
HAL Id: hal-01179369
https://inria.hal.science/hal-01179369

Submitted on 22 Jul 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NoDerivatives 4.0 International License

Using Slicing to Improve the Performance of Model
Invariant Checking

Wuliang Sun, Benoit Combemale, Robert B. France, Arnaud Blouin, Benoit
Baudry, Indrakshi Ray

To cite this version:
Wuliang Sun, Benoit Combemale, Robert B. France, Arnaud Blouin, Benoit Baudry, et al.. Using
Slicing to Improve the Performance of Model Invariant Checking. The Journal of Object Technology,
2015, pp.28. �10.5381/jot.2015.14.4.a1�. �hal-01179369�

https://inria.hal.science/hal-01179369
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://hal.archives-ouvertes.fr

JOURNAL OF OBJECT TECHNOLOGY
Published by AITO — Association Internationale pour les Technologies Objets, c© JOT 2011

Online at http://www.jot.fm.

Using Slicing to
Improve the Performance of
Model Invariant Checking

Wuliang Suna Benoit Combemalebc Robert B. Francea

Arnaud Blouincd Benoit Baudryc Indrakshi Raya

a. Colorado State University, Fort Collins, Colorado, USA

b. University of Rennes 1, Rennes, France

c. INRIA, Rennes, France

d. INSA, Rennes, France

Abstract In Model Driven Development (MDD), it is important to ensure that
a model conforms to the invariants defined in the metamodel. Such invariant
checking can improve developers’ understanding of modeled aspects of complex
systems and uncover structural errors in design models. General-purpose rigorous
analysis tools that check invariants are likely to perform the analysis over the
entire metamodel and model. Since modern day software is exceedingly complex,
the size of the model together with the metamodel can be very large. Consequently,
invariant checking can take a very long time. For example, checking a model
consisting of 5,000 elements can take up to several hours if the analysis completes.
Moreover, sometimes the analysis process cannot be completed as the system
resources get exhausted. To this end, we introduce model slicing within the
invariant checking process, and use a slicing technique to reduce the size of the
inputs in order to make invariant checking of large models feasible with existing
tools. The evaluation we performed provides evidence that model slicing can
significantly reduce the time to perform the invariant checking. In the experiments
that we conducted, we achieved speedups ranging from 1.5 to 36.0 and we also
demonstrate the correctness of the checking results.

Keywords UML, Metamodel, Model, OCL, Invariant Checking, Model Slicing

1 Introduction

Model-driven development (MDD) is a paradigm that (1) promotes models as the major
artifacts to drive the software development process, and (2) uses model transformation and code

Wuliang Sun, Benoit Combemale, Robert B. France, Arnaud Blouin, Benoit Baudry, Indrakshi Ray.
Using Slicing to Improve the Performance of Model Invariant Checking. In Journal of Object Technology,
vol. 0, 2015, pages 0:1–28. Available at http://www.jot.fm

http://www.jot.fm/copyright.html
http://www.jot.fm
http://www.jot.fm
http://www.jot.fm
http://www.jot.fm

2 · Wuliang Sun et al.

generation to bridge the gap between high-level design models and low-level implementations.
In MDD, models are often used by code generators. Since design errors in the models may be
propagated into the implementations via model-to-code transformation, it is very important to
uncover design errors during the early stages of software development.

In MDD, models must conform to the well-formedness rules of the metamodel. Such
well-formedness rules can be thought of as invariants of the metamodel. One needs to check
the models to ensure that the invariants of the metamodel are satisfied using automated tools
such as Eclipse OCL [Tea05], so that the developers can identify potential problems during
design time before they are used to generate code. However, the existing tools are inefficient
for invariant checking on large models. For example, as shown in experiments we conducted
and described in this paper, checking model instances consisting of hundreds of thousands of
elements against a metamodel that includes 345 elements would take more than two hours.
Thus, there is a need for techniques that support invariant checking for large models and
metamodels.

Slicing techniques [Wei81] produce reduced forms of artifacts that can be used to sup-
port, for example, analysis of artifact properties. Slicing techniques have been proposed
for different software artifacts, including programs (e.g., see [GL91][Wei81]), and models
(e.g., see [ABC+11][BCBB12][EW04][KMS05][KSTV03]). In the MDD area, model slicing
techniques have been used to support a variety of modeling tasks, including model comprehen-
sion [ABC+11][BCBB12][KSTV03], analysis [JGB11][LKR10][LKR11], and verification
[EW04][SCWM10][SWM11].

In model slicing techniques, slicing criteria are input data used to determine the elements
that are included in slices. Model slicing techniques typically proceed in two steps: (1) The
dependency between model elements of interest (e.g., elements satisfying a slicing criterion)
and the rest of the model is analyzed using heuristics related to a model’s properties (e.g., the
structure of a model); and (2) a fragment of the model consisting only of elements satisfying a
slicing criterion, is extracted from the model.

In this paper we introduce the model slicing technique to the invariant analysis process. The
approach aims to improve the size of the model that can be checked using invariant checking
tools. The approach is not intended to improve the existing invariant checking algorithms.
Instead, the approach aims to reduce the size of the checking inputs to make the analysis more
efficient. It means our approach preprocesses the input of the invariant checking process, and
thus is agnostic to the checking technologies the software developers are working with. In this
paper we focus on analyses that involve checking the consistency between a model and the
invariants defined in a metamodel. However, checking whether a model is a valid instance of
the metamodel is out of scope of the paper. This means that we assume the model conforms to
the structural constraints (e.g., multiplicity constraints) defined in the metamodel, but may or
may not satisfy the invariants defined in the metamodel.

We have developed a framework that provides: (1) an implementation of the model
slicing technique; (2) an implementation for checking models against invariants defined in
the metamodels. The framework was implemented using Java and the Eclipse Modeling
Framework (EMF) [SBMP09]. Even though the evaluation framework builds upon Java and
Eclipse, the slicing technique is not bound to a particular technological space, and it can be
implemented using any language and framework. We have evaluated our technique to check
whether (1) the slicing improves the efficiency of the invariant checking, and (2) the invariant
checking results for the sliced models are the same as the unsliced models. We have evaluated
our approach with the Java metamodel and 73 models produced by reverse engineering Eclipse
plugins. The evaluation we performed provides evidence that the proposed slicing technique
can significantly reduce the time to perform the invariant checking while preserving the

Journal of Object Technology, vol. 0, 2015

http://www.jot.fm

Using Slicing to Improve the Performance of Model Invariant Checking · 3

checking results. We also show that the invariant checking approach described in the paper can
offer similar performance gains on small manually built models (e.g. hundreds of elements).

The rest of the paper is organized as follows. Section 2 provides background material
needed to understand the work described in the paper. Section 3 presents the big picture of the
invariant analysis approach. Section 4 describes the approach in details, and Section 5 presents
the results of an evaluation of the approach. Section 6 provides a discussion of the approach.
Section 7 describes the related work, and Section 8 concludes the paper.

2 Background

In this section, we provide background material needed to understand the proposed invariant
analysis approach described in the paper. Section 2.1 describes a list of tools that can be used
for invariant checking, and our invariant analysis approach builds upon one of these tools.
Section 2.2 describes a variety of model slicing techniques. We leverage on these works to
apply the slicing technique to the invariant analysis that involves both the metamodel and the
model, which implies a particular co-slicing approach.

2.1 Invariant Checking

USE [GBR07], developed by the Database Systems Group at Bremen University, is a modeling
tool for specifying object-oriented systems. It allows developers to generate models (expressed
using the object diagram notation) that are checked against user-specified properties such as
invariants expressed in a metamodel (expressed using the class diagram notation). A system
with a set of invariants can be specified using the USE specification language, that is based
on a subset of the Unified Modeling Language (UML) [EFLR99] and the Object Constraint
Language (OCL) [Spe07a]. A model can be created using the shell commands provided by
the USE tool. The feedback provided by the USE tool includes highlighted invariants that are
inconsistent with the given model.

Alloy [Jac02] is a formal specification language that was developed by the Software Design
Group at MIT. It has good tool support in the form of the Alloy Analyzer that translates an
Alloy specification into a boolean formula that is evaluated by embedded SAT-solvers. The
Alloy Analyzer generates examples or counter-examples of certain properties by exploring
a search space given by limiting the number of entities in the Alloy model. An Alloy model
consists of signature declarations, fields, facts, and predicates. Each field belongs to a signature
and represents a relation between two or more signatures. Facts are statements that define
constraints on the elements of the model. Predicates are parameterized constraints that can be
invoked from within facts or other predicates. The Alloy Analyzer allows developers to specify
(1) metamodels using signatures, and fields, (2) models using predicates, and (3) invariants
using facts, and returns information showing whether models satisfy the invariants.

The Kermeta language [JCB+13] was developed by the Triskell Team at INRIA. It is an
executable metamodeling language implemented on top of the Eclipse Modeling Framework
(EMF) [SBMP09] within the Eclipse development environment. It has been used for specifying
models, and model transformations that are compliant to the Meta Object Facility (MOF)
standard [Omg08]. The Kermeta workbench allows developers to specify well-formedness
rules, often formulated as invariants, on metamodels. These rules can be expressed using an
OCL-like specification language. The Kermeta workbench provides several APIs for evaluating
OCL-like invariants against models. It reports warning information if a given model does not
satisfy the invariants defined in the metamodel.

Journal of Object Technology, vol. 0, 2015

http://www.jot.fm

4 · Wuliang Sun et al.

The Eclipse OCL project [Tea05] is an implementation of the OCL standard [Spe07a]
for EMF-based models. It provides APIs for (1) analyzing and transforming the abstract
syntax model of OCL expressions, and (2) parsing and evaluating invariants and queries on
metamodels. The extensibility of the provided APIs allows software modelers to develop their
own customized prototypes for a variety of invariant checking tasks. The invariant checking
approach described in the paper builds upon the Eclipse OCL project.

2.2 Model Slicing

Kagdi et al. [KMS05] proposed an approach for slicing class models. The slices are applicable
to models that do not require a context (e.g., a set of scenarios in which objects are involved) for
the computation of a model slice. OCL invariants are not considered in their slicing approach.

Blouin et al. [BCBB11] described a model-driven approach to specifying model slicers for
different domain specific modeling languages. The approach relies on Kompren, a modeling
language dedicated to the construction of model slicers, that aims at automatically building
model slicers for any languages. Kompren can be used to produce a slicer for the slicing
approach described in the paper.

Sen et al. [SMBJ09] proposed a slicing technique for metamodel pruning by removing
unnecessary classes and properties from a metamodel. The slicing technique takes as input a
large metamodel and a slicing criterion including a set of classes and properties of interest, and
produces a pruned metamodel that is a subset of the input metamodel. The pruned metamodel
contains all the model elements specified in the slicing criterion. Any instance of the pruned
metamodel is also an instance of the input metamodel.

Jeanneret et al. [JGB11] used the slicing technique to estimate the part of a model used by
an operation without executing the operation. The slicing technique takes as input a model, an
operation and a metamodel in which the operation is defined, and produces a footprint of the
operation which consists of the set of metamodel elements involved in the operation contract.
The model elements that are the instances of the metamodel elements involved in the footprint
would be used by the operation.

Lano et al. [LKR10][LKR11] described an approach to slicing a class with operation
specifications and invariants. Their approach uses a state machine to specify a sequence of
operation invocations on an instance of a class. If a class feature, such as an attribute, does not
occur in any operation defined in the class, it can be removed together with any invariants that
refer to it. Compared to their approach, our slicing approach focuses on slicing a metamodel
and its models, and does not require a state machine to guide the slicing process.

In our prior work, we proposed a slicing technique for metamodels that include OCL
invariants and operation specifications [SFR13]. The slicing technique is used to improve the
efficiency of a model analysis technique that involves checking a sequence of operation invoca-
tions to uncover violations in specified invariants [SFR11]. The slicing approach automatically
generates slicing criteria consisting of a subset of invariants and operation specifications, and
uses the criteria to extract metamodel fragments, where each metamodel fragment can be
analyzed separately. Unlike the prior work, the slicing technique described in the paper is
used to improve the efficiency of the invariant checking. Thus it uses an invariant as a slicing
criterion to slice the metamodel and model, and does not deal with operation specifications.

Journal of Object Technology, vol. 0, 2015

http://www.jot.fm

Using Slicing to Improve the Performance of Model Invariant Checking · 5

3 Overview of Our Approach

In this section we motivate the need for slicing when checking invariants (Section 3.1), we
introduce a motivating example to illustrate the role of the slicing technique in the context of
invariant checking (Section 3.2), and describe the approach overview (Section 3.3).

3.1 Motivation

Errors detected in the design phase of the software development process are less expensive to
fix than those detected later. One approach used by software designers for checking correctness
is to ensure that a model conforms to a predefined metamodel using automated tools. This
involves the following steps. (i) A software modeler designs a metamodel and defines a set of
Well-Formedness Rules (WFRs) specified in the form of invariants which must be satisfied
by models conforming to the metamodel. (ii) He creates a set of models that conform to the
metamodel structure. (iii) He checks models against the WFRs using invariant checking tools
such as the Eclipse OCL checker [Tea05]. The entire process works well for small models
with hundreds of elements, and the modeler can receive the feedback from the checking tools
within seconds or minutes.

However, given the growing complexity of software systems, models used to represent
these complex systems are also growing significantly in size. While design models were built
by hand in the early days of MDD, nowadays models with possibly more than one million
elements can be built programmatically. For example, we used a reverse engineering tool,
namely MoDisco [BCDM14], to generate Java models from multiple Eclipse platform plugins.
These models can have up to one million elements. The checking time goes up significantly
for large models with hundreds of thousands of elements. This motivates the improvement of
the scalability of the invariant checking approach in the context of large models.

In the approach described in the paper, checking models against invariants does not need
the entire metamodel and the full model to be actually processed. Only a small part of the
metamodel and model that are referenced by the invariants needs to be used for the invariant
checking. This is due to the fact that a substantial number of invariants only reference part
of the metamodel in which they are defined [CCB12]. This motivates the use of the slicing
technique in the context of invariant checking. The slicing technique thus can be used to reduce
the size of the input metamodel and model to make the checking more efficient.

3.2 Motivating Example

Figure 1 shows part of a metamodel that describes the information system of a bus company
(excerpted from [SCWM10]). In the metamodel, a trip uses more than one coach. A coach is
controlled by multiple security guards. A passenger can buy multiple tickets from a vending
machine located in a booking office. Adult and child tickets are available for sale. A passenger
can select more than one trip, where each trip can be either private or regular. A booking office
is managed by at most one manager. Figure 2 shows a valid instance of the metamodel given
in Figure 1.

Invariants defined in the metamodel are given in Table 1. For example, the UniqueTicket-
Number invariant is defined in the context of the Ticket class in the metamodel, and it specifies
that every ticket must have a unique number. Such invariants cannot be expressed directly
using the class diagram notation, and thus are specified using other languages such as the
OCL [Spe07a]. The model in Figure 2 may or may not satisfy the invariants defined in the
metamodel.

Journal of Object Technology, vol. 0, 2015

http://www.jot.fm

6 · Wuliang Sun et al.

*

*

trips

-id : Integer
-baseSalary : Double

Employee

*

0..1

-shift : String
SecurityGuard

-hasMBA : Boolean
Manager

-number : Integer
VendingMachine

-name : String
-location : String
-officeID : Integer

BookingOffice

-number : Integer
-price : Double
-isRoundTrip : Boolean

Ticket

-isElderlyDiscount : Boolean
AdultTicket

-isSchoolTrip : Boolean
ChildTicket

-id : Integer
-name : String
-model : String
-noOfSeats : Integer

Coach

-name : String
-age : Integer
-idCard : String

Passenger

-name : String
-origin : String
-destination : String
-type : String
-number : Integer

Trip

-extras : String
PrivateTrip RegularTrip

coaches

*

*

trips

passengers

coach

guards

*

*

*

0..1

psg

tickets

coaches
offices

*

0..1

tickets

vm

*

0..1

office

vms

0..1

0..1

office

manager

Figure 1 – A metamodel expressed using a class diagram describing the information system of a bus
company

name : String = LasVegasTip
origin : String = Denver
destination : String = LasVegas
type : String = Regular
number : Integer = 1

rtrip1 : RegularTrip

id : Integer = 1
name : String = coach1
model : String = Benz
noOfSeats : Integer = 20

coach1 : Coach

name : String = DenverOffice
location : String = Denver
officeID : Integer = 1

bo1 : BookingOffice

number : Integer = 1
vm1 : VendingMachine

number : Integer = 1
price : Double = 24
isRoundTrip : Boolean = false
isElderlyDiscount : Boolean = false

t1 : AdultTicket

number : Integer = 2
price : Double = 16
isRoundTrip : Boolean = false
isElderlyDiscount : Boolean = true

t2 : AdultTicket

number : Integer = 3
price : Double = 12
isRoundTrip : Boolean = false
isSchoolTrip : Boolean = false

t3 : ChildTicket

name : String = Peter
age : Integer = 24
idCard : String = AB67823

p1 : Passenger

name : String = Tom
age : Integer = 65
idCard : String = AB2342

p2 : Passenger

name : String = Bill
age : Integer = 12
idCard : String = AB1212

p3 : Passenger

trips

coaches coaches

offices

office

vms

vm

vm

vm

tickets

tickets

tickets

tickets

tickets

tickets

trips

trips

trips

passengers

passengers

passengers

psg

psg

psg

Figure 2 – A model expressed using an object diagram conforming to the metamodel given in Figure 1

Tools such as the Eclipse OCL checker [Tea05] can be used in this situation for invariant
checking. They take as input the invariant, the metamodel and the model, and produce checking
results, indicating whether the model is consistent with the invariant defined in the metamodel.
In this case, the model in Figure 2 does not violate the UniqueTicketNumber invariant defined
in the metamodel since t1, t2, t3 have different numbers (i.e., 1, 2, 3).

Note that to check the UniqueTicketNumber invariant, we only need to look into the
tickets and their numbers. The rest of the model is not relevant to the checking. Indeed, the
UniqueTicketNumber invariant is defined in the context of the Ticket class and only refers to
the number attribute in the Ticket class. Therefore, instead of feeding the entire metamodel in

Journal of Object Technology, vol. 0, 2015

http://www.jot.fm

Using Slicing to Improve the Performance of Model Invariant Checking · 7

Table 1 – A list of invariants in the metamodel

// Each coach has more than ten seats.
Context Coach inv MinCoachSize:
self.noOfSeats ≥ 10
// For every trip t that is assigned to a coach, the number of passengers associated
// with t must be smaller than the number of seats allowed for a coach.
Context Coach inv MaxCoachSize:
self.trips→forAll(t | t.passengers→size()≤ noOfSeats)
// Each ticket must have a unique number.
Context Ticket inv UniqueTicketNumber:
Ticket::allInstances()→forAll(t1, t2 | t1.number = t2.number implies t1 = t2)
// Each regular trip must have more than six passengers.
Context RegularTrip inv MinPassengers:
self.passengers→size() ≥ 6

Ticket
-number : Integer number : Integer = 1

t1 : AdultTicket

Sliced Metamodel Sliced Model

AdultTicket ChildTicket

number : Integer = 2
t2 : AdultTicket

number : Integer = 3
t3 : ChildTicket

Figure 3 – Checking the UniqueTicketNumber invariant in the context of sliced metamodel and model

Figure 1 and the full model in Figure 2 into the invariant checking tools, we can use the slicing
technique to generate a smaller metamodel and model. Figure 3 shows the sliced metamodel
and model that are parts of the original metamodel and model. We can feed these generated
metamodel and model into the tools for invariant checking. Note that we keep the classes
AdultTicket and ChildTicket in the generated metamodel since UniqueTicketNumber is defined
in the context of the Ticket class and thus can be inherited by the subclasses of the Ticket class.
Therefore the instances of AdultTicket and ChildTicket also need to be checked against the
UniqueTicketNumber invariant.

It is also important to note that the slicing technique is needed for invariant checking
only if (1) the use of the slicing technique can reduce the invariant checking time (i.e.,
effectiveness of the slicing technique) and (2) checking the sliced model produces the same
results as those generated by verifying the invariants against the original model (i.e., the
correctness of the slicing technique). For example, the slicing technique is needed for checking
the UniqueTicketNumber invariant if (1) the checking time for the metamodel and model in
Figure 3 is less than that used for original metamodel and model, and (2) the invariant checking
results for the original models are the same as the results for the models in Figure 3. We
have conducted an evaluation to explore the effectiveness and the correctness of the slicing
technique in the context of invariant checking, and the evaluation results are given in the
Evaluation Section.

Journal of Object Technology, vol. 0, 2015

http://www.jot.fm

8 · Wuliang Sun et al.

Analysis

M

OCL
WFRs

MM OCL
Checking

(EMF, Use, Kermeta, Alloy)
SlicingFootprint

Computation
OCL

Checking
results

M'
MM'

Designer

<<conformsTo>>

Figure 4 – Approach overview

Table 2 – Footprint (i.e., dependent elements) of each invariant (see Table 1) defined in the metamodel
in Figure 1

Invariant Dependent Classes Dependent Attrs/Refs
MinCoachSize Coach noOfSeats
MaxCoachSize Coach, Trip, Passenger trips, passengers, noOfSeats
UniqueTicketNumber Ticket number
MinPassengers RegularTrip, Trip, Passenger passengers

3.3 Approach Overview

Figure 4 shows an overview of the proposed invariant analysis approach. The input of the
checking includes a metamodel (MM), a model (M), and one or many OCL invariants (Well-
Formedness Rules). First, the approach computes a footprint of the OCL invariants on the
metamodel. A footprint refers to part of a metamodel that contains all elements that affect the
outcome of an operation [JGB11]. In this paper a footprint refers to all metamodel elements
that are directly referenced by the input OCL invariants. Second, the footprint serves as slicing
criterion, and is used to generate a sliced metamodel (MM’) from the input metamodel. The
sliced metamodel (MM’) includes (1) all the metamodel elements from the footprint, and (2)
all the subclasses of the classes in the footprint. Third, the sliced metamodel (MM’) is used to
generate a sliced model (M’) from the input model. The sliced model (M’) contains only model
elements that are instances of metamodel elements in MM’. Finally, the sliced metamodel and
model with the invariants are fed into the tools for invariant checking.

4 Our Detailed Approach

In this section we illustrate the invariant checking approach in details.

4.1 Generating Footprint

Table 2 shows the footprint of each invariant given in Table 1. The footprint of an invariant
contains metamodel elements such as classes, attributes, references, and/or enumerations. The

Journal of Object Technology, vol. 0, 2015

http://www.jot.fm

Using Slicing to Improve the Performance of Model Invariant Checking · 9

Algorithm 1 Generate a footprint

1: Input: A metamodel MM and an invariant Inv
2: Output: A footprint FP
3: Algorithm Steps:
4: Set FP = Inv’s context class;
5: for each association end call, Aec in Inv do
6: if Aec corresponds to an element Elmt (i.e., attribute or reference) in MM then
7: FP = FP ∪ Elmt;
8: FP = FP ∪ Elmt’s type class;
9: end if

10: end for
11: Return FP;

footprint computation takes a metamodel and an invariant, and analyzes the dependencies
between the invariant and the metamodel. The dependency analysis is performed by traversing
the syntax tree of the OCL invariant.

Algorithm 1 is used to generate a footprint (FP) from a metamodel (MM) and an invariant
Inv. For example, consider the footprint computation of the MaxCoachSize invariant. The
MaxCoachSize invariant is defined in the context of class Coach, and thus depends on class
Coach. The expression sel f .trips is an association end call expression and it returns a set of
trips assigned to the coach (referred to by sel f). There is thus a dependency with reference
trips, and its type class, Trip via the class Coach. The parameter t in the MaxCoachSize
invariant refers to an instance of class Trip, and the expression t.passengers returns a set
of passengers associated with a trip. There is thus a dependency with reference passengers,
and its type class, Passenger via the class Trip. The expression noO f Seats refers to an
attribute defined in class Coach, and the invariant thus depends on attribute noO f Seats and
its containing class, Coach. The footprint computation thus reveals the elements the invariant
refers to and thus depends on the following metamodel elements: Coach, Trip, Passenger,
trips, passengers and noO f Seats.

Note that the MinPassengers invariant depends on both Trip and Passenger classes. This is
because MinPassengers uses the passengers reference in its definition (see Table 1). Reference
passengers is defined in the context of class Trip and can be inherited by the subclasses (e.g.,
RegularTrip) of Trip. In addition, the type of the passengers reference is class Passenger.

4.2 Slicing Metamodel

Algorithm 2 is used to generate a sliced metamodel (MM’) from a footprint (FP) and the
original metamodel (MM). The slicing criteria in this case would be the metamodel elements in
the footprint. Algorithm 2 computes Subs, a set of classes that are the subclasses of the classes
in the footprint. The sliced metamodel contains only elements that are from the footprint and
Subs. The reason we keep these referred classes’ subclasses in the sliced metamodel is that the
instances of subclasses are also the instances of their super classes, and thus can be used for
invariant checking.

Consider the case in which a modeler wants to check whether the model in Figure 2
satisfies the MaxCoachSize invariant defined in the metamodel in Figure 1. Algorithm 2 can be
used in this case to slice the metamodel in Figure 1 using the footprint of the MaxCoachSize
invariant. Figure 5 shows the sliced metamodel that is generated from the footprint of the
MaxCoachSize invariant. Since the footprint of the MaxCoachSize invariant includes class Trip,

Journal of Object Technology, vol. 0, 2015

http://www.jot.fm

10 · Wuliang Sun et al.

Algorithm 2 Slice a metamodel

1: Input: A footprint FP and the metamodel MM
2: Output: A sliced metamodel MM’
3: Algorithm Steps:
4: Set Subs = {};
5: for each element, Elmt, in FP do
6: if Elmt is a class then
7: for each indirect and direct subclass, Sub, of Elmt do
8: Subs = Subs ∪ Sub;
9: end for

10: end if
11: end for
12: Return FP ∪ Subs;

* *trips

-noOfSeats : Integer
Coach

Passenger

Trip

PrivateTrip RegularTrip

*

*

passengers

Figure 5 – A metamodel slice generated from the footprint of the MaxCoachSize invariant

and class Trip has two subclasses, PrivateTrip and RegularTrip, the MaxCoachSize invariant
also depends on PrivateTrip and RegularTrip. In summary the metamodel elements that are
referenced by the MaxCoachSize invariant include Coach, Trip, PrivateTrip, RegularTrip,
Passenger, trips, passengers, and noO f Seats.

4.3 Slicing Model

Algorithm 3 is used to slice a model. It takes as input a model (M) and a sliced metamodel
(MM’), and produces a sliced model, where each element in the sliced model is an instance
of a metamodel element in the sliced metamodel. For example, given the sliced metamodel
in Figure 5 and the model in Figure 2, Algorithm 3 can be used to generate a sliced model,
shown in Figure 6, that conforms to the sliced metamodel in Figure 5. Note that the sliced
model is a valid instance of the sliced metamodel, but it may or may not satisfy the invariants.

The algorithm checks each object (see lines 5-7) in M, and removes an object and its
slots/link ends if the object’s metaclass is not in the set of classes involved in MM’. For
example, object bo1:BookingOffice in Figure 2 is not an instance of any class involved in the
sliced metamodel in Figure 5, and thus can be removed from the model. In addition, its slots
(i.e. name, location, and officeID) and link ends (i.e. coaches and vms) are also removed from
the model. Note that both slots and link ends are the modeling concepts used in the object

Journal of Object Technology, vol. 0, 2015

http://www.jot.fm

Using Slicing to Improve the Performance of Model Invariant Checking · 11

rtrip1 : RegularTrip
noOfSeats : Integer = 20

coach1 : Coach
trips

p1 : Passenger p2 : Passenger

p3 : Passenger

passengerspassengers

passengers

Figure 6 – An example of a sliced model

Algorithm 3 Slice a model

1: Input: A model, M, and a sliced metamodel, MM’
2: Output: A sliced model that conforms to MM’
3: Algorithm Steps:
4: Set Clss = a set of classes in MM’, set Attrs = a set of attributes in MM’, set Refs = a set of

references in MM’;
5: for each object, obj, in M do
6: if obj’s metaclass not in Clss then
7: Remove obj and its slots/link ends from M;
8: else
9: for each slot, sl, of obj do

10: if sl’s corresponding attribute not in Attrs then
11: Remove sl from obj;
12: end if
13: end for
14: for each link end, le, of obj do
15: if le’s corresponding reference not in Refs then
16: Remove le from obj;
17: end if
18: end for
19: end if
20: end for
21: Return M;

diagram notation, where slots are the instances of attributes and link ends are the instances of
references.

Algorithm 3 also checks the slots and link ends of each unremoved object. Lines 9-13
remove a slot of an object if the slot’s corresponding attribute is not included in Attrs, a set of
attributes in MM’. Lines 14-18 remove a link end of an object if the link end’s corresponding
reference is not included in Refs. For example, object rtrip1:RegularTrip in Figure 2 has
5 slots and 4 link ends. Since class RegularTrip and its super class Trip in Figure 5 have
no attributes, the slicing algorithm removed all the slots from object rtrip1:RegularTrip as
indicated in Figure 6. Similarly, class RegularTrip and its super class Trip in Figure 5 have
only one reference, passengers. Thus, the slicing algorithm removed link end coaches from
object rtrip1:RegularTrip.

Journal of Object Technology, vol. 0, 2015

http://www.jot.fm

12 · Wuliang Sun et al.

4.4 OCL Checking

In summary, the slicing technique uses the MaxCoachSize invariant to generate a sliced
metamodel (see Figure 5) and a sliced model (see Figure 6) from the input metamodel (see
Figure 1) and model (see Figure 2). The invariant and the sliced metamodel and model can
be fed into the OCL checking tool for invariant analysis. The checking tool would return an
analysis result, indicating whether the sliced model satisfies the invariant in the context of the
sliced metamodel.

5 Evaluation

In this section we evaluate the effectiveness and correctness of the proposed slicing technique.
Specifically the evaluation aims to answer the following research questions:

RQ1 Can the slicing technique significantly improve the efficiency of the invariant checking?

RQ2 Is the slicing technique ensured to preserve the invariant checking results?

To answer RQ1, we need to check whether the invariant checking time for unsliced meta-
model and model (CTUM) is greater than the invariant checking time for sliced metamodel
and model (CTSM). To avoid the bias of simply comparing the checking time of large and
small models (i.e., unsliced and sliced models), we also need to take the time used to generate
footprint and to slice the metamodel and model (ST) into consideration.

Metric 1 below can be used to answer RQ1:

CheckingTimeSpeedup(CT S) =
CTUM

CT SM+ST
(1)

If CTS is greater than 1.0, the slicing technique can improve the efficiency of the invariant
checking.

The slicing technique aims to improve the efficiency of the invariant checking. Thus it
should not change the checking results. For example, given an invariant, a metamodel and a
model, if the OCL tool returns an analysis result, indicating the model does not satisfy the
invariant defined in the metamodel, the OCL tool should return the same result for the sliced
metamodel and model (i.e., the sliced model does not satisfy the invariant in the context of the
sliced metamodel). To answer RQ2, we need to check whether the invariant checking results
for unsliced metamodel and model are the same as that for sliced metamodel and model.

In the remainder of this section we describe the prototype we developed for the evaluation,
the data used in the evaluation, the evaluation results, and the threats to validity we identified.

5.1 Evaluation Framework Implementation

We developed an evaluation framework that provides (1) implementation of the proposed
slicing technique, and (2) implementation for checking models against metamodels with
invariants. The metamodels used in the evaluation are expressed using the Ecore [SBMP09]
standard (i.e., the de-facto standard to define metamodels), the models used in the evaluation
are expressed using the XMI [Spe07b] standard (i.e., the de-facto standard to serialize models),
and the invariants used in the evaluation are expressed using the OCL [Spe07a].

The evaluation framework was implemented using Java and Eclipse development platform.
Even though the evaluation framework builds upon Java and Eclipse, the slicing technique
is not bound to a particular technical space, and it can be implemented using any language

Journal of Object Technology, vol. 0, 2015

http://www.jot.fm

Using Slicing to Improve the Performance of Model Invariant Checking · 13

and framework. The framework also builds upon the Eclipse Modeling Framework (EMF)
[SBMP09] and the Eclipse OCL project [Tea05]. The framework uses the Eclipse OCL project
to (1) parse the OCL invariants defined in a metamodel and (2) check a model against the
metamodel with OCL invariants since the Eclipse OCL project also builds upon EMF. Both
the implementations of the slicing technique and the evaluation framework can be found in
https://github.com/sunwuliang/SlicingProject3.0.

5.2 Data Collection

The proposed slicing technique was evaluated in the context of both large and small models.
The large models were automatically generated from Eclipse plugins (Java programs) using
reverse engineering tools. Their sizes vary from 175926 to one million. The small models
were manually built domain models, and their sizes vary from 163 to 7558. In the remainder
of this section we describe the models used in the evaluation.

5.2.1 Large Models

The metamodel used for the evaluation is the Java metamodel from the EMF [SBMP09]. The
reasons for this choice are: (1) it is fairly complex having 345 model elements including
classes, attributes, references, and enumerations and (2) its relevant conforming models are
relatively easy to collect from Java programs using reverse engineering tools. The models
used for the evaluation are generated from 73 Eclipse plugins (Java programs). The reason we
chose Eclipse plugins is that the models generated from the Eclipse plugins are quite large. We
used a reverse engineering tool, namely MoDisco [BCDM14], to generate models from these
plugins. Six invariants were used in the evaluation. The complete data used in the evaluation
can be found in https://github.com/sunwuliang/SlicingProject3.0.

Figure 7 shows the sizes of the models used in the evaluation. The sizes of these 73
models range from 175926 (the model generated from the org.eclipse.gmf.runtime.draw2-
d.ui.render.awt plugin) to 993319 (model generated from the org.eclipse.emf.ecore.x-core.ui
plugin) model elements including objects, links, and slots.

5.2.2 Small Models

The small models used in the evaluation were collected from state-of-the-art model repositories:
ReMoDD [Tea13b] and Metamodel Zoos [Tea13a]. Below is a list of the collected models:

• FSM [Tea13a], a domain model that describes the concepts of a finite state machine;

• ER2MOF [Tea13b], a domain model that describes a model transformation from an
entity-relationship schema to a relational model;

• HTML [Tea13a], a domain model that describes the HyperText Markup Language
(HTML);

• MATLAB [Tea13a], a domain model that describes the MATLAB language;

• MARTE [Tea13a], a domain model that describes the MARTE profile.

These models conform to the UML2 standard, and were manually created by domain
experts. These models are much smaller than the models generated by the reverse engineering
tools. The sizes of these models are given below: FSM (163), ER2MOF (779), HTML (853),
MATLAB (1278), and MARTE (7558). Six invariants were used in the evaluation.

Journal of Object Technology, vol. 0, 2015

http://www.jot.fm

14 · Wuliang Sun et al.

0

200000

400000

600000

800000

1000000

1 9 17 25 33 41 49 57 65 73

N
u

m
b

e
r

o
f e

le
m

e
n

ts

Java Models

Figure 7 – The sizes of the models used in the evaluation

5.3 Evaluation Results

The evaluation was performed on a laptop computer with 2.17 GHz Intel Dual Core CPU, 3
GB RAM, and Windows 7.

5.3.1 Effectiveness of the Slicing Technique

The evaluation framework takes as input the Java metamodel, 73 models, and six invariants.
For a pair of one model and one invariant, the evaluation framework performs the following
four steps. First, it checks the model against the invariant in the context of Java metamodel,
and measures the checking time (CTUM). Second, it generates a sliced Java metamodel for the
invariant, slices the input model using the sliced Java metamodel, and measures the time used
to generate footprint and to slice the metamodel and model (ST). Third, it checks the sliced
model against the invariant in the context of the sliced metamodel, and measures the checking
time (CTSM). Fourth, it calculates the CTS based on Metric 1. In total, there are 73 CTSs for
each invariant. Note that to ensure the evaluation results are reliable, we calculated the CTS
ten times for each pair of invariant and model, and used its average value.

Figure 8 shows the distribution of the checking time for unsliced metamodel and model for
each invariant. Although most CTUMs are less than 2000 seconds, the CTUM could achieve
7860 seconds (i.e., more than two hours) in the worst case scenario (see the box plot for Inv6).
Figure 9 shows the distribution of the checking time for sliced metamodel and model for each
invariant. The checking time varies from 0.5 second to 993 seconds. Compared with the
CTUM and the CTSM, the time used to generate footprints and to slice the metamodel and
model (ST) is quite small. Figure 10 shows the distribution of the STs for each invariant. All
the STs are less than two seconds.

Figure 11 shows the distribution of the checking time speedup for each invariant. All the
CTSs are calculated using Metric 1. For example, given Inv5, the CTSs for the 73 models vary
from 2.5 (minimum CTS) to 31.1 (maximum CTS). Since the CTS for each pair of invariant
and model is above 1.0, the value of CTSM + ST must be smaller than CTUM (refer to Metric
1). Thus, the slicing technique can improve the efficiency of the invariant checking (refer to

Journal of Object Technology, vol. 0, 2015

http://www.jot.fm

Using Slicing to Improve the Performance of Model Invariant Checking · 15

0

2000

4000

6000

8000

Inv1 Inv2 Inv3 Inv4 Inv5 Inv6C
h

e
ck

in
g

ti
m

e
 (s

e
co

n
d

s)

Invariants

Figure 8 – Box plot for the measurement of Checking Time for Unsliced Metamodel and Models
(CTUM)

0

200

400

600

800

1000

Inv1 Inv2 Inv3 Inv4 Inv5 Inv6

C
h

ec
ki

n
g

ti
m

e
 (

se
ci

b
d

s)

Invariants

Figure 9 – Box plot for the measurement of Checking Time for Sliced Metamodel and Models (CTSM)

RQ1). Figure 11 also shows how significantly the slicing technique improves the checking
efficiency. In the worst case scenario, the CTS is close to 1.5 (see the minimum CTS for Inv1),
while in the best case scenario, the CTS is close to 36.0 (see the maximum CTS for Inv4). Since
the first quartile of CTSs for each invariant is above 2.0, the slicing technique can significantly
improve the checking efficiency for three fourths of the models used in the evaluation (i.e., 55

Journal of Object Technology, vol. 0, 2015

http://www.jot.fm

16 · Wuliang Sun et al.

0

0.5

1

1.5

2

Inv1 Inv2 Inv3 Inv4 Inv5 Inv6

Ti
m

e
 (s

e
co

n
d

s)

Invariants

Figure 10 – Box plot for the measurement of ST

0

5

10

15

20

25

30

35

40

Inv1 Inv2 Inv3 Inv4 Inv5 Inv6

C
h

ec
ki

n
g

ti
m

e
sp

ee
d

u
p

Invariants

Figure 11 – Box plot for the measurement of Checking Time Speedup (CTS)

models). In summary, the slicing technique can reduce the time used for the invariant checking.

Journal of Object Technology, vol. 0, 2015

http://www.jot.fm

Using Slicing to Improve the Performance of Model Invariant Checking · 17

0

35

70

105

140

Unsliced Metamodel and

Models

Sliced Metamodel and

Models

M
e

m
o

ry
 u

sa
ge

 (
m

e
ga

b
yt

e
s)

Figure 12 – Box plot for the measurement of the memory usage in the context of unsliced and sliced
models w.r.t. Inv6

Note that the proposed slicing technique can also reduce the memory used for the invariant
checking. For example, Figure 12 shows the distribution of the memory usage in the context of
unsliced and sliced models w.r.t. Inv6. The memory used for checking unsliced models varies
from 19 to 123 megabytes, while the memory used for checking sliced models varies from
one to 25 megabytes. The median memory usage for unsliced models is 40 megabytes, while
the median memory usage for sliced models is three megabytes.

In this section we also show that the invariant checking approach described in the paper can
offer similar performance gains on small manually built models (e.g. hundreds of elements).
Figure 13 shows the distribution of the checking time speedup for each invariant in the context
of the manually built models. All the CTSs are calculated using Metric 1. The CTSs for the
five models vary from 1.1 (minimum CTS) to 11.1 (maximum CTS). Since the CTS for each
pair of invariant and model is above 1.0, the value of CTSM + ST must be smaller than CTUM
(refer to Metric 1). Thus in summary, the slicing technique can improve the efficiency of the
invariant checking for small models (refer to RQ1).

5.3.2 Correctness of the Slicing Technique

The correctness of the slicing technique described in the paper depends on the invariant
checking results. In other words, the proposed slicing technique is correct only if the checking
results for the unsliced metamodel and model are the same as the checking results for the
sliced metamodel and model. Thus to check whether the slicing technique is correct, we need
to understand how the invariant checking works, and to measure the checking results for the
unsliced and sliced models.

Typically the invariant checking proceeds in two steps. First, given an invariant and a
model, it checks each object in the model and matches an object with the invariant if the object
is an instance of a class in the context of which the invariant is defined. Second, it checks
the matched object for the invariant and identifies the matched object as a valid object w.r.t.
the invariant if the matched object satisfies the invariant. Therefore, given an invariant and a
model, the invariant checking would return a result, showing the set of the matched objects and

Journal of Object Technology, vol. 0, 2015

http://www.jot.fm

18 · Wuliang Sun et al.

0

2

4

6

8

10

12

Inv1 Inv2 Inv3 Inv4 Inv5 Inv6

C
h

e
ck

in
g

ti
m

e
 s

p
e

e
d

u
p

Invariants

Figure 13 – Box plot for the measurement of Checking Time Speedup (CTS)

valid objects for the invariant. Note that the valid object set is always included in the matched
object set (see Metric 2).

MatchedOb jects⊇ValidOb jects (2)

Thus given an invariant, if the checking results for the unsliced model are the same as the
checking results for the sliced model, the unsliced model and sliced model must have the same
set of the matched and valid objects for the invariant. Therefore, we can use the conditions
below to check the correctness of the proposed slicing technique. Given an invariant, the
slicing technique is correct w.r.t. the checking results only if:

1. its matched objects in the unsliced model are the same as the matched objects in the
sliced model;

2. its valid objects in the unsliced model are the same as the valid objects in the sliced
model.

Thus to check the correctness of the proposed slicing technique, we need to identify both
matched and valid objects for each invariant in unsliced and sliced models respectively. We
used ID injection to accurately check whether an object in the unsliced model corresponds to
an object in the sliced model. For example, at the metamodel level, we added an ID attribute
into the top level class of the Java metamodel, and we kept the top level class with its ID
attribute in the sliced Java metamodel. At the model level, we generate a unique ID for each
object in the model. The evaluation results showed both unsliced and sliced models have the
same set of matched and valid objects for each invariant. In summary, the emprical evaluation
conforms that the slicing technique preserves the invariant checking results (refer to RQ2).

Other than the empirical confirmation, we can also show that the slicing technique is
correct w.r.t. the checking results. Suppose that given a model and an invariant, we denote

Journal of Object Technology, vol. 0, 2015

http://www.jot.fm

Using Slicing to Improve the Performance of Model Invariant Checking · 19

all the model elements (e.g., objects, links and slots) in the model as Obj_max. In addition,
the model elements that are needed for the invariant checking are denoted as Elmt_min. The
relation bewteen Elmt_max and Elmt_min is given below:

Elmt_max⊇ Elmt_min (3)

In other words, this relation indicates that the checking results in the context of Elmt_max
should be the same as the checking results in the context of Elmt_min. Our slicing technique
can generate a sliced model that contains enough model elements for the invariant checking.
We denote the model elements in the sliced model as Elmt_slicing. Elmt_slicing is a superset
of Elmt_min and is a subset of Elmt_max. The relation among these three sets is given below:

Elmt_max⊇ Elmt_slicing⊇ Elmt_min (4)

Since the checking results for the Elmt_max and the Elmt_min are the same, the checking
results for the Elmt_max and the Elmt_slicing should be the same. In summary, checking
an invariant in the sliced model is equivalent to checking it in the unsliced model, and the
proposed sliced models are sufficient to the invariant checking.

5.4 Threats to Validity

Construction threats lie in the way we defined the formulas used in the evaluation. The choices
of formula and statistical analysis may have impact on evaluation results and conclusions.
For example, Metric 1 does not take the model loading time into consideration. The reason
we made this choice is because the model loading time is relatively small compared with the
checking time (e.g., seconds v.s. minutes/hours). Also, models may be already loaded when
performing the invariant checking.

The validity of the evaluation results may also be affected by calculations performed by
the evaluation framework. To mitigate this threat, we calculated the CTS ten times for each
pair of invariant and model, and used its average value. We also used different sizes of Java
models (see Figure 7) in the evaluation to ensure the results are reliable. In addition, the use of
the MoDisco tool [BCDM14] could be a threat to the validity of the evaluation because the
correctness of the reverse engineering algorithm used in the tool has not been verified, and
thus it may introduce errors to the models that are generated from the Java programs.

Another threat to validity we identified is the mono-operation threat, that is, only one
metamodel was used in the evaluation. To mitigate this threat, we selected invariants that use
different structural parts of the metamodel.

6 Discussion

The invariant checking approach described in Section 4 can have different variations based on
the number of input invariants (Section 6.1), the way of footprinting (Section 6.2), the way of
slicing the model (Section 6.3), and the checking context (Section 6.4).

In the remainder of this section we look into these variations.

6.1 Single v.s. Multiple Invariants

The invariant checking approach described in the paper can be used for a single invariant
or multiple invariants. The illustration example given in Section 4 shows how our approach
handles single invariant input. If the input includes multiple invariants (e.g., N invariants),

Journal of Object Technology, vol. 0, 2015

http://www.jot.fm

20 · Wuliang Sun et al.

our approach generates a sliced metamodel and model for each invariant, and performs the
checking N times. Thus the problem of checking multiple invariants can be reduced to the
problem of checking single invariant.

It is possible to perform footprinting and slicing only once (e.g., generate one sliced meta-
model and one sliced model for multiple invariants), and use the generated sliced metamodel
and model in each invariant checking. In this case, the checking time would increase since the
sliced model for multiple invariants could be larger than the sliced model for a single invariant
(the model usage increases). However, since the time saved for footprinting and slicing (i.e.,
seconds) is much smaller than the time increased for checking (e.g., minutes), it is not worth
checking one sliced model against multiple invariants.

It is also possible to (1) produce a single invariant from multiple invariants using conjunc-
tion, and (2) checking the conjunctive invariant against the model. However, it may cause two
problems. First, the accuracy of the checking results would be decreased. For example, if a
model violates the conjuncted invariant it is not clear which conjunct has been violated by
the model. Second, checking the conjuncted invariant would be more inefficient compared
to checking multiple invariants one by one as the size of the metamodel and model will be
significantly larger. For example, one would use the operation allInstances() to merge two
invariants with different contexts (e.g., see the MinCoachSize and MinPassengers invariants in
Table 1) into one conjuncted invariant (see the ConjunctedInv invariant below).

Context RegularTrip inv ConjunctedInv:
self.passengers→size() ≥ 6 and Coach.allInstances()→forAll(c|c.noOfSeats ≥ 10)

If the checking complexity of MinCoachSize and MinPassengers is O(N) and O(M), the
checking complexity of ConjunctedInv would be O(N * M) while the total checking complex-
ity of MinCoachSize and MinPassengers would be O(N + M). Indeed, every time the tool
checks an instance of RegularTrip, it checks all the instances of Coach.

6.2 Static v.s. Dynamic Footprinting

The way footprints are computed can be categorized into two types: static footprinting and
dynamic footprinting [JGB11]. Static footprinting uses only the information from the invariant
to guide the footprinting process. The model footprinting described in the paper is an example
of static footprinting [JGB11]. Dynamic footprinting uses the model to identify an invariant
that is applicable to the models (referred to as checking relevant invariant). The intuition
behind this is based on the following observation: if each element in a model is not an instance
of any metamodel element that is referred by an invariant, there is no need to check the model
against the invariant because the model will not violate the invariant.

The dynamic footprinting is helpful for achieving higher CTS (see Metric 1). For example,
suppose that an invariant checking is irrelevant with respect to a model. There is thus no need
to check the model against the invariant (i.e., CTSM is 0). In addition, the time used to analyze
models is quite small (e.g., seconds). Therefore, CTS would be significantly improved in this
case.

6.3 Aggressive v.s. Conservative Metamodel Slicing

In aggressive slicing, the sliced metamodel only contains the elements in the footprint (i.e.,
slicing criterion) and the subclasses of the classes in the footprint. In conservative slicing (also
called pruning [SMBJ09]), the sliced metamodel also contains the classes that are types of the

Journal of Object Technology, vol. 0, 2015

http://www.jot.fm

Using Slicing to Improve the Performance of Model Invariant Checking · 21

-number : Integer
VendingMachine-number : Integer

-price : Double
-isRoundTrip : Boolean

Ticket

-isElderlyDiscount : Boolean
AdultTicket

-isSchoolTrip : Boolean
ChildTicket

*

1

tickets

vm

Figure 14 – A modified version of the metamodel in Figure 1 (the multiplicity of the vm reference has
been changed, and most classes in Figure 1 are omitted)

-number : Integer
Ticket

AdultTicket ChildTicket

*
1

vm VendingMachine

Figure 15 – A sliced metamodel generated from the UniqueTicketNumber invariant and the metamodel
in Figure 14 using the conservative slicing

mandatory references (i.e., the lower bound of the multiplicity of the reference must be equal
to or larger than 1) from the classes in the footprint.

For example, Figure 14 shows a modified version of the metamodel in Figure 1. Note that
the multiplicity of the vm reference in Figure 1 is 0..1, while that in Figure 14 is 1. The vm
reference in Figure 14 is an example of the mandatory reference.

Given the UniqueTicketNumber invariant and the metamodel in Figure 14, the metamodel
(see Figure 3 (left)) generated using the aggressive slicing contains only the Ticket class and
its subclasses, while the metamodel (see Figure 15) generated using the conservative slicing
contains the mandatory reference (i.e., vm) and its type class (i.e., VendingMachine).

The invariant checking approach described in the paper uses the aggressive slicing. This is
mainly because the aggressive slicing could produce smaller metamodel and model and thus
reduce the checking time. However, the aggressive slicing could be a threat to the correctness
of the invariant checking approach described in the paper if the input model is not a valid
instance of the input metamodel.

For example, Figure 16 shows a model that is not a valid instance of the metamodel in
Figure 14. Given the model in Figure 16 and the metamodel in Figure 14, the checking results
should return false since a ticket needs to be associated with a vending machine. However,
if we use the metamodel in Figure 3 (left) (i.e., the result of the aggressive slicing for the
UniqueTicketNumber invariant) to slice the model in Figure 16, and check the sliced model
against the UniqueTicketNumber invariant in the context of the metamodel in Figure 3, the
checking results would return true, which contradicts the checking results without using the
slicing technique. If we use the metamodel in Figure 15 to slice the model in Figure 16, and

Journal of Object Technology, vol. 0, 2015

http://www.jot.fm

22 · Wuliang Sun et al.

number : Integer = 1
price : Double = 24
isRoundTrip : Boolean = false
isElderlyDiscount : Boolean = false

t1 : AdultTicket

number : Integer = 2
price : Double = 16
isRoundTrip : Boolean = false
isElderlyDiscount : Boolean = true

t2 : AdultTicket

number : Integer = 3
price : Double = 12
isRoundTrip : Boolean = false
isSchoolTrip : Boolean = false

t3 : ChildTicket

Figure 16 – A model that is not a valid instance of the metamodel in Figure 14

check the sliced model, the checking results would return false, which is consistent with the
checking results without using the slicing technique. Therefore, to use the aggressive slicing,
we need to add a precondition to our invariant checking approach, that is, the input model must
be a valid instance of the input metamodel (see the precondition in the Introduction Section).

6.4 Checking in the Context of the Entire Metamodel v.s. the Sliced Meta-
model

In the invariant checking approach described in section 4, the sliced model is checked in
the context of the sliced metamodel. The reasons are twofold. First, the sliced metamodel
is smaller than the entire metamodel, and the invariant checking in the context of the sliced
metamodel would take less time. Second, the aggressive slicing could produce models that are
not valid instances of the entire metamodel, and the checking results for such models in the
context of the entire metamodel always return false.

For example, given the UniqueTicketNumber invariant, the model in Figure 2 and the
metamodel in Figure 14, the aggressive slicing would produce a sliced metamodel in Figure 3
(left) and a sliced model in Figure 16. When the sliced model is checked in the context of
sliced metamodel, the checking result would be true (every ticket has a unique number), which
is consistent with the checking result without using the slicing technique. However, if the
sliced model is checked in the context of the entire metamodel in Figure 14, the checking
result would be false, because a ticket needs to be associated with a vending machine, and the
sliced model is not a valid instance of the metamodel in Figure 14. Therefore, to check the
sliced model in the context of the entire metamodel, we need to use the conservative slicing in
the invariant checking approach.

7 Related Work

In this section, we present the related work that use the slicing technique to improve the
performance of a variety of modeling tasks.

Uzuncaova et al. [UK07] proposed a slicing technique for the Alloy model [Jac02]. The
technique can reduce the time used to solve the satisfiablity problem, that is, the problem that
involves checking whether there is an instance for a given Alloy model. Unlike the slicing
technique described in the paper, their approach can be only used for the declarative language
like Alloy, and cannot be used for the invariant checking.

Journal of Object Technology, vol. 0, 2015

http://www.jot.fm

Using Slicing to Improve the Performance of Model Invariant Checking · 23

Shaikh et al. [SCWM10][SWM11] used a slicing technique to improve the scalability of an
analysis that involves checking if a metamodel has a valid instance that satisfies the invariants
defined in the metamodel. The slicing technique reduces the analysis problem of checking
a large metamodel with OCL invariants into smaller subproblems, where each subproblem
involves checking a metamodel fragment with a subset of OCL invariants. Unlike the slicing
technique described in the paper, their technique focuses only on metamodel with invariants,
and cannot be used to slice instances of a metamodel (i.e. models).

Egyed et al. [Egy06] described an instance-based consistency checking approach for design
models. The approach uses the changes in a model to determine whether a given consistency
rule is needed to be reevaluated for the model. Compared with the approaches that evaluate the
model against all the consistency rules, their approach can reduce the number of rules being
evaluated, and thus significantly improve the consistency checking. Their way of eliminating
the checking irrelevant rules is similar to the dynamic footprinting version of our approach. The
only difference is that they use the changes performed in the model to determine the checking
relevant rules, and we use the entire model to determine the checking relevant invariants.

Garcia [Gar08] described an efficient integrity checking approach for models in software
repositories. Cabot et al. [CT09] incrementally checked the integrity of the UML and OCL
conceptual schemas (i.e., metamodels). However, unlike the approach described in the paper
that builds upon the slicing technique, their approaches used the incremental evaluation to
improve the efficiency of invariant checking.

8 Conclusion

In this section we summarize the contribution and limitations of our work and points to the
future directions.

8.1 Contribution and Limitation

We introduced a slicing technique to improve the efficiency of model analysis that involves
checking if an instance of a metamodel satisfies the invariants defined in the metamodel.
The technique uses the invariant being checked in order to produce a sliced metamodel and
model from the input metamodel and model. The sliced metamodel and model so produced
is much smaller in size which allows more efficient checking (both in terms of memory and
timing) by using existing invariant checking tools. Our experiments revealed that the proposed
slicing technique can significantly reduce the time to perform the invariant checking, achieving
checking speedup ranging from 1.5 to 36.0.

Our slicing technique is limited in its ability to produce smaller footprint from a larger
metamodel if the invariant requires all the metamodel elements to be present when analyzed –
this happens when there is a very tight coupling across all metamodel elements. However, it
has been confirmed by [CCB12] that a substantial number of invariants only reference part of
the metamodel in which they are defined.

8.2 Research Agenda

The slicing technique described in the paper is used to improve the efficiency of invariant
checking techniques. However, invariant checking is not the only usage scenario for the slicing
technique. The slicing technique can be further improved and used for other modeling tasks
that involve both metamodels and models.

Journal of Object Technology, vol. 0, 2015

http://www.jot.fm

24 · Wuliang Sun et al.

Another future direction of this work could be slicing invariants using the information
found in models. For example, a complex invariant may reference a substantial number of
metamodel elements, while a model may only reference a small subset of metamodel elements.
In this case, checking the model against the invariant would not require the entire invariant
to be analyzed. Thus, the slicing technique would use the information in the model to reduce
the complex invariant into smaller subinvariants, where only a subset of the subinvariants are
needed to analyze the model.

References

[ABC+11] K. Androutsopoulos, D. Binkley, D. Clark, N. Gold, M. Harman, K. Lano, and
Z. Li. Model projection: Simplifying models in response to restricting the
environment. In Proceedings of the 33rd International Conference on Software
Engineering, ICSE ’11, pages 291–300, New York, NY, USA, 2011. ACM.
doi:10.1145/1985793.1985834.

[BCBB11] A. Blouin, B. Combemale, B. Baudry, and O. Beaudoux. Modeling Model
Slicers. In ACM/IEEE 14th International Conference on Model Driven Engi-
neering Languages and Systems, volume 6981, pages 62–76. Springer Berlin /
Heidelberg, 2011. doi:10.1007/978-3-642-24485-8_6.

[BCBB12] A. Blouin, B. Combemale, B. Baudry, and O. Beaudoux. Kompren: Modeling
and Generating Model Slicers. Software and Systems Modeling, pages 1–17,
October 2012. doi:10.1007/s10270-012-0300-x.

[BCDM14] H. Brunelière, J. Cabot, G. Dupé, and F. Madiot. Modisco: A model driven re-
verse engineering framework. Information and Software Technology, 56(8):1012
– 1032, 2014. doi:10.1016/j.infsof.2014.04.007.

[CCB12] J. Cadavid, B. Combemale, and B. Baudry. Ten years of Meta-Object Facility:
an analysis of metamodeling practices. Technical Report by the Triskell Team
at INRIA/IRISA, (RR-7882):1–25, 2012. URL: https://hal.inria.fr/
hal-00670652.

[CT09] J. Cabot and E. Teniente. Incremental Integrity Checking of UML/OCL Con-
ceptual Schemas. Journal of Systems and Software, 82(9):1459 – 1478, 2009.
doi:http://dx.doi.org/10.1016/j.jss.2009.03.009.

[EFLR99] A. Evans, R. France, K. Lano, and B. Rumpe. The uml as a formal modeling
notation. In Jean Bézivin and Pierre-Alain Muller, editors, The Unified Modeling
Language. «UML»’98: Beyond the Notation, volume 1618 of Lecture Notes
in Computer Science, pages 336–348. Springer Berlin Heidelberg, 1999. doi:
10.1007/978-3-540-48480-6_26.

[Egy06] A. Egyed. Instant Consistency Checking for the UML. In Proceedings of
the 28th International Conference on Software Engineering, ICSE ’06, pages
381–390, 2006. doi:10.1145/1134285.1134339.

[EW04] R. Eshuis and R. Wieringa. Tool Support for Verifying UML Activity Diagrams.
IEEE Trans. Softw. Eng., 30(7):437–447, 2004. doi:10.1109/TSE.2004.33.

[Gar08] M. Garcia. Efficient Integrity Checking for Essential MOF+ OCL in Software
Repositories. Journal of Object Technology, 7(6):101–119, 2008. URL: http:
//www.jot.fm/issues/issue_2008_07/article3.pdf.

Journal of Object Technology, vol. 0, 2015

http://dx.doi.org/10.1145/1985793.1985834
http://dx.doi.org/10.1007/978-3-642-24485-8_6
http://dx.doi.org/10.1007/s10270-012-0300-x
http://dx.doi.org/10.1016/j.infsof.2014.04.007
https://hal.inria.fr/hal-00670652
https://hal.inria.fr/hal-00670652
http://dx.doi.org/http://dx.doi.org/10.1016/j.jss.2009.03.009
http://dx.doi.org/10.1007/978-3-540-48480-6_26
http://dx.doi.org/10.1007/978-3-540-48480-6_26
http://dx.doi.org/10.1145/1134285.1134339
http://dx.doi.org/10.1109/TSE.2004.33
http://www.jot.fm/issues/issue_2008_07/article3.pdf
http://www.jot.fm/issues/issue_2008_07/article3.pdf
http://www.jot.fm

Using Slicing to Improve the Performance of Model Invariant Checking · 25

[GBR07] M. Gogolla, F. Büttner, and M. Richters. USE: A UML-based Specification
Environment for Validating UML and OCL. Sci. Comput. Program., 69(1-3):27–
34, 2007. doi:10.1016/j.scico.2007.01.013.

[GL91] K.B. Gallagher and J.R. Lyle. Using program slicing in software maintenance.
Software Engineering, IEEE Transactions on, 17(8):751–761, 1991. doi:
10.1109/32.83912.

[Jac02] D. Jackson. Alloy: A Lightweight Object Modelling Notation. ACM Trans.
Softw. Eng. Methodol., 11(2):256–290, 2002. doi:10.1145/505145.505149.

[JCB+13] J. Jézéquel, B. Combemale, O. Barais, M. Monperrus, and F. Fouquet. Mashup
of metalanguages and its implementation in the kermeta language workbench.
Software and Systems Modeling, pages 1–16, 2013. URL: http://dx.doi.
org/10.1007/s10270-013-0354-4, doi:10.1007/s10270-013-0354-4.

[JGB11] C. Jeanneret, M. Glinz, and B. Baudry. Estimating footprints of model opera-
tions. In Software Engineering (ICSE), 2011 33rd International Conference on,
pages 601–610. IEEE, 2011. doi:10.1145/1985793.1985875.

[KMS05] H. Kagdi, J.I. Maletic, and A. Sutton. Context-Free Slicing of UML Class
Models. In Proceedings of the 21st IEEE International Conference on Software
Maintenance, ICSM ’05, pages 635–638. IEEE Computer Society, 2005. doi:
10.1109/ICSM.2005.34.

[KSTV03] B. Korel, I. Singh, L. Tahat, and B. Vaysburg. Slicing of state-based models. In
Software Maintenance, 2003. ICSM 2003. Proceedings. International Confer-
ence on, pages 34–43, 2003. doi:10.1109/ICSM.2003.1235404.

[LKR10] K. Lano and S. Kolahdouz-Rahimi. Slicing of UML Models Using Model
Transformations. In Model Driven Engineering Languages and Systems, volume
6395 of Lecture Notes in Computer Science, pages 228–242. Springer Berlin
Heidelberg, 2010. doi:10.1007/978-3-642-16129-2_17.

[LKR11] K. Lano and S. Kolahdouz-Rahimi. Slicing Techniques for UML Models.
Journal of Object Technology, 10:11:1–49, 2011. doi:10.5381/jot.2011.10.
1.a11.

[Omg08] QVT Omg. Meta Object Facility (MOF) 2.0 Query/View/Transformation
Specification. Final Adopted Specification (November 2005), 2008. URL:
http://www.omg.org/spec/QVT/.

[SBMP09] D. Steinberg, F. Budinsky, E. Merks, and M. Paternostro. EMF: Eclipse
Modeling Framework 2.0. Addison-Wesley Professional, 2009. URL:
http://dl.acm.org/citation.cfm?id=1197540.

[SCWM10] A. Shaikh, R. Clarisó, U.K. Wiil, and N. Memon. Verification-driven slicing of
UML/OCL models. In Proceedings of the IEEE/ACM international conference
on Automated Software Engineering, ASE ’10, pages 185–194. ACM, 2010.
doi:10.1145/1858996.1859038.

[SFR11] W. Sun, R. France, and I. Ray. Rigorous Analysis of UML Access Control
Policy Models. In Policies for Distributed Systems and Networks (POLICY),
2011 IEEE International Symposium on, pages 9–16, 2011. doi:10.1109/
POLICY.2011.30.

[SFR13] W. Sun, R. France, and I. Ray. Contract-Aware Slicing of UML Class Models.
In Model-Driven Engineering Languages and Systems, volume 8107 of Lecture

Journal of Object Technology, vol. 0, 2015

http://dx.doi.org/10.1016/j.scico.2007.01.013
http://dx.doi.org/10.1109/32.83912
http://dx.doi.org/10.1109/32.83912
http://dx.doi.org/10.1145/505145.505149
http://dx.doi.org/10.1007/s10270-013-0354-4
http://dx.doi.org/10.1007/s10270-013-0354-4
http://dx.doi.org/10.1007/s10270-013-0354-4
http://dx.doi.org/10.1145/1985793.1985875
http://dx.doi.org/10.1109/ICSM.2005.34
http://dx.doi.org/10.1109/ICSM.2005.34
http://dx.doi.org/10.1109/ICSM.2003.1235404
http://dx.doi.org/10.1007/978-3-642-16129-2_17
http://dx.doi.org/10.5381/jot.2011.10.1.a11
http://dx.doi.org/10.5381/jot.2011.10.1.a11
http://www.omg.org/spec/QVT/
http://dl.acm.org/citation.cfm?id=1197540
http://dx.doi.org/10.1145/1858996.1859038
http://dx.doi.org/10.1109/POLICY.2011.30
http://dx.doi.org/10.1109/POLICY.2011.30
http://www.jot.fm

26 · Wuliang Sun et al.

Notes in Computer Science, pages 724–739. Springer Berlin Heidelberg, 2013.
doi:10.1007/978-3-642-41533-3_44.

[SMBJ09] S. Sen, N. Moha, B. Baudry, and J. Jézéquel. Meta-model Pruning. In Model
Driven Engineering Languages and Systems, volume 5795 of Lecture Notes
in Computer Science, pages 32–46. Springer Berlin Heidelberg, 2009. doi:
10.1007/978-3-642-04425-0_4.

[Spe07a] O.M.G.A. Specification. Object Constraint Language (OCL), 2007. URL:
http://www.omg.org/spec/OCL/.

[Spe07b] O.M.G.A. Specification. XML Metadata Interchange (XMI), 2007. URL:
http://www.omg.org/spec/XMI/.

[SWM11] A. Shaikh, U.K. Wiil, and N. Memon. Evaluation of Tools and Slicing Tech-
niques for Efficient Verification of UML/OCL Class Diagrams. Adv. Soft. Eng.,
2011:5:1–5:18, 2011. doi:10.1155/2011/370198.

[Tea05] Eclipse OCL Project Team. Eclipse OCL Project. Eclipse Community, 2005.
URL: http://projects.eclipse.org/projects/modeling.mdt.ocl.

[Tea13a] AtlanMod Team. Metamodel Zoos. AtlanMod Team, 2013. URL: http:
//www.emn.fr/z-info/atlanmod/index.php/Zoos.

[Tea13b] ReMoDD Team. Repository for Model Driven Development (ReMoDD)
Overview. Repository for Model-Driven Development (ReMoDD),
2013. URL: http://www.cs.colostate.edu/remodd/v1/content/
repository-model-driven-development-remodd-overview.

[UK07] E Uzuncaova and S. Khurshid. Kato: A program slicing tool for declarative
specifications. In Software Engineering, 2007. ICSE 2007. 29th International
Conference on, pages 767–770, May 2007. doi:10.1109/ICSE.2007.47.

[Wei81] M. Weiser. Program Slicing. In Proceedings of the 5th International Conference
on Software Engineering, ICSE ’81, pages 439–449. IEEE Press, 1981. URL:
http://dl.acm.org/citation.cfm?id=800078.802557.

About the authors

Wuliang Sun received his Ph.D. in Computer Science from Colorado
State University, advised by Robert B. France and Indrakshi Ray. Before
that, he received an M.S. in Computer Science from Baylor Univer-
sity, advised by Eunjee Song, and a B.S. in Computer Science from
Sichuan University. He has worked as a visiting researcher at INRI-
A/IRISA. His research interests are in Software Engineering, focusing
on software modeling, model analysis, and model slicing. Contact him
at sunwl@cs.colostate.edu

Journal of Object Technology, vol. 0, 2015

http://dx.doi.org/10.1007/978-3-642-41533-3_44
http://dx.doi.org/10.1007/978-3-642-04425-0_4
http://dx.doi.org/10.1007/978-3-642-04425-0_4
http://www.omg.org/spec/OCL/
http://www.omg.org/spec/XMI/
http://dx.doi.org/10.1155/2011/370198
http://projects.eclipse.org/projects/modeling.mdt.ocl
http://www.emn.fr/z-info/atlanmod/index.php/Zoos
http://www.emn.fr/z-info/atlanmod/index.php/Zoos
http://www.cs.colostate.edu/remodd/v1/content/repository-model-driven-development-remodd-overview
http://www.cs.colostate.edu/remodd/v1/content/repository-model-driven-development-remodd-overview
http://dx.doi.org/10.1109/ICSE.2007.47
http://dl.acm.org/citation.cfm?id=800078.802557
http://www.jot.fm

Using Slicing to Improve the Performance of Model Invariant Checking · 27

Benoit Combemale is an Associate Professor at University of Rennes 1,
France. He is also on secondment at INRIA as research computer scientist
(2013-2016). He earned a PhD in Computer Science (2005-2008) from
University of Toulouse awarded by the prize Leopold Escande 2008.
He is working within the research team DiverSE (formerly Triskell)
at INRIA/IRISA, Rennes. His research interests include model-driven
engineering (MDE), and software language engineering (SLE). Contact
him at benoit.combemale@irisa.fr.

Robert B. France is a Professor in the Department of Computer Sci-
ence at Colorado State University. He received his B.Sc. in Natural
Sciences with First Class Honors from the University of the West Indies
in Trinidad and Tobago. He attended Massey University in New Zealand
under a Commonwealth Scholarship, where he graduated with a Ph.D. in
Computer Science. His research on model-driven software development
focuses on providing software developers with mathematically-based
software modeling languages and supporting analysis tools that they
can use to specify and analyze critical software properties (e.g., behav-
ioral and security properties). He is a founding editor-in-chief of the
Springer journal on Software and Systems Modeling, and a founding
steering committee member of the international conference series on
Model Driven Engineering Languages and Systems (MODELS). Contact
him at france@cs.colostate.edu.

Arnaud Blouin is an Associate professor at the National Institutes of
Applied Sciences (INSA), Rennes, France. He received a PhD degree in
Computer Science from the University of Angers, France, in 2009. After
a post-doc at INRIA, he joined INSA in 2011. His research interests
within the DiverSE research group include model-driven engineering,
interactive system engineering, software testing, and software compre-
hension. Contact him at arnaud.blouin@irisa.fr.

Benoit Baudry is a research scientist at INRIA. He received a PhD
degree in Computer Science from the University of Rennes, France, in
2003. He first worked at CEA (French center for atomic energy) before
joining INRIA in 2004. His research interests include software testing
and verification, model-driven engineering, and requirements analysis.
He leads the DiverSE research group (EPI), which investigates model-
driven engineering and software product lines from requirements to
runtime. Contact him at benoit.baudry@inria.fr.

Journal of Object Technology, vol. 0, 2015

http://www.jot.fm

28 · Wuliang Sun et al.

Indrakshi Ray is a Professor in the Computer Science Department
at Colorado State University. She has also been a visiting faculty at
Air Force Research Laboratory and at INRIA, Rocquencourt, France.
She obtained her Ph.D. from George Mason University under the joint
supervision of Professor Sushil Jajodia and Professor Paul Ammann.
Her research interests include security and privacy, database systems,
e-commerce and formal methods in software engineering. She has pub-
lished over a hundred technical papers in refereed journals and confer-
ence proceedings. She is on the editorial board of Computer Standards
and Interfaces. She was the Program Chair of ACM SACMAT 2006,
Program Co-Chair for CSS 2013, ICISS 2013, IFIP DBSec 2003, and
General Chair of SACMAT 2008. Contact her at iray@cs.colostate.edu.

Acknowledgments This work was supported by the National Science Foundation grant
(CCF-1018711), the ANR INS Project GEMOC (ANR-12-INSE-0011), and the CNRS PICS
Project MBSAR.

Journal of Object Technology, vol. 0, 2015

http://www.jot.fm

	Introduction
	Background
	Invariant Checking
	Model Slicing

	Overview of Our Approach
	Motivation
	Motivating Example
	Approach Overview

	Our Detailed Approach
	Generating Footprint
	Slicing Metamodel
	Slicing Model
	OCL Checking

	Evaluation
	Evaluation Framework Implementation
	Data Collection
	Large Models
	Small Models

	Evaluation Results
	Effectiveness of the Slicing Technique
	Correctness of the Slicing Technique

	Threats to Validity

	Discussion
	Single v.s. Multiple Invariants
	Static v.s. Dynamic Footprinting
	Aggressive v.s. Conservative Metamodel Slicing
	Checking in the Context of the Entire Metamodel v.s. the Sliced Metamodel

	Related Work
	Conclusion
	Contribution and Limitation
	Research Agenda

	Bibliography
	About the authors

