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Nearly all kinetics studies report the observed rate of reactant disappearance, with product identity and branching largely unknown. This limitation arises
from considerable experimental challenges inherent in the quantitative detection of the full range of products of a given reaction, particularly for large
polyatomic systems. Recent advances have relied upon tunable synchrotron photoionization or low-energy electron impact ionization to achieve selective
product detection in dynamics, kinetics, and flame studies. Challenges remain, however, as these studies require fitting of composite and often
incompletely resolved spectra to infer branching, and clear product signatures are often lacking. To address these issues, we have developed an
alternative approach, which incorporates chirped-pulse Fourier transform microwave spectroscopy [1] in low-temperature uniform supersonic flows [2]
(“chirped-pulse / uniform flow”, C-PUF). This technique provides clear quantifiable spectroscopic signatures of polyatomic products in bimolecular or

unimolecular reactions for virtually any species with a modest electric dipole moment.

Chirped-Pulse / Uniform Flow

Schematic

- Flow Chamber: The pulsed uniform flow source consists of a piezoelectric stack valve connected to mass flow controllers
(MFC), and a Laval nozzle mounted on one end of a polycarbonate vacuum chamber. A quartz window is located on the other
end of the chamber to allow radiation from an ArF excimer laser to propagate down the axis of the Laval nozzle, such that the
core of the flow is irradiated.

- Spectroscopy CP-FTMW: Linearly chirped pulses (0.25-3.75 GHz) are produced in an arbitrary waveform generator (AWG)
and then mixed with a local oscillator (frequency 8.125 GHz) phase-locked to a 10 MHz Rb clock. Frequencies are then
multiplied, amplified, and broadcast onto the flow via a feedhorn oriented perpendicular to the flow axis. Bandpass filters and
isolators are inserted into the setup as necessary. The resultant molecular emission, a free induction decay (FID) is collected
by a second feedhorn, amplified through a low noise amplifier (LNA), downconverted before detection, and phase-coherently
averaged in a broadband fast oscilloscope (8 GHz, 25 Gs/s), where it is Fourier transformed to produce a pure rotational
spectrum with MHz resolution.
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Typical time sequence with segmented chirps to monitor
the products formed in the pyrolysis of CH;CH,ONO.
Here a broadband 7 GHz chirp covering 70.4—77.4 GHz
(black) is used in combination with 20 MHz chirps
centered on relevant known transitions for CH,CHO
(red) and HNO (blue). Ref. [3]

(a) The impact pressure profile from an Ar Laval nozzle
from which a temperature of 22 K is derived.

(b) CP-FTMW rotational spectrum of vinyl cyanide
CH,CHCN showing a temperature of ~ 20 K. Ref. [4]

Applications for reaction dynamics and astrochemistry
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Several rotational transitions of dimethyl ether (J'cy o —J"kake") OVETr
the 34-40 GHz frequency range are shown to illustrate the effects of
collisional dephasing on signal intensities. The top row of spectra
was taken with chirp duration of 1000 ns, and a clear asymmetry
exists in the line intensities between up- (red trace) or down-swept
(black) frequencies. This asymmetry is less severe in spectra
obtained with a 250 ns chirp duration (middle row) or shorter.
Averaging up- and down-chirped spectra can compensate for the
dephasing effects, as shown in rows two and four (blue traces) for
the 1000 and 250 ns spectra, respectively. Ref. [5]

Photodissociation of SO,

Product Branching for CN + C;H,

Product branching, in percent, at 22 K with 20
uncertainty in the last digit:
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SO, +hv (193 nm)=> SO (v.J)+ O 3P Key stationary points on the potential energy surface for the CN +
2 ( ) ( ’ ) ( J) CH,CCH reaction, calculated at CBS-QB3 level of theory. Ref. [6]
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Relative product populations is deduced from the spectra using
the relationship between the integrated line intensities (W) and
column densities (N,y):

N,

tot

kT;otth

_ 473! ZmOZS,uizgngs

W=
cJa

—E,/kT,
(BT,

ot

Segmented macrochirp scan that targets transitions of HCCCN,
CH,CCHCN, and CH;CCCN; J = 9-8 transition at 81.881 GHz, J, k. =
164,16~ 150,45 at 81.674 GHz and Jy = 200 - 190 at 82.627 GHz. The
inset shows the K =0, 1, 2, and 3 transitions of CH;CCCN. Ref. [6]




