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Abstract—The smart cities of the future are expected to be
serviced by advanced, personalized multimodal transit systems,
charged with timely transport of citizens. Optimizing routes on
such networks is a complex problem, in part due to the fact that
simple metrics such as latency by themselves are not sufficient
to find the best routes. In this paper, we focus on the problem of
providing commuters with personalized routes with the most con-
venience. We present our mathematical model of user convenience
during a multi-leg journey, and the overview of a middleware
for enabling convenient transit (including ensuring acceptable
network connectivity to mobile apps) by using crowdsourcing. We
also report on initial insights obtained through empirical studies
on network connectivity and user-perception of convenience in
Delhi, India, and Paris, France.

I. INTRODUCTION

With over 70% of the world’s entire population expected
to be living in cities by 2050, supporting citizens’ mobility
within the urban environment is a priority for municipalities
worldwide. Although public multi-modal transit systems are
necessary to better manage mobility, they are not sufficient.
Citizens must be offered personalized travel information to
make their journeys more efficient and enjoyable. Notably,
such information should not only be objective (e.g., bus
timetable, live bus tracking), but crucially personalized since
passenger preferences and interests differ (e.g., crowdedness
of trains, sociability of the coaches).

Enabling personalized travel information requires solution
to a multitude of research problems. On one hand, efficient
techniques for mobile participatory sensing providing on-
demand sensing information at a large scale are required to
create robust mobile distributed systems. The sensing has
to be intelligent to allow resource conservation as well as
capture of correct sensing information in a given context
without requiring user intervention all the time, and in spite
of network unreliability [1]. These techniques need to then
be complemented by domain-specific machine learning algo-
rithms, which must be able to execute on resource-constrained
mobile devices with heterogeneous configurations.

It is important to note that although a large body of work
exists focusing on the use of ICT in multi-modal urban
transportation in the western world ([2], [3]), the rise of
public transit in emerging markets brings unique challenges
to the domain. Notably, although it can be assumed that all

urban commuters in a country like India have mobile phones,
even smart phones, not all might have data plans and might
rely on SMS only. The extreme unreliability of the actual
transport system due to chaotic large-scale traffic (e.g., buses
not following their schedule) further stresses the need of robust
systems for information management in these contexts.

Thanks to the increased abundance of mobile phones, the
recent field of mobile participatory sensing could be leveraged
towards providing a more fine-grain and up-to-date view of a
city’s transportation system. In this paper, we focus on two
different aspects of using mobile participatory sensing for
providing personalized transit solutions: First, developing a
scalable data collection middleware, that gathers both passive
sensory information and active user-generated content, and
disseminates transport network status updates to travelers
as per their mobility preferences for personalized services.
Challenges here include the large scale, system dynamicity,
and heterogeneity while combining the data streams of interest
to a user. Second, we are developing learning and mining
techniques for sustainability, that can help identify events of
interest from collected data; and help provide personalized
services to complement the first aim. Recently, machine learn-
ing has been increasingly used in enhancing capabilities of
smartphones. It has been used in detecting everyday activi-
ties [4], road conditions and driving behavior [5], inferring
information from complex sensors like audio [6] etc. Our
work explores different applications of machine learning in
providing personalized services and develop new approaches
that enable such services in urban transport context.

Unlike existing transit applications that recommend routes
to users based on objective metrics like least distance, least
hops etc., we aim to provide commuters the most convenient
personalized routes. Convenience is a subjective term and may
differ among users. In this paper, we identify three different
parameters on which user-convenience depends and develop a
city-wide convenience model as a first step towards providing
convenience information to passengers. We focus on two par-
allel paradigms aimed at improving transit services for urban
travellers. On one hand, we present our mathematical model
of user convenience during a multi-leg journey in Section II,
and validate it using data collected from metro users. On the
other hand, since transit conditions vary with time, users must



be presented with real-time convenience information provided
by other travellers, we aim to identify the best interaction
paradigm for enabling component interaction by presenting
an overview of the middleware for enabling convenient transit
(including ensuring acceptable response times to mobile apps)
by using crowdsourcing in Section III. Based on our prototype
application (Section IV), we report on initial insights obtained
through empirical studies on network connectivity and user-
perception of convenience in Delhi, India and Paris, France
India in Section V. Section VI concludes with a discussion of
the results and directions of our future work.

II. CONVENIENCE MODEL

To improve transit facilities in cities, it is important to under-
stand the user perception about existing conditions. For this,
we propose a convenience model — a function of time delay,
congestion, and seat availability experienced by passengers of
Delhi and Paris. We choose time and congestion as the two
parameters, inspired by the work in [2] that used a similar
model for developing traffic regulators for metro rails. We also
consider seat availability as another important parameter as
we believe that comfort level is affected by seating time (also
related to crowdedness in the metro). Metro rail behavior is
similar across cities; passengers do not know the exact arrival
and departure times of metro rails but have an experience
of expected waiting and travel times for a path. Similarly,
passengers have an expectation of congestion levels and seat
availability which helps them decide their ingress and egress
stations. Hence, we build convenience models around expected
parameter values and not actual parameter values.

The metro network of a city can be represented as a directed
graph G = (V, E) where V is the set of stations and F is the
set of directed edges such that (u,v) € E where u,v € V
is a directed edge. We model the inconvenience experienced
by a passenger travelling on a path P where P is a series of
transit legs Ly, Lo, ..., L,, lying on the path. The transit legs
may belong to different lines connected by junction stations,
i.e., stations where the line switch happens. Let J denote the
set of junction stations and N denote the set of non-junction
stations on the path P. Therefore, P = J U N.

We model the inconvenience caused to a passenger on the
path P, gy for the vertex pair (o,d) € V x V where o is the
originating station and d is the destination station. The path
P,,q) is a sequence of vertices v1,v2,...,v, on transit legs
L+, Lo, ..., L, with repetitions allowed. In the following text,
we model the inconvenience caused to passengers in terms of
the identified parameters.

The time delay experienced by a passenger can be divided
into the following segments:

1) t! : time taken to travel the edge e

2) t; : stoppage time at vertex v

3) t5* : time to switch from one leg to another at junction

station v

We make the following network assumptions for our model:
i) time taken to travel an edge e (t%) is fixed; ii) stoppage time
at every station v € G (t)) is fixed; and iii) time taken to

switch transit legs at a junction station j € J (¢5*) is fixed.
The total estimated time to travel from o to d E; is:

E,=Yth+ > 4> 6 (1)
ecP veN —{o,d} jeJ

For a timely service, the actual travel time should be equivalent
to E;. However, the traffic of metro type railways is intrinsi-
cally unstable, and delays may occur due to the following
reasons causing passenger inconvenience: i) metro may arrive
late at origin (passenger has to wait at station o longer than
expected), ii) it may run slow causing longer travel times, iii) it
may have to wait at a station for long, or iv) there may be huge
crowd at a junction station resulting in longer switching times
The time inconvenience caused to a passenger is, therefore, the
sum total of all of these. Let i) A, denote the actual waiting
time at station o and E, be the expected waiting time. (F,
can be regarded as the frequency of arrival of metro at station
0.); ii) AL denote the actual time taken by the metro to travel
edge e € E; iii) AJ denote the actual stoppage time at station
v € N; iv) Aé denote the actual time taken to switch transit
leg at junction station j € J; and v) A, represent the actual

inconvenience experienced by the passengers.
The inconvenience caused due to the delay in metro service
is modelled as:

L= (Ag=Eo)+ Y (AL —t0)+> (A —t2)+ ) (A -

ecP vEN v'ed

Sw)
v’

@)
To model the congestion inconvenience, we use the concept
of personal space defined by Edward Hall’s personal reac-
tion bubble [7]. The travel of a passenger is assumed to
be inconvenient only if there are other commuters within a
passenger’s personal space (a radius of 1.5 ft). The congestion
inconvenience is, therefore, given by:

TP
=Y / (Ac — Ne)dt 3)
ter /T
where T; represents the start of travel on leg I, T}’ represents
the time at which the passenger gets a seat on leg [, and NV,
represents the nominal congestion calculated using reaction
bubble. The journey rating of a passenger may also vary with
the seat availability in the metro. A user may skip a crowded
metro hoping for a seat in the next metro. Hence, lack of
seat availability may increase the inconvenience experienced
by users (represented by I and reported directly by users).
Hence, the overall inconvenience caused to a passenger
throughout the travel from o to d can be linearly related as:

I=al, + bl +cl, +n

where a, b and c are city-dependent parameters defining the
weights of inconvenience and 7 is a city-specific constant.

Since these parameters depend on the city conditions, we
developed an Android application — Metro Cognition (Sec-
tion IV) to collect data to identify these variables. Our goal
is to define the weights of these parameters for predicting
a user’s journey experience to provide personalized services.
The analysis of the data collected using the app is given in
Section V where we summarize our results.



ITI. SYSTEM ARCHITECTURE

Metro Cognition is a mobile application targeted for urban
smartphone users traveling by metro trains. Such a user
may act as a sender (gathering and sending data to a main
component), or a receiver (accepting data related to metro
services for facilitating her travel experience). To enable
an effective way of interaction between the users and the
software components, we need to take into account three basic
constraints: 1) Connectivity - the connectivity status changes
quickly while traveling into the metro; ii) Energy efficiency -
smartphones are limited in terms of battery availability, and;
iii) Timeliness (Freshness) of data - for instance, data of a
traveler reporting an inconvenience is valid for a short period.

The above constraints pose a barrier for enabling efficient
component interactions. For instance, the connectivity status
affects the freshness of a message and, sending/receiving a
tremendous amount of messages may result into quick battery
drain on mobile devices [8]. So far, a number of middlewares
have been proposed to tackle common limitations of mobile
environments. These can usually be classified into a set of
common interaction paradigms. One suggestion to improve
the quality of interactions is to enable the system designer
to select the appropriate interaction paradigm regarding the
constraints and the application context. Relying on our prior
experience [9], we classify the interactions of software com-
ponents into the following paradigms:

— Client/Server (CS) - a client communicates directly (with-
out intermediate components) with a server either by
direct messaging (one-way) or through remote procedure
calls (RPC, two-way).

— Publish/Subscribe (PS) - multiple peers interact via an
intermediate broker. Subscribers subscribe to a specific
topic on the broker, publishers produce events in that
topic and subscribers receive events in FIFO order.

— Tuplespace (TS) - multiple peers interact via an interme-
diate shared data space. Writers post tuples to the shared
data space, and readers can retrieve data from it using a
specific template (non-FIFO order).

Focusing on receiver’s part and considering the main con-
straints described above, in the CS interaction paradigm, server
always receives fresh messages and battery reduces by a
certain amount when connectivity status is ON. On the other
hand (when the connectivity is OFF), messages are lost. In
PS interaction paradigm, subscribers receive events regardless
of their connectivity status. When the status is ON, events
are received immediately (fresh). When the status is OFF,
events are stored with the broker and received by subscribers
(stale data) in a FIFO order when connectivity is restored.
The battery is reduced by a certain amount for all events.
According to the disconnection period, battery is likely to
drain significantly depending the amount of events sent [10].
Finally, in TS interaction paradigm, there is a possibility (when
connectivity status is ON) to obtain tuples immediately (fresh)
and battery reduces by a certain amount for each tuple. On the
other hand, when the status is OFF, tuples are kept to the data
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Fig. 1: Metro Cognition user (sender and receiver) traveling
in the Metro

space. When connectivity is restored, readers are able to read
stale tuples based on the template applied. In other words,
readers receive a number of tuples (e.g. the most important)
and the battery reduces according to these tuples. The latter
makes mobile users more flexible to consider the number of
retrieved tuples based on the remaining battery.

The proposed architecture of Metro Cognition can be
represented using appropriate interaction paradigms towards
developing an effective and usable mobile application. As
depicted in the Fig. 1, while a user is traveling in the metro,
connectivity issues might occur. Also, mobile users in the
metro can act as a: i) sender: following a PS interaction
paradigm, user’s data should be gathered with a broker -
embedded to her mobile device. According to the connectivity
status, data are forwarded to the main software component
(CS server) for processing; or ii) receiver, data are sent from
the main software component (CS server) in order to reach
mobile users either through PS, or TS interaction paradigm
depending on the remaining energy on the mobile user’s
battery. The intermediate components (broker, tuple-space),
should be independent and deployed in an always-reachable
machine (e.g. cloud).

The above interactions should be coordinated by a third-
party platform, which we call Sarathi', dedicated to trans-
portation systems. In this work, we take our first step towards
Sarathi by implementing Metro Cognition for senders using
the GoFlow? middleware in order to gather and send data
to a server. GoFlow follows a Publish/Subscribe interaction
paradigm, providing queueing mechanisms to store data while
senders are disconnected.

IV. APPLICATION

Our goal is to develop services for urban travelers that
allow users to specify personal preferences while looking for
public transit modes. The input to the service would be a set
of personalized user preferences (e.g., wishing to sit during
the journey, path with the shortest travel time, etc.), and the
output would be a list of public transit modes that best meet

!'Sarathi is a Hindi word meaning Charioteer - the driver of a Chariot
Zhttp://goflow.ambientic.mobi/
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Fig. 2: Screenshots of the mobile app

the user specifications. Towards this end, our first goal is to
build models that can predict the convenience level of a user
based on the parameters identified in Section II.

We developed an Android application, Metro Cognition, to
collect ground truth data required for identifying the constants
a,b,c and i of the convenience models for Delhi and Paris
(screenshots shown in Fig. 2). Unlike the fine grained division
in convenience model, we opted to collect coarse grained
parameter values on a scale of 4 - very bad, bad, good, and
very good - keeping the user inputs as low as possible. The
collected data are used to train our model (the convenience
level experienced by passengers for different parameter levels)
using machine learning techniques (see Section V).

Taking into account the basic constraints described in
Section III, we collect data in a reliable way by following
the proposed architecture. Using the GoFlow middleware,
we implement our Android application with an embedded
broker acting as a sender providing data to the cloud server
as depicted in Fig. 1. Moreover, providing services that are
QoS (Quality-of-Service) aware (e.g., wishing to sit during
the journey) presupposes the awareness of connectivity sta-
tus of metro users. Towards this, Metro Cognition collects
connectivity tuples every 30 seconds using a background
service while the user is traveling. Let con_tuple be the
connectivity tuple with the following 6 values: i) ON/OFF
(depending on availability of internet); ii) timestamp (the
exact time when connectivity is ON/OFF); iii) location (GPS
coordinates); iv) accuracy (the location accuracy); v) provider
(e.g. Vodafone) and; vi) path_id (a unique identifier for a
user’s path). User data is associated with a unique ID - a
unique hash representing a user’s device so it is not possible to
identify users from the data. We also understand that locations
collected as part of con_tuple might reveal user identity,
and we plan to resolve privacy implications as part of our
future work.

To use the application, a user selects a path between two
stations using the screen shown in Fig. 2a. The user can move
the application to the background, generating a notification
icon on the status bar to remind users to submit their feedback.

When the journey ends, the user can click on the notification to
launch the form (shown in Fig. 2b) and submit her feedback.
Convenience and connectivity data are stored in JSON format
and sent to the GoFlow cloud server.

V. EARLY EXPERIMENTS

In order to evaluate our approaches, we performed similar
experiments in Delhi, India, and Paris, France. The data for the
experiments were provided by volunteers traveling in the metro
rails of both the cities. For Delhi, we provided an incentive, Rs.
100 for every 50 stations of data, to the volunteers providing
the data. It may be noted here that the volunteers were students
who traveled by metro to college everyday, and were not asked
to take extra journeys for data collection. Volunteers from Paris
were colleagues who agreed to provide the data for free. A
total of 24 users volunteers participated (12 from each city).

In the following text, we describe our experiments and
analysis of the results generated.

A. Convenience Analysis

As described in Section 1V, we collect user feedback on
three parameters (time delay, comfort experienced, and seat
availability) for their metro journey in a subjective manner
to build convenience models for the two cities. Our goal is
to identify the best machine learning techniques suited for
this data, and also identify the weights of different parameters
contributing to the journey ratings of travelers (including
identification of hidden parameters, if any). Metro journeys
may vary in length (single-legged, bi-legged, tri-legged, etc.),
and hence, a single model cannot suffice for all trips. Thus, we
divide the dataset into different categories and analyse them
independently. Table I shows the number of samples collected
by volunteers for each category. The diversity in the number
of samples in the divided datasets suggests that passengers in
Paris take single-legged journeys more often than multi-leg
journeys. For Delhi, however, passengers mostly take three-
legged journeys. Since the number of data samples for one-leg
Delhi journeys, and three-leg Paris journeys is too less, we do
not use them for building convenience models. We currently
focus on two-leg journeys for Delhi and Paris, three-leg Delhi
journeys, and one-leg Paris journeys.

We tried four different classification models - decision
trees [11], multiclass linear regression [12], SVM [11] and
Neural Network [12] on the dataset. Since the dataset is small,
we assumed SVM (Support Vector Machines) and NN (Neural
Networks) would yield poor classification models. SVM analy-
sis validated this as more than 30 data samples (out of 40 from
Paris one-leg and Delhi three-leg dataset) were being used as
support vectors, causing overfitting. This resulted in low test
accuracy, rendering this technique unsuitable for our dataset.
Neural networks, on the other hand, resulted in high accuracies
even on small dataset. The high accuracies were attributed to
the hidden layer of neurons which considers the combined
effect of multiple parameters and adds a bias parameter to
the model. We tried MultiLayer Perceptron (MLP) and neural
network with Radial Basis Function (RBF). The accuracies



TABLE I: Number of data points provided by volunteers

[ [[ One Leg | Two legs | Three legs | Total ]

Delhi 7 38 53 98
Paris 52 37 15 104

TABLE II: Accuracies (in %) obtained with different neural
network settings

Multilayer Perceptron Radial Basis Function
Dataset® || D3 [ D2 [ P2 [ Pl [ D3 [ D2 [ P2 | PI
Training || 97.2 | 84.6 | 929 | 89.5 | 78.6 | 84.6 | 91.3 | 82.8
Testing 833 | 833 | 91.7 80 83.6 | 81.8 | 83.3 | 80.2

achieved over a 80-20 training-testing split of collected data
are shown in Table II. MLP resulted in higher accuracy than
RBF NN due to the presence of a feedback loop (backprop-
agation). This suggests interdependence between parameters
and assures the suitability of this technique on the dataset.

Since the dataset was small, and learning convenience model
involves classification of user data, we also tried decision
tree based training. We trained regression decision trees using
fitrtree function of MATLAB R2014b. The average test
accuracies (reported on 2000 iterations of decision trees con-
structed using 80% data for training) were less than 75% for
both Delhi and Paris metro data, and the standard deviations
in the reported accuracies were close to 0.15. A high 10%
difference in accuracies of neural networks and decision trees
suggest the suitability of neural network on our dataset.

Another goal of our app is to identify the relative importance
of the parameters in the convenience model. The goal is to pro-
vide a list of importance parameters to transit companies and
help them improve their services. To weigh the importance, we
use multiple linear regression for categorical variables (using
IBM SPSS tool [12]) to identify the coefficients of parameters
associated with user rating in the convenience model.

We trained different linear regression models using all
parameter combinations - fime delay, seat availability, user
comfort, time delay and seat availability, seat availability and
user comfort, user comfort and time delay, and all three to-
gether. Comparing the obtained parameter coefficients, comfort
was the most weighted parameter deciding the user ratings
in Paris. A linear regression model applied on Paris one-
leg dataset suggests that parameter weights follow the order:
Comfort > Seat availability > Time delay. Also, n value is
low (less than 1 for multiple parameters) suggesting that noise
in the trained model is less. Delhi, however, shows a different
behavior towards considered parameters. All parameter coef-
ficient values are small in magnitude showing no preference
towards a single parameter, but 7 values are significantly high
(upto 2.06) for all combinations indicating the presence of
other hidden parameters contributing to the user ratings. This is
also justified by the high accuracy achieved using hidden layer
neural network for Delhi dataset. This analysis highlights the
difference between metro user experiences in the two cities and
validates the need for different convenience models depending
on the user experiences.

B. Connectivity Analysis

Metro Cognition also collects data related on the users’
Internet connectivity status. Awareness about network issues in
the metro will allow our platform to take decisions at runtime
to provide services that are adaptable and QoS-aware.

Based on our dataset given in Table I, we analyze the
user’s connectivity pattern (con_pattern) using 98 data
points in Delhi and 104 in Paris. One con_pattern consists
of many con_tuple (defined in the Section IV). Each
con_pattern is created as follows: i) the user starts the
application and chooses her path, ii) the background connec-
tivity service starts, iii) when the connectivity status changes,
a tuple (con_tuple) is stored, iv) if the connectivity changes
to ON, the background service stores tuples every 30 seconds;
v) when the user’s journey ends, she submits the form and the
background service stops.

Note that we do not rely on the Android API for moni-
toring connectivity changes as it does not monitor all actual
disconnections - there are many occasions when the phone
might report internet connectivity, while HTTP endpoints on
the internet are unreachable. Hence, the results are inaccurate.
Instead, we perform an HTTP GET to a URL that rapidly
returns an HTTP 204 response to ensure actual 2G or 3G
connection availability. For instance, on 5th May, 2015 a user
traveled from Cité Universitaire to Porte d’ Auteuil with Free
telecom provider. The total duration of her trip was 32.6
minutes. As per the Android API, the user was connected for
71.4% of the journey, while our approach demonstrates that
she was connected only for 29.7% of the overall period.

By observing available connectivity patterns, no repeated
patterns were observed, even if we repeated the same path
every day at the same time. However, we hypothesize that
connectivity patterns depend on crowdedness of the metro.
To verify our assumption, we conducted the following ex-
periment: i) we picked the largest business districts - Rajiv
Chowk and La Défense, and two residential districts, Govin-
dpuri and Cité Universitaire, in Delhi and Paris respectively;
ii) during a working day, we travelled from one station to
another (Govindpuri — Rajiv Chowk, Cité Universitaire — La
Défense) and back (Rajiv Chowk — Govindpuri, La Défense
— Cité Universitaire); iii) we classified the routes into 3
categories (Morning, Mid-day, Evening); and iv) we provided
the percentage of time a user was connected during the trip.
Fig. 3 depicts the connectivity over time of the experiment
described above for some representative cases. As shown, the
overall disconnected time and the number of disconnections
are high in the morning when people go to work in La
Défense and in the evening when people return home from
Rajiv Chowk (crowded metro). On the other hand, since for
the remaining parts of the day, there are less movements to
these areas, the overall disconnected time and the number of
disconnections decrease. Also, according to Table III, people
traveling to an office area in morning, and those traveling to a

3Dx corresponds to the dataset from Delhi x-legged journeys, and Py
corresponds to dataset from Paris y-legged journeys
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Fig. 3: Connectivity over time

residential one in evening are connected less than 59% during
their journey. For the remaining parts of the day, the overall
connectivity can reach up to 88%. Since travelers commute
often during mornings and evenings, it is important to identify
network conditions that can support real-time information
dissemination.

VI. DISCUSSION

In this paper, we present our initial idea of enabling
convenient urban transit through mobile crowdsensing. We
emphasize the importance of user convenience as a metric to
improve public transit systems. We collect training data using
an Android app and develop convenience models for Delhi and
Paris using machine learning techniques. We report the highest
accuracies received by neural network training on subsets of
data considered and summarize our results.

Although our work is in preliminary stage and the available
data used for the training models is small, we can still identify
stark differences between user experiences. For Paris, the con-
sidered parameters are linearly related to the journey ratings
of users. For Delhi, however, the high magnitude of constant
term indicates the presence of other parameters (currently
unknown) which contribute to the journey rating of passengers.
These parameters could be associated with the inconvenience
experienced by passengers in reaching metro stations (metro
stations in Delhi are located at longer distances), with the sex
of the users (women metro riders in Delhi can use a dedicated
“Ladies coach”), the time of travel, or weather. We aim to
identify these hidden parameters in the context of Delhi users
as part of our future work.

To ensure reliable data collection and provide QoS-aware
services to mobile users, we provide an overview of our
middleware. Our platform, Sarathi, takes into account the
constraints of mobile environments to satisfy components’
interactions by identifying ideal interaction paradigm. Towards
this, it is essential to obtain insights on internet connectivity
in the metro. We monitor the connectivity changes during
multiple journeys in the metro of Paris and Delhi. We show
that our approach is accurate and depicts reality in terms
of internet connection. Initial study of the users’ connectiv-

TABLE III: Percentage of time connected during experimental
journey

[ [[ Morning [ Midday [ Evening |

Cité Universitaire - La Défense 51% 81% 83.5%
Govind Puri - Rajiv Chowk 59% 88% 76%
La Défense - Cité Universitaire T8% 81% 44%
Rajiv Chowk - Govind Puri 82% 79% 51%

ity patterns suggests that being connected depends on the
crowdedness of metros. For our future work, we plan to
identify correlation between network conditions and comfort
level of users, and plan to use the developed convenience
models in an Android app to provide personalized mobility
services. Moreover, we intend to utilize connectivity patterns
as a realistic input-parameter to our queueing network, which
is part of our ongoing work. The outcome will allow us to
identify the systems’ response time and improve it by applying
other timing parameters (e.g., setting a time-to-live for each
data record). Finally, these initial set of experiments have given
us guidelines for executing larger-scale experiments which will
provide us statistically significant results.
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