
HAL Id: hal-01194516
https://inria.hal.science/hal-01194516

Submitted on 7 Sep 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Combining policies: the best of human expertise and
neurocontrol

Vincent Berthier, Adrien Couëtoux, Olivier Teytaud

To cite this version:
Vincent Berthier, Adrien Couëtoux, Olivier Teytaud. Combining policies: the best of human expertise
and neurocontrol. Artificial Evolution 2015, 2015, Lyon, France. To appear. �hal-01194516�

https://inria.hal.science/hal-01194516
https://hal.archives-ouvertes.fr


Combining policies: the best of human expertise
and neurocontrol

Vincent Berthier, Adrien Couëtoux, and Olivier Teytaud

TAO, Inria, Univ. Paris-Sud, UMR CNRS 8623
Bat 660 Claude Shannon Univ. Paris-Sud, 91190 Gif-sur-Yvette, France

firstname.lastname@inria.fr

Abstract. We consider sequential decision making in the case where a
generative model and a parametric policy are available. Such a frame-
work is naturally tackled with Direct Policy Search, i.e. parametric op-
timisation over simulations. We propose a simple method that combines
this parametric policy with a more generic neural network, where all
parameters are trained simultaneously. As such, our approach doesn’t
require any computational overhead. We show that the resulting policy
significantly outperforms both the domain specific policies and the neural
network on a unit commitment test problem.

1 Introduction

In this paper, we study planning under uncertainty, where only a generative
model of the domain is available. We do not make any assumption on the inner
dynamics of the problem.Instead, we assume that we have some prior knowl-
edge, in the form of handcrafted parametric policies. These policies represent
the existing methods to solve a problem. They can be optimal solutions of a
simplified version of the problem, or simply human experience. The constants in
those parametric policies are replaced by parameters optimised on simulations.
This is Direct Policy Search, also known as Simulation-Based optimisation. More
precisely, this is Direct Policy Search on top of expert policies; of course, Direct
Policy Search can also be applied on top of generic policies such as neural net-
works or fuzzy rules. As Direct Policy Search rarely provides a gradient and
needs a lot of robustness, it is usually optimized by evolutionary algorithms.

This approach is stable and efficient. It is particularly convenient when an
expert policy is available [5]. However, in that case, it is limited by the structure
of the policy. To combine and exploit existing solvers, portfolios are now a widely
established principle. They are used in combinatorial optimisation [17, 11] and
noisy optimisation [3], including applications to control [10]. In this work, we
propose a simple method for combining parametric policies in a direct policy
search framework. In contrast to portfolios as in [10], our solution not only
selects the best of several policies but also in some cases vastly outperforms each
of them, without computational overhead. We perform experiments on a unit
commitment problem, a kind of power system management problem where the
goal is to optimise the cost of energy production.



2 Vincent Berthier, Adrien Couëtoux, and Olivier Teytaud

The following sections briefly review discrete time controls methodologies,
surveys methods aimed at combining policies, and presents the concept of or-
thogonality in portfolios, which will be central in our work.

2 Background and notations

With states noted x ∈ X and actions u ∈ U , we assume a generative model
is available, ie. given (x, u), we can sample a resulting state x′ = f(x, u) and
reward r = ρ(x, u, x′). f is the transition function and follows an unknown
random distribution (e.g. x′ = f(x, u) depends on some random ω through
x′ = f(x, y, ω)).

A policy π is an object that given a state x, returns an action u. It can
be deterministic or stochastic, a parametric function or a qualitative heuristic.
Note that if the problem is non-Markovian, optimal policies might require to
include the entire history of observation in the state variable x, making methods
sensitive to the size of the state space highly impractical [2].

The objective is to find a policy that maximizes the expected reward over a
finite horizon T . Formally, given an initial state x0, we try to find the solution
π∗ to

argmax
π

E

[∑
t

ρ(xt, π(xt), f(xt, ut))

]
(1)

with xt+1 = f(xt, π(xt)) for 0 ≤ t < T .

2.1 Methodologies based on value functions

To find the optimal policy, the favourite methods in power systems applications
(eg. the management of long term hydroelectricity storage en production), come
from Dynamic programming [4] (DP) which is at the origin of a wide family
of discrete-time control algorithms such as Stochastic Dual Dynamic Program-
ming [18], Approximate Dynamic Programming [19], value iteration and a wide
family of reinforcement learning algorithms. Despite their solid theoretical basis,
they are computationally expensive, they cannot directly handle large scale non-
Markovian random processes, and they are usually not anytime algorithms (ie.
they return an incomplete answer if interrupted before termination). Because of
this, they are often less efficient than simpler deterministic approaches [25, 7].

2.2 Direct Policy Search

Another trend in control is Direct Policy Search (DPS), which consists in search-
ing in the policy space directly, without any proxy. This is often done by defining
a set of parametric policies that depend on some parameter vector θ. One needs
to find an optimal θ∗, so that πθ∗ is a solution to Eq. 1. The search for a good
parameter θ can be done in a noisy optimisation framework, by relying on direct
simulations of candidate policies πθ on the test problem.



Combining policies: the best of human expertise and neurocontrol 3

Various algorithms have been proposed, including evolutionary algorithms
with resampling numbers chosen by Bernstein races [13] or by simple resampling
rules [1]. They are often improved by the use of common random numbers [22,
23, 14].

The performance of parametric DPS heavily relies on the choice of the policy
search space, i.e. the chosen class of policies that can be considered as candidates.
Examples include neural networks [5] and fuzzy systems [24], usually optimised
by evolutionary algorithms [21].

We use in this paper a self-adaptive evolution strategy, with anisotropic step-
size [6]. The population size is set to λ = 4N + 4 where N is the number of
parameters, and µ = λ/4. The mutation rate is τ = 1/

√
2N . Initial parameters

are randomly drawn with a Gaussian distribution with step size 1 and step-sizes
are independently randomly drawn as the exponential of standard Gaussian
distributions.

3 Meta-policy search

To find an optimum solution, it is of course possible to try each of the policies,
and select the best one. This however implies to run the optimisation process
multiple times. Here, we propose a scheme to combine multiple policies: one is
problem specific under the form of simple heuristics designed using prior knowl-
edge on the domain, and the other one is a generic parametric policy (eg. Neural
Network, Fuzzy rules).

3.1 Combining policies

Combining several policies has been done before, in different ways. A part of
the literature combines policies in the sense that each policy, equipped with
state prediction, handles a part of the state space [9]. Some approach combine
policies based on their Q-functions [16] or by combining the policies themselves
[12]. Another method is to distribute the computational power over a family
of algorithms (similarly to how multi-armed bandits distribute arm pulls) by
combining DPS algorithms [10].

As in [10], we consider a DPS-based approach. More precisely, we consider
several parametric policies, to be optimised by DPS. However, instead of optimis-
ing each family separately, and then combining them, we consider a parametric
combination αC1 + (1 − α)C2 where, C1 and C2 are two policies. We then op-
timise the joint policy. With this, the decision resulting from the joint policy is
the combination of each policy’s output.

More formally, given a current state s, we select the decision:

Ccombination(s)αC1(s) + (1− α)C2(s). (2)

This makes sense in the case of continuous actions. The number of parameters
to optimise is N1 + N2 + 1, where N1 and N2 are the number of parameters of



4 Vincent Berthier, Adrien Couëtoux, and Olivier Teytaud

C1 and C2 respectively. We actually write α as a parametric function ranging
from 0 to 1, with α = 1

2 (1 +β/
√
β2 + 1); the parameter β is optimised in R and

initialized at 0.
Our method has the following advantages:

– there is no computational overhead, as all the parameters of the combined
policy are trained at once, without specific training of each independent pol-
icy. Most of the computation time is spent in the simulations, not in the
policies themselves. Therefore the computational overhead for a given num-
ber of iterations, compared to each of the families separately, is negligible.

– we can outperform all the individual policies, as the global family of functions
contains weighted averages of the original policies and not only the union of
both families of functions.

3.2 Orthogonal policies

[20] pointed out the importance of using “orthogonal” algorithms in a portfolio.
A portfolio containing too many optimisers tends to be unstable. It is then
necessary to choose as few optimisers as possible, while covering as best as
possible the set of all possible solvers. In order to increase the chances of finding
a good solution, what matters is not (only) the number of optimisers in the
portfolio, but how many orthogonal these optimisers are. Optimizers are said to
be “orthogonal” if they are “very” different one to each other.

In the same way, combining many policies, or two policies of the same type
(eg. neural networks) is not optimal. The best strategy would be to choose two
policies as different from one another as possible.

4 Experimental results: combining handcrafted functions
and neural networks

To analyse our method, we designed many individual policies to later combine
them. These include:

– A handcrafted function based on heuristics, designed by human experts.
– Several fuzzy control functions.
– Conformant planning: a sequence of actions, independent of state observa-

tions.
– A one layer feedforward neural network with sigmoid activation functions,

such that for a state at time t st, the action at is:

at = W0 +W1 × tanh(W2 × st +W3)

Where W0 is a bias vector of size the number of actions at each time step,
W1 the activation weights of the neurons in the hidden layer of dimension
‖actions‖ × ‖neurons‖, W2 is the weight matrix from the states to the
neurons of dimension ‖neurons‖×‖states‖, and W3 is a bias vector the size



Combining policies: the best of human expertise and neurocontrol 5

of the number of neurons. The total number N of parameters to optimise is
then

N = ‖states‖ × ‖neurons‖+ ‖neurons‖
+ ‖actions‖ × ‖neurons‖+ ‖actions‖

Fuzzy systems and conformant planning are intermediates between expert
handcrafted functions and neural networks:

– They are less specialized than the expert function, which has only 3 param-
eters and works quite well.

– They are less parameter-free learners than the neural network.

Typically in our experiments the expert function is the best one for small learning
time, and the neural network is the best function asymptotically. Interestingly
however, we will see that our combination not only selects the best among the
neural network and the expert function - it outperforms both.

4.1 Test problems: two types of unit commitment

Our test case is the one provided freely at https://www.lri.fr/~teytaud/

uctest/uctest.html. In the unit commitment problem, the goal is to use avail-
able means of storage and production to satisfy a demand in energy over a given
time horizon. We consider the case where energy can be produced from hydro-
electric plants for free and from thermal plants at a cost. Energy can be stored
until a certain limit in hydroelectric plants. The goal being to minimise the
costs, we want to use the thermal plants as little as possible, and to maximise
the efficiency of the storage available, while still meeting the demand. Failures
to produce the required demand are heavily penalised.

We study our method on two distinct versions of this problem: a hydroelec-
tric valley (all dams are connected in series), and a random network of dams
avoiding cycles. In both cases, there are five dams, i.e. the state space contains
5 continuous variables. There are 21 time steps. Thermal units complete the
dispatch, ie. they produce the electricity needed to satisfy the demand. In short,
the control problem has 5 input variables, 5 output variables, and 21 time steps.

The dams receive random inflows at each time step, simulating weather con-
ditions. We study two cases: rainy seasons with large inflows, and dry seasons
with small inflows. The noise-free setting corresponds to a case in which we as-
sume that all random processes can be predicted with high accuracy.The noisy
setting represents a more difficult scenario. We need a noisy optimisation algo-
rithm instead of a classical optimisation algorithm. In the noisy case, each fitness
evaluation at iteration i of the evolutionary algorithm is averaged over d10

√
ie

runs in order to mitigate the level of noise [1].



6 Vincent Berthier, Adrien Couëtoux, and Olivier Teytaud

4.2 Noise free setting

We first present experiments in a simplified noise-free case, ie. the objective
function is deterministic. This means that all random processes are replaced by
a deterministic simplified counterpart. Results are presented in Fig. 1 (hydro-
electric valley in the noise-free case; top: large inflows; bottom: small inflows)
and Fig. 2 (hydroelectric network in the noise-free case, same two settings). In
each of these four noise-free cases, the combination is at least as efficient as each
policy separately, and in two cases it outperforms them vastly. Each experiment
is reproduced with various numbers of neurons; 2 or 4 neurons is usually optimal.

4.3 Noisy setting

We now perform experiments with random noise around the mean inflows and
demands. Fig. 3 presents the results in the case of the hydroelectric valley and
Fig. 4 presents the results in the case of the hydroelectric random network (in
both cases, two settings, namely large inflows and small inflows). In each of these
four noisy cases, the combination is at least as efficient as each policy separately,
and in two cases it outperforms them vastly. Each experiment is reproduced with
various numbers of neurons; 2 or 4 neurons is usually optimal.

4.4 Experimental results: others

We also tried to replace the neural network policy by some other parametric
policies such as fuzzy controllers, conformant planning, linear or quadratic con-
trollers. However, none of them could be combined with the expert policy as
efficiently as the neural network could.

Even more interestingly, when we combined two parametric policies, we could
at best approximately get the best of the two (or four in cases of recursive
combinations) but we never outperformed it. Furthermore, there was a clear
delay to reach this selection, which is a result comparable to [10].

5 Conclusions and further works

We proposed a simple tool for combining parametric DPS policies:

– Just one optimisation pass for both policies (though we might consider more
than two parametric policies);

– Usually quickly as good as the best of the considered policies;
– Sometimes much better.

Compared to separate learning, this makes the tool simpler (just one run) and
faster (no separate learning). Compared to algorithm selection methods as [10],
we can outperform both approaches, whereas classical algorithm selection can
only be equivalent to the best of the two methods.



Combining policies: the best of human expertise and neurocontrol 7

Fig. 1. Y-axis = reward. X-axis = learning budget. Hydroelectric valley. Noise-free
setting (i.e. all random processes are simplified to their average values). Each subplot
corresponds to a different number of neurons. 4: parametric expert function. .: neural
network. 5: combination. The combination outperforms both separate functions. Top:
large inflows. Bottom: small inflows.



8 Vincent Berthier, Adrien Couëtoux, and Olivier Teytaud

Fig. 2. Hydroelectric network, noise-free setting. Top: large inflows. Bottom: low in-
flows. The combination (.) is a clear success in this case as well, though in the latter
case the expert function also performs very well.



Combining policies: the best of human expertise and neurocontrol 9

Fig. 3. Noisy setting, hydroelectric valley. Top: large inflow - the combination is ex-
cellent. Bottom: small inflows - the combination performs well; it does not always
outperform the best of both solvers, but we point out that just selecting the best of
two controllers takes more time than training them [10].



10 Vincent Berthier, Adrien Couëtoux, and Olivier Teytaud

Fig. 4. Noisy setting, hydroelectric network. Top: large inflows. Bottom: small inflows.
Results are qualitatively similar to Fig. 3.



Combining policies: the best of human expertise and neurocontrol 11

We do not claim that we outperform portfolio methods, or at least not in
all cases. Maybe for combining large numbers of policies our method would fail
compared to portfolio methods. A limitation of our approach is that we can com-
bine various parametric policies, but we can not combine DPS and completely
different methods such as stochastic dual dynamic programming [18] or Monte
Carlo Tree Search [8, 15]. Also, the success of our method was not reproduced
with something else than the combination “expertise + neural networks”; we as-
sume that this is related to the orthogonality (the expert policy is very different
from the generic neural network). Still, the combination was very efficient in a
stable manner, outperforming both methods without additional cost and with-
out sophisticated developments. This was the case for 1, 2, 4, 8, 16, 32 neurons, in
all 8 sets of experiments (a deterministic and a stochastic case; a hydroelectric
valley and a hydroelectric random network; and two levels of inflows). Therefore
we consider that our simple combination (Eq. 2) should at least be considered
when combining policies.

Last, we point out a specific property of evolution strategies. In the case where
only one of the policies is relevant, then an optimization algorithm (evolutionary
or not) might quickly find the optimal extreme value for α in Eq. 2. Then,
the variables from the other policy have no impact on the objective function
anymore, due to the weight zero of the corresponding policy. As a consequence,
many variables become pointless, with no impact on the objective function. In
contrast to many optimization algorithms, many evolutionary algorithms are
not impacted by the presence of these pointless variables. Therefore, once α has
been tuned, the evolutionary algorithm might just optimize the parameters of
the relevant policy.

Combining four controllers was briefly considered in this work, without clear
results. We considered combinations of controllers with less orthogonality (fuzzy
systems, conformant planning, linear controllers) and results were far less con-
vincing; whereas for neural networks and handcrafted policies the combination
was already efficient. Extending the method in cases with less orthogonality
might be interesting, as well as validating the fact that orthogonality is crucial.

References

1. Astete-Morales, S., Liu, J., Teytaud, O.: log-log convergence for noisy optimization.
In: Proceedings of EA 2013. p. accepted. LLNCS, Springer (2013)

2. Astrom, K.: Optimal control of Markov decision processes with incomplete state
estimation. Journal of Mathematical Analysis and Applications 10, 174–205 (1965)

3. Baudis, P., Posik, P.: Online black-box algorithm portfolios for continuous opti-
mization. In: PPSN. pp. 40–49 (2014)

4. Bellman, R.: Dynamic Programming. Princeton Univ. Press (1957)
5. Bengio, Y.: Using a financial training criterion rather than a prediction criterion.

CIRANO Working Papers 98s-21, CIRANO (1998), http://ideas.repec.org/p/
cir/cirwor/98s-21.html

6. Beyer, H.G.: The Theory of Evolution Strategies. Natural Computing Series,
Springer, Heideberg (2001)



12 Vincent Berthier, Adrien Couëtoux, and Olivier Teytaud

7. Christophe, J.J., Decock, J., Teytaud, O.: Direct model predictive control. In: Eu-
ropean Symposium on Artificial Neural Networks, Computational Intelligence and
Machine Learning (ESANN). Bruges, Belgique (Apr 2014), http://hal.inria.

fr/hal-00958192

8. Coulom, R.: Efficient Selectivity and Backup Operators in Monte-Carlo Tree
Search. In P. Ciancarini and H. J. van den Herik, editors, Proceedings of the 5th
International Conference on Computers and Games, Turin, Italy pp. 72–83 (2006)

9. Doya, K., Samejima, K.: Multiple model-based reinforcement learning. Neural
Computation 14, 1347–1369 (2002)

10. Gagliolo, M.: Online Dynamic Algorithm Portfolios. Ph.D. thesis, ID-
SIA/University of Lugano, Lugano, Switzerland (March 2010), http://como.vub.
ac.be/~mgagliol/Gagliolo10PhD.pdf

11. Hamadi, Y.: Search: from Algorithms to Systems (HDR). Habilitation à diriger des
recherches, Université Paris-Sud (2013)

12. van Hasselt, H.P.: Insights in Reinforcement Learning: formal analysis and empiri-
cal evaluation of temporal-difference learning algorithms. Ph.D. thesis, Universiteit
Utrecht (January 2011), http://homepages.cwi.nl/~hasselt/papers/Insights_
in_Reinforcement_Learning_Hado_van_Hasselt.pdf

13. Heidrich-Meisner, V., Igel, C.: Hoeffding and bernstein races for selecting policies
in evolutionary direct policy search. In: ICML ’09: Proceedings of the 26th Annual
International Conference on Machine Learning. pp. 401–408. ACM, New York, NY,
USA (2009)

14. Kleinman, N.L., Spall, J.C., Naiman, D.Q.: Simulation-based optimization with
stochastic approximation using common random numbers. Management Science
45(11), 1570–1578 (1999), http://pubsonline.informs.org/doi/abs/10.1287/

mnsc.45.11.1570

15. Kocsis, L., Szepesvari, C.: Bandit based Monte-Carlo planning. In: 15th European
Conference on Machine Learning (ECML). pp. 282–293 (2006)

16. Marivate, V., Littman, M.: An ensemble of linearly combined reinforcement-
learning agents (2013), https://www.aaai.org/ocs/index.php/WS/AAAIW13/

paper/view/7025/6704

17. Nudelman, E., Leyton-Brown, K., Hoos, H.H., Devkar, A., Shoham, Y.: Under-
standing random sat: beyond the clauses-to-variables ratio. In: Wallace, M. (ed.)
Principles and Practice of Constraint Programming CP 2004, LLNCS 3258. vol.
3258 of Lecture Notes in Computer Science, pp. 438–452. Springer Berlin / Hei-
delberg (2004)

18. Pereira, M.V.F., Pinto, L.M.V.G.: Multi-stage stochastic optimization applied to
energy planning. Math. Program. 52(2), 359–375 (Oct 1991), http://dx.doi.org/
10.1007/BF01582895

19. Powell, W.B.: Approximate Dynamic Programming. Wiley (2007)
20. Samulowitz, H., Memisevic, R.: Learning to solve qbf. In: Proceedings of the 22nd

National Conference on Artificial Intelligence. pp. 255–260. AAAI (2007)
21. Stalph, P.O., Ebner, M., Michel, M., Pfaff, B., Benz, R.: Genetic and evolutionary

computation conference, gecco 2008, proceedings, atlanta, ga, usa, july 12-16, 2008.
In: Ryan, C., Keijzer, M. (eds.) GECCO. pp. 535–536. ACM (2008)

22. Strens, M., Moore, A.: Direct policy search using paired statistical tests. In: Pro-
ceedings of the 18th International Conference on Machine Learning. pp. 545–552.
Morgan Kaufmann, San Francisco, CA (2001)

23. Strens, M., Moore, A., Brodley, C., Danyluk, A.: Policy search using paired com-
parisons. In: Journal of Machine Learning Research. pp. 921–950 (2002)



Combining policies: the best of human expertise and neurocontrol 13

24. Zadeh, L.A.: The birth and evolution of fuzzy logic. Int. J. of General Systems pp.
95–105 (1990)

25. Zambelli, M., Soares Filho, S., Toscano, A.E., Santos, E.d., Silva Filho, D.d.:
NEWAVE versus ODIN: comparison of stochastic and deterministic models
for the long term hydropower scheduling of the interconnected brazilian sys-
tem. Sba: Controle & Automacao Sociedade Brasileira de Automatica 22, 598
– 609 (12 2011), http://www.scielo.br/scielo.php?script=sci_arttext&pid=
S0103-17592011000600005&nrm=iso


