase, the weak classifier with the
highest classification score is repeatedly selected at each
step n 1,...,N. As all features are used to train a
weak classifier, a feature f; can be selected to generate a
classifier at different steps, e.g., n; and ng, but, with different
threshold values 6,,, and 6,,,. Finally, the strong classifier is
given in eq. (3) as a combination of the weak classifiers h,,
weighted by «,,. Usually, classification decision is given by
the sign of d(.).

N
d(S) =Y anhn(S) 3)

To create a multi-class classifier, a one-versus-all strategy,
i.e., for each class C' € ¥ a classifier is constructed by
calculating the boundary for class C' versus the other classes,
has been chosen. This approach is interesting to obtain a
measure of how likely a pattern belongs to a certain class.



In our approach, decision values are calculated for every
class, and no decision is taken at this level. Class assignment
to each track is described in the next section.

D. Track class estimation

At the final stage, a class C' € € U () is assigned to each
track Ty, where Cy corresponds to the 'No Object’ class,
based on cluster classification.

Let us consider that Tj is composed of k clusters
{S1,...,S*}. The multiclass classification of S* returns c
decision values {df}izlw,c from eq. (3). Hence, the vector
D" = [d¥,...,d*]T can be considered as an observation
of the class of T} to estimate the posterior distribution
p(Ci|Dk, ...,D1) for each class C;. At each time k, thanks
to Bayes rule, p(C;|D*,...,D') can be updated from the
previous time k£ — 1, and, the likelihood of the observation
given the class C;, p(D*|C;), as described in eq. (4).

p(CiID*!, . D )p(D¥|C;)
> eop(CiD L Dl)p(Dk|Ci)(4

p(CiD*, .., D') =

Furthermore, the likelihood function p(D*|C;) is defined
in eq. (5) where sigm(.) is the sigmoid function ! often used
with neural networks. This function takes its values in R and
returns a real value in the interval |0, 1[. Thus, it can measure
how likely a cluster belongs to each class. Then, likelihood
for class Cj is defined as the minimum of all the likelihoods
of not belonging to a class, i.e., how likely a cluster does
not belong to any of the predefined classes. This likelihood
is not a probability distribution function (pdf), however, the
denominator in eq. (4) is a normalizing term which ensures
the posterior distribution sums to 1.

. _in C(1 —sigm(dy)), if i =0
p(D¥|C;) = ¢ 7= 5)
sigm(d¥), if i #0

Finally, the estimated class C of Ty, is defined in eq. (6)
by the Maximum a Posteriori (MAP).

C = argmax(p(C;|D*, ..., D)) ©)
C;e€

IV. PERFORMANCE EVALUATION
A. Acquisition of laser data

The proposed solution is evaluated with Kitti data set
[19] which gives a large number of laser data in many
road environments (city, campus, residential and road). The
available laser sensor is a Velodyne HDL-64¢e providing data
with 360° horizontal field of view on 64 layers, which makes
about 125000 points, every 100 ms. As our approach is
designed for 2D laser data, we simulated a single layer laser
from Velodyne data 60 cm above the ground. Moreover,
Velodyne data are not annotated in Kitti data set. Therefore,
we labeled seven sequences with different classes of frequent
road obstacles such as : pedestrians, cyclists, vehicles, trees

1. sigm(z) = 1+i*$

and posts. To this end, Table II shows the number of clusters
and tracks contained in the 2D data set.

Number of clusters | Number of tracks
Pedestrians 2550 29
Vehicles 2557 36
Bicyclists 723 10
Static objects
(Trees and posts) 2089 38

TABLE II: Description of the data set.

Laser based classification is evaluated with two different
classification systems :

— Arras : state of the art for 2D pedestrian classification

introduced in [6].

— RoadFeat+Adaboost : the extended set of road features

presented in Sec.IlI-B with adaboost training.

During evaluation, each sequence among the seven an-
notated ones is alternately selected as validation set. The
remaining sequences are used to train a classifier.

In the following sections, we first investigate which are
the most relevant features used with adaboost for both Arras
set and our RoadFeat set in road environment. Performances
of these two feature sets are compared for every class, and,
we focus on the performances of our classifier versus laser
height. Finally, track classification results are shown.

B. Feature selection

In this section, the two classifiers are trained on our
labeled data. Table III displays the five best weak classifiers
corresponding to five features that are selected for each class.
As mentioned in [6], f8 which is the radius of the circle
fitted to the cluster is the best feature to classify pedestrians
with Arras features, but also to classify cyclists with both
techniques. However, with our proposed feature set, f32
corresponding to the Maximum Mean Deviation from Median
between the two sub-clusters is the most important feature.
Concerning vehicles, f15 that is their measured speed is the
best feature for both methods. In addition, we notice that the
second best features for pedestrians, vehicles and cyclists are
f83 and f85 which are calculated from laser impacts intensity.
This shows how this value presents an interest for obstacle
classification.

Class Selected feature | oma | g | gm "
Pedestrian = 21 Z ZZ - f];82 }‘é § f];’89 g g g 5
i
Static Obstacle — (‘; Z;Zm ; é ; fj'; 15 § j ; g }‘g

TABLE III: Best feature selected by adaboost weak
classifier.
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Our solution is implemented using matlab and is not yet
designed for embedded systems, however, we can already
bring some insights about computation time. Fig. 2 displays
the time needed for training the classifiers and for classifying
a cluster versus the number of weak classifiers. As features
number is increased with our solution, the training time is
much more important and requires more than 150s with
100 weak classifiers. However, we notice on Fig. 2.(b)
that classification time is only dependent on the number of
classifiers and is less than 0.02ms with 100 weak classifiers.
In addition, due to increase of the whole set and calculation
of more complex functions such as k-means, and segment
fitting, time for calculating feature vector is augmented from
0.15ms with Arras features to 1.14ms with our RoadFeat
features for every object.

In conclusion, specific road features are selected in priority
at the cost of a higher computation time. For system optimi-
zation, only the most efficient ones could be calculated.

C. Cluster classification

In this section, performances of adaboost based classi-
fication are established using the two feature sets defined
in Section IV-A. Fig. 3 shows classification performances
for each class. We can see on this figure that the defined
RoadFeat feature set can outperform, or, at least, does
not degrade, Arras feature set for every class. The major
improvement is obtained with vehicle class with a precision
of almost 90% for a recall of 90%.

For pedestrian class, we get a precision of 80% for a
recall of 70% with the two methods. This is lower than the
results introduced in [6] in an indoor environment, but, it is
interesting considering the complexity of urban environment.

In Fig. 4, we investigated the influence of laser height on
classification results for each class by training and evaluating
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Fig. 4: Precision Recall versus laser height.

classifiers with three height values : low (30 cm), middle
(60 cm), high (100 cm). For pedestrian class, the best results
are obtained with middle and low height. Indeed, their legs
may not be visible in laser data at higher height. Middle
height is preferred to classify cyclists as their detection
is better at this level. Finally, the best results for vehicle
classification are obtained with high height. In conclusion,
it would be interesting with 3D laser scanner to combine
classification results of multiple layers with multipart fusion
technique as it was proposed in [7].

D. Track classification

The integration of consecutive decision values is used to
attribute a class to some fracks.

We selected an example for each moving target class :
pedestrian, cyclist and vehicle. Results are shown in Fig. 5.
For every sub-figure, left bottom figure represents the cluster
likelihood at time k, right bottom figure the evolution of
posterior probability, and, upper figure displays laser points
in the bounding box of the track in the camera image. We can
see on these examples how time integration helps to estimate
track class. However, we can distinguish some errors at the
beginning for the cyclist, Fig. 5.(b). Indeed, in this data, the
cyclist is far away at the beginning, making detection very
noisy and imprecise, and, leading to an incorrect classifica-
tion. However, for road safety, this is maybe not a big issue
because the class has to be correct when the obstacle comes
closer to the vehicle which is the case in this example.

Fig. 6 shows fracks classification performances with a
confusion matrix. For this evaluation, we considered only
the tracks with more than ten clusters to create ground
truth for every class. The class considered as outcome is the
one assigned to each obstacle at the end of the experiment,
i.e., when all the information is integrated. Accuracy of the
classification method is about 87.4% which is very promising
considering multiclass challenge. Besides, we notice only
one misclassification and one false alarm for the vehicle
class, and, three misclassifications and seven false alarms for
pedestrian class. It is hard to give a conclusion concerning
cyclists due to their small number. Finally, we can see in
Fig. 6 that six static obstacles are classified as pedestrians
which is the most important source of confusion.
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Condition
No Object | Pedestrian| Vehicle Cyclist Static Precision
Obstacle
Test No Object 36 2 0 2 5 80.0%
Outcome

Pedestrian 1 26 0 0 6 78.8%

Vehicle 1 0 35 0 0 97.2%

Cyolist 0 0 1 8 0 88.9%

Static 0 1 0 0 27 96.4%

Obstacle

Recall 94.7% 89.7% 97.2% 80.0% 71.1% | Accuracy

87.4%

Fig. 6: Track confusion matrix

As a conclusion, the fusion of consecutive cluster classi-
fication results allow the estimation of the class for a full
track.

V. CONCLUSION

Laser sensors have been proven to be a robust sensor
for detection and tracking of moving objects. In this paper,
a system classifying road obstacles for detected clusters
and fracks in multiple classes is introduced. We believe
that 2D laser scanner can be integrated in future vehicles.
Therefore, we designed a system for these kind of sensors
by defining a large amount of features. We build a multiclass
cluster classifier showing how introducing a new feature set
dedicated to road obstacles can bring good performances
even in complex environments. It is shown that this fusion
can disambiguate classification and give promising results.
However, the extension of the feature set increases calcula-
tion time. Thus, in the final system, only features that are
relevant to discriminate classes should be implemented.

Our future work includes the improvement of fusion rule
to consider cluster detection and occlusion notes and fusion
of laser based classification with classification produced by
other sensors such as cameras.
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