
A First Analysis of String APIs:
the Case of Pharo

Damien Pollet Stéphane Ducasse
RMoD — Inria & Université Lille 1

damien.pollet@inria.fr

Abstract
Most programming languages natively provide an abstraction
of character strings. However, it is difficult to assess the de-
sign or the API of a string library. There is no comprehensive
analysis of the needed operations and their different varia-
tions. There are no real guidelines about the different forces
in presence and how they structure the design space of string
manipulation. In this article, we harvest and structure a set of
criteria to describe a string API. We propose an analysis of
the Pharo 4 String library as a first experience on the topic.

Keywords Strings, API, Library, Design, Style

1. Introduction
While strings are among the basic types available in most
programming languages, we are not aware of design guide-
lines, nor of a systematic, structured analysis of the string
API design space in the literature. Instead, features tend to
accrete through ad-hoc extension mechanisms, without the
desirable coherence. However, the set of characteristics that
good APIs exhibit is generally accepted [4]; a good API:

• is easy to learn and memorize,
• leads to reuseable code,
• is hard to misuse,
• is easy to extend,
• is complete.

To evolve an understandable API, the maintainer should
assess it against these goals. Note that while orthogonality,
regularity and consistency are omitted, they arise from the
ease to learn and extend the existing set of operations. In the

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
IWST’15, July 15–16, 2015, Brescia, Italy.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-3857-8/15/07. . . $15.00.
http://dx.doi.org/10.1145/2811237.2811298

case of strings, however, these characteristics are particularly
hard to reach, due to the following design constraints.

For a single data type, strings tend to have a large API:
in Ruby, the String class provides more than 100 methods,
in Java more than 60, and Python’s str around 40. In Pharo1,
the String class alone understands 319 distinct messages, not
counting inherited methods. While a large API is not al-
ways a problem per se, it shows that strings have many use
cases, from concatenation and printing to search-and-replace,
parsing, natural or domain-specific languages. Unfortunately,
strings are often abused to eschew proper modeling of struc-
tured data, resulting in inadequate serialized representations
which encourage a procedural code style2. This problem is
further compounded by overlapping design tensions:

Mutability: Strings as values, or as mutable sequences.

Abstraction: Access high-level contents (words, lines, pat-
terns), as opposed to representation (indices in a sequence
of characters, or even bytes and encodings).

Orthogonality: Combining variations of abstract operations;
for instance, substituting one/several/all occurrences cor-
responding to an index/character/sequence/pattern, in a
case-sensitive/insensitive way.

In previous work, empirical studies focused on detecting
non-obvious usability issues with APIs [12, 13, 11]; for
practical advice on how to design better APIs, these works
cite guideline inventories built from experience [2, 6]. Besides
the examples set by particular implementations in existing
languages like Ruby, Python, or Icon [8], and to the best of
our knowledge, we are not aware of string-specific analyses
of existing APIs or libraries and their structuring principles.

Section 2 shows the problems we face using the current
Pharo 4 string library. In Sections 3 and 4, we identify idioms
and smells among the methods provided by Pharo’s String
class. Section 5 examines the relevant parts of the ANSI
Smalltalk standard. Finally, we survey string API features in
Section 6, before discussing and concluding the paper.

1 Numbers from Pharo 4, but the situation in Pharo 3 is very similar.
2 Much like with Anemic Domain Models, except the string API is complex:
http://www.martinfowler.com/bliki/AnemicDomainModel.html

http://www.martinfowler.com/bliki/AnemicDomainModel.html

2. Pharo: Symptoms of Organic API Growth
As an open-source programming environment whose develop-
ment branched off from Squeak, Pharo inherits many design
decisions from the original Smalltalk-80 library. However,
since the 1980’s, that library has grown, and its technical
constraints have evolved. In particular, since Squeak histori-
cally focused more on creative and didactic experimentation
than software engineering and industrial use, the library that
has evolved organically more than it was deliberately curated
towards a simple and coherent design.

Even though we restrict the scope of the analysis to the
String class, we face several challenges to identify recurring
structures and idioms among its methods, and to understand
and classify the underlying design decisions.

Large number of responsibilities. As explained in Sec-
tion 1, strings propose a wide, complex range of features.
For example, Pharo’s String defines a dozen class variables
for character and encoding properties.

Large number of methods. The current Pharo String class
alone has 319 methods, excluding inherited methods. How-
ever, Pharo supports open-classes: a package can define exten-
sion methods on classes that belong to another package [3, 5];
we therefore exclude extension methods, since they are not
part of the core behavior of strings. Still, this leaves 180 meth-
ods defined in the package of String. That large number of
methods makes it difficult to explore the code, check for
redundancies, or ensure completeness of idioms.

Using the code browser, the developer can group the
methods of a class into protocols. However, since a method
can only belong to one protocol, the resulting classification is
not always helpful to the user. For example, it is difficult
to know at first sight if a method is related to character
case, because there is no dedicated protocol; instead, the case
conversion methods are all part of a larger converting protocol
which bundles conversions to non-string types, representation
or encoding conversions, extracting or adding prefixes.

Multiple intertwined behaviors. Strings provide a complex
set of operations for which it is difficult to identify a simple
taxonomy. Consider the interaction between features: a single
operation can be applied to one or multiple elements or the
whole string, and can use or return an index, an element, a
subset or a subsequence of elements:

Operations: insertion, removal, substitution, concatenation
or splitting

Scope: element, pattern occurrence, anchored subsequence

Positions: explicit indices, intervals, matching queries

Occurrences: first, last, all, starting from a given one

In Pharo we can replace all occurrences of one character
by another one using the replaceAll:with: inherited from Se-
quenceableCollection, or all occurrences of one character by a
subsequence (copyReplaceAll:with:). Like these two messages,

some operations will copy the receiver, and some other will
change it in place. This highlights that strings are really mu-
table collections of characters, rather than pieces of text, and
that changing the size of the string requires to copy it. Finally,
replacing only one occurrence is yet another cumbersome
message (using replaceFrom:to:with:startingAt:).

’aaca’ replaceAll: $a with: $b → ’bbcb’
’aaca’ copyReplaceAll: ’a’ with: ’bz’ → ’bzbzcbz’
’aaca’ replaceFrom: 2 to: 3 with: ’bxyz’ startingAt: 2 → ’axya’

Lack of coherence and completeness. Besides its inherent
complexity, intertwining of behaviors means that, despite
the large number of methods, there is still no guarantee
that all useful combinations are provided. Some features are
surprisingly absent or unexploited from the basic String class.
For instance, string splitting and regular expressions, which
are core features in Ruby or Python, have long been third-
party extensions. They were only recently integrated, so some
methods like lines, substrings:, or findTokens: still rely on ad-
hoc implementations. This reveals refactoring opportunities
towards better composition of independent parts.

Confusingly, some similarly named methods do not accept
the same arguments, while some use different wording for
similar behavior. For instance, findTokens: and replaceAll:with:
accept single characters, but their relatives findTokens:keep:
and copyReplaceAll:with: require collection; conversely, com-
pare the predicates isAllDigits but onlyLetters, or asUppercase
and asLowercase but withFirstCharacterDownshifted.

Impact of immutability. In some languages such as Java
and Python, strings are immutable objects, and their API is
designed accordingly. In Smalltalk, strings historically belong
in the collections hierarchy, and therefore are mutable.

In practice, many methods produce a modified copy of
their receiver to avoid modifying it in place, but either there
is no immediate way to know, or the distinction is made
by explicit naming. For instance, replaceAll:with: works in-
place, while copyReplaceAll:with: does not change its receiver.
Moreover, the VisualWorks implementation supports object
immutability, which poses the question of how well the
historic API works in the presence of immutable strings.

Duplicated or irrelevant code. A few methods exhibit code
duplication that should be factored out. For instance, with-
BlanksCondensed and withSeparatorsCompacted both deal
with repeated whitespace, and findTokens: and findTokens:keep:
closely duplicate their search algorithm.

Similarly, some methods have no senders in the base
image, or provide ad-hoc behavior of dubious utility. For
instance, the method comment of findWordStart:startingAt:
mentions “HyperCard style searching” and implements a
particular pattern match that is subsumed by a simple regular
expression.

3. Recurring Patterns
We list here the most prominent patterns or idioms we found
among the analyzed methods. Although these patterns are not
followed systematically, many of them are actually known
idioms that apply to general Smalltalk code, and are clearly
related to the ones described by Kent Beck [2]. This list
is meant more as a support for discussion than a series of
precepts to follow.

Layers of convenience. One of the clearest instances in
this study is the group of methods for trimming (Figure 1).
Trimming a string is removing unwanted characters (usually
whitespace) from one or both of its extremities.

The library provides a single canonical implementation
that requires two predicates to identify characters to trim at
each end of the string. A first layer of convenience methods
eliminates the need for two explicit predicates, either by
passing the same one for both ends, or by passing one
that disables trimming at one end (trimBoth:, trimLeft:, and
trimRight:). A second layer of convenience methods passes the
default predicate that trims whitespace (trimLeft, trimBoth, and
trimRight). Finally, two additional methods provide concise
verbs for the most common case: whitespace, both ends (trim
and trimmed, which are synonymous despite the naming).

Convenience methods can also change the result type;
the following list shows a few examples of convenience
predicates wrapping indexing methods.

Trimming ends trim, trimmed, trimLeft:right:,
trimBoth, trimBoth:, trimLeft, trimleft:, trimRight, trimRight:

Index of character indexOf:, indexOf:startingAt:,
indexOf:startingAt:ifAbsent:

Index of substring findString:, findString:startingAt:,
findString:startingAt:caseSensitive:, and related predicates
includesSubstring:, includesSubstring:caseSensitive:

Macro expansion expandMacros, expandMacrosWith: etc., ex-
pandMacrosWithArguments:

Sort order compare:, compare:caseSensitive:,
compare:with:collated:, and predicates sameAs:, caseInsen-
sitiveLessOrEqual:, and caseSensitiveLessOrEqual:

trimLeft:right:

trimBoth:trimLeft: trimRight:

trimBothtrimLeft trimRight

trim, trimmed

canonical: both sides explicit

one explicit predicate block,
one implicit (same or no trim)

both sides implicit
(trim whitespace)

concise, fluent name

Figure 1. Chains of convenience methods delegating to a
single canonical behavior: trimming at one or both ends.

Spelling correction correctAgainst:, correctAgainst:continued-
From:, correctAgainstDictionary:continuedFrom:, correct-
AgainstEnumerator:continuedFrom:

Lines lines, lineCount, lineNumber:, lineCorrespondingToIndex:,
linesDo:, lineIndicesDo:

Missed opportunity substrings does not delegate to substrings:

This idiom allows concise code when there is a convention or
an appropriate default, without giving up control in other
cases. However, its induced complexity depends on the
argument combinations necessary; it then becomes difficult to
check all related methods for consistency and completeness.

We propose to broaden and clarify the use of this idiom
wherever possible, as it is an indicator of how flexible the
canonical methods are, and promotes well-factored conve-
nience methods. There are several missed opportunities for
applying this idiom in String: for instance copyFrom:to: could
have copyFrom: (up to the end) and copyTo: (from the start)
convenience methods.

Pluggable sentinel case. When iterating over a collection,
it is common for the canonical method to expect a block to
evaluate for degenerate cases. This leads to methods that are
more akin to control flow, and that let the caller define domain
computation in a more general and flexible way.

Methods that follow this idiom typically include either
ifNone: or ifAbsent: in their selector. For context, in a typical
Pharo image as a whole, there are 47 instances of the ifNone:
pattern, and 266 instances of ifAbsent:.

Index lookup indexOf:startingAt:ifAbsent:,
indexOfSubCollection:startingAt:ifAbsent:

We promote this idiom in all cases where there isn’t a clear-
cut choice of how to react to degenerate cases. Indeed, forcing
either a sentinel value, a Null Object [14], or an exception
on user code forces it to check the result value or catch
the exception, then branch to handle special cases. Instead,
by hiding the check, the pluggable sentinel case enables a
more confident, direct coding style. Of course, it is always
possible to fall back to either a sentinel, null, or exception,
via convenience methods.

Sentinel index value. When they fail, many index lookup
methods return an out-of-bounds index; methods like copy-
From:to: handle these sentinel values gracefully. However,
indices resulting from a lookup have two possible conflicting
interpretations: either place of the last match or last place
examined. In the former case, a failed lookup should return
zero (since Smalltalk indices are one-based); in the latter case,
one past the last valid index signifies that the whole string
has been examined. Unfortunately, both versions coexist:

’abc’ findString: ’x’ startingAt: 1 → 0
’abc’ findAnySubStr: #(’x’ ’y’) startingAt: 1 → 4

We thus prefer the pluggable sentinel, leaving the choice to
user code, possibly via convenience methods.

Zero index findSubstring:in:startingAt:matchTable:, findLastOc-
currenceOfString:startingAt:, findWordStart:startingAt:, in-
dexOf:startingAt:, indexOfFirstUppercaseCharacter, index-
OfWideCharacterFrom:to:, lastSpacePosition, indexOfSub-
Collection:

Past the end findAnySubStr:startingAt:, findCloseParenthesis-
For:, findDelimiters:startingAt:

Iteration or collection. Some methods generate a number
of separate results, accumulating and returning them as a col-
lection. This results in allocating and building an intermediate
collection, which is often unnecessary since the calling code
needs to iterate them immediately. A more general approach
is to factor out the iteration as a separate method, and to ac-
cumulate the results as a special case only. A nice example is
the group of line-related methods that rely on lineIndicesDo:;
some even flatten the result to a single value rather than a
collection.

Collection lines, allRangesOfSubstring:, findTokens:, findTo-
kens:keep:, findTokens:escapedBy:, substrings, substrings:

Iteration linesDo:, lineIndicesDo:

In our opinion, this idiom reveals a wider problem with
Smalltalk’s iteration methods in general, which do not decou-
ple the iteration per se from the choice of result to build —
in fact, collections define a few optimized methods like se-
lect:thenCollect: to avoid allocating an intermediate collection.
There are many different approaches dealing with abstraction
and composeability in the domain of iteration: push or pull
values, internal or external iteration, generators, and more
recently transducers [10, 9].

Conversion or manipulation. String provides 24 methods
whose selector follows the asSomething naming idiom, indi-
cating a change of representation of the value. Conversely,
past participle selectors, e.g. negated for numbers, denote a
transformation of the value itself, therefore simply returning
another value of the same type. However, this is not strictly
followed, leading to naming inconsistencies such as asUpper-
case vs. capitalized.

Type conversions asByteArray, asByteString, asDate, asDate-
AndTime, asDuration, asInteger, asOctetString, asSignedIn-
teger, asString, asStringOrText, asSymbol, asTime, asUn-
signedInteger, asWideString

Value transformation or escapement asCamelCase, asCom-
ment, asFourCode, asHTMLString, asHex, asLegalSelec-
tor, asLowercase, asPluralBasedOn:, asUncommentedCode,
asUppercase

Past participles read more fluidly, but they do not always
make sense, e.g. commented suggests adding a comment to the
receiver, instead of converting it to one. Conversely, adopting
asSomething naming in all cases would be at the price of
some contorted English (asCapitalized instead of capitalized).

4. Inconsistencies and Smells
Here we report on the strange things we found.

Redundant specializations. Some methods express a very
similar intent, but with slightly differing parameters, con-
straints, or results. When possible, user code should be rewrit-
ten in terms of a more general approach; for example, many
of the pattern-finding methods could be expressed as regular
expression matching.

Substring lookup findAnySubStr:startingAt: and findDelimiters:-
startingAt: are synonymous if their first argument is a
collection of single-character delimiters; the difference is
that the former also accepts string delimiters.

Character lookup indexOfFirstUppercaseCharacter is redun-
dant with SequenceableCollection»findFirst: with very little
performance benefit.

Ad-hoc behavior. Ad-hoc methods simply provide conve-
nience behavior that is both specific and little used. Often,
the redundant specialization also applies.

Numeric suffix numericSuffix has only one sender in the base
Pharo image; conversely, it is the only user of stemAndNu-
mericSuffix and endsWithDigit; similarly, endsWithAColon
has only one sender.

Finding text findLastOccurrenceOfString:startingAt: has only
one sender, related to code loading; findWordStart:startingAt:
has no senders.

Find tokens findTokens:escapedBy: has no senders besides
tests; findTokens:includes: has only one sender, related to
email address detection; findTokens:keep: only has two
senders.

Replace tokens copyReplaceTokens:with: has no senders and is
convenience for copyReplaceAll:with:asTokens:; redundant
with regular expression replacement.

Miscellaneous lineCorrespondingToIndex

Mispackaged or misclassified methods. There are a couple
methods that do not really belong to String:

• asHex concatenates the literal notation for each character
(e.g., 16r6F) without any separation, producing an ambigu-
ous result; it could be redefined using flatCollect:.

• indexOfSubCollection: should be defined in Sequence-
ableCollection; also, it is eventually implemented in terms
of findString:, which handles case, so it is not a simple
subsequence lookup.

Many ad-hoc or dubious-looking methods with few senders
seem to come from the completion engine; the multiple ver-
sions and forks of this package have a history of maintenance
problems, and it seems that methods that should have been
extensions have been included in the core packages.

Misleading names. Some conversion-like methods are ac-
tually encoding or escaping methods: they return another

string whose contents match the receiver’s, albeit in a differ-
ent representation (uppercase, lowercase, escaped for com-
ments, as HTML. . .).

Duplicated code. Substring testing methods beginsWith-
Empty:caseSensitive: and occursInWithEmpty:caseSensitive: are
clearly duplicated: they only differ by a comparison operator.
They are also redundant with the generic beginsWith:, except
for case-sensitivity. Moreover, the –WithEmpty: part of their
selector is confusing; it suggests that argument is supposed to
be empty, which makes no sense. Finally, their uses hint that
were probably defined for the completion engine and should
be packaged there.

5. The ANSI Smalltalk Standard
The ANSI standard defines some elements of the Smalltalk
language [1]. It gives the definition “String literals define
objects that represent sequences of characters.” However,
there are few guidelines helpful with designing a string API.

The ANSI standard defines the readableString protocol as
conforming to the magnitude protocol (which supports the
comparison of entities) and to the sequencedReadableCollec-
tion protocol, as shown in Figure 2 [1, section 5.7.10]. We
present briefly the protocol sequencedReadableCollection.

Collection

SequencedContractibleCollection

ExtensibleCollection

AbstractDictionary

IdentityDictionary
Dictionary

SortedCollection

Set Bag

OrderedCollection

Magnitude

ReadableString

SymbolString

SequencedReadableCollection

SequencedCollection
Interval

ByteArrayArray

Figure 2. Inheritance of the ANSI Smalltalk protocols.

SequencedReadableCollection. The sequencedReadableCol-
lection protocol conforms to the collection protocol; it pro-
vides behavior for reading an ordered collection of objects
whose elements can be accessed using external integer keys
between one and the number of elements in the collection.
It specifies that the compiler should support the following
messages — we add some of the argument names for clarity:

Concatenation: , tail (the comma binary message)

Equality: = other

Element access: at: index, at: index ifAbsent: block, first, last,
before: element, after:, findFirst: block, findLast:

Subsequence access: from: startIndex to: stopIndex do: block

Transforming: reverse

Substitution: copyReplaceAll: elements with: replacingEle-
ments, copyReplaceFrom: startIndex to: stopIndex with: re-
placingElements, copyReplacing: targetElement withObject:
replacingElement, copyReplaceFrom: startIndex to: stopIndex
withObject: replacingElement

Index of element(s): indexOf: element, indexOf:ifAbsent:,
indexOfSubCollection:startingAt:,
indexOfSubCollection:startingAt:ifAbsent:

Copy: copyFrom: startIndex to: lastIndex, copyWith: element,
copyWithout:

Iteration: do:, from:to:keysAndValuesDo:, keysAndValuesDo:,
reverseDo:, with:do:

Many operations require explicit indices that have to be
obtained first, making the API not very fluid in practice.
Moreover, the naming is often obscure: for example, copyWith:
copies the receiver, and appends its argument to it.

ReadableString. This protocol provides messages for
string operations such as copying, comparing, replacing,
converting, indexing, and matching. All objects that conform
to the readableString protocol are comparable. The copying
messages inherited from the sequencedReadableCollection
protocol keep the same behavior. Here is the list of messages:

Concatenation: , (comma)

Comparing: <, <=, >, >=

Converting: asLowercase, asString, asSymbol, asUppercase

Substituing: copyReplaceAll:with:, copyReplaceFrom:to:with:,
copyReplacing:withObject:, copyWith:

Subsequence access: subStrings: separatorCharacters

Testing: sameAs:

Analysis and ANSI Compliance. Indices are omnipresent,
and very few names are specific to strings as opposed to
collections, which makes the protocol feel shallow, low-
level and implementation revealing. In particular, because
the underlying design is stateful, the copyReplace* messages
have to explicitly reveal that they do not modify their receiver
through cumbersome names. In a better design, naming would
encourage using safe operations over unsafe ones.

We believe that the value added by complying with the
ANSI standard is shallow. Indeed, the standard has not been
updated to account for evolutions such as immutability, and it
does not help building a fluent, modern library. ANSI should
not be followed for the design of a modern String library.

6. An Overview of Expected String Features
Different languages do not provide the exact same feature
set3, or the same level of convenience or generality. However,
comparing various programming languages, we can identify
the main behavioral aspects of strings. Note that these aspects
overlap: for instance, transposing a string to upper-case
involves substitution, and can be performed in place or
return a new string; splitting requires locating separators and
extracting parts as smaller strings, and is a form of parsing.

Extracting. Locating or extracting parts of a string can
be supported by specifying either explicit indices, or by

3 They can even rely on specific syntax, like Ruby’s string interpolation.

matching contents with various levels of expressiveness: ad-
hoc pattern, character ranges, regular expressions.

Splitting. Splitting strings into chunks is the basis of sim-
ple parsing and string manipulation techniques, like counting
words or lines in text. To be useful, splitting often needs to
account for representation idiosyncrasies like which charac-
ters count as word separators or the different carriage return
conventions.

Merging. The reverse of splitting is merging several strings
into one, either by concatenation of two strings, or by join-
ing a collection of strings one after another, possibly with
separators.

Substituting. The popularity of Perl was built on its power-
ful pattern-matching and substitution features. The difficulty
with substitution is how the API conveys whether one, many,
or all occurrences are replaced, and whether a sequence of
elements or a single element is replaced.

Testing. Strings provide many predicates, most importantly
determining emptiness, or inclusion of a particular substring,
prefix or suffix. Other predicates range from representation
concerns, like determining if all characters belong to the
ASCII subset, or of a more ad-hoc nature, like checking if
the string is all uppercase or parses as an identifier.

Iterating. Strings are often treated as collections of items.
In Pharo a string is a collection of characters and as such
it inherits all the high-level iterators defined in Sequence-
ableCollection and subclasses. Similarly, Haskell’s Data.String
is quite terse (just 4 or so functions), but since strings are
Lists, the whole panoply of higher-level functions on lists are
available: foldr, map, etc.

Endogenous conversion. Strings can be transformed into
other strings according to domain-specific rules: this covers
encoding and escaping, case transpositions, pretty-printing,
natural language inflexion, etc.

Exogenous conversion. Since strings serve as a human-
readable representation or serialization format, they can be
parsed back into non-string types such as numbers, URLs, or
file paths.

Mutating vs copying. Strings may be considered as collec-
tions and provide methods to modify their contents in-place,
as opposed to returning a new string with different contents
from the original. Note that this point is orthogonal to the
other ones, but influences the design of the whole library.

Mutating strings is dangerous, because strings are often
used as value objects, and it is not clear at first sight if a
method has side-effects or not. For example, in translate-
ToUppercase, the imperative form hints that it is an in-place
modification, but not in trim. Also, safe transformations of-
ten rely on their side-effect counterpart: for instance, the
safe asUppercase sends translateToUppercase to a copy of its
receiver.

In the case of strings, we believe methods with side effects
should be clearly labeled as low-level or private, and their
use discouraged; moreover, a clear and systematic naming
convention indicating the mutable behavior of a method
would be a real plus. Finally, future developments of the
Pharo VM include the Spur object format, which supports
immutable instances; this is an opportunity to make literal
strings safe4, and to reduce copying by sharing character data
between strings.

7. Discussion and Perspectives
In this paper, we assess the design of character strings in
Pharo. While strings are simple data structures, their interface
is surprisingly large. Indeed, strings are not simple collections
of elements; they can be seen both as explicit sequences of
characters, and as simple but very expressive values from the
domain of a language or syntax. In both cases, strings have
to provide a spectrum of operations with many intertwined
characteristics: abstraction or specialization, flexibility or
convenience. We analyze the domain and the current imple-
mentation to identify recurring idioms and smells.

The idioms and smells we list here deal with code read-
ability and reuseability at the level of messages and methods;
they fall in the same scope as Kent Beck’s list [2]. While
the paper focuses on strings, the idioms we identify are not
specific to strings, but to collections, iteration, or parameter
passing; modulo differences in syntax and style usages, they
apply to other libraries or object-oriented programming lan-
guages. To identify the idioms and smells, we rely mostly on
code reading and the usual tools provided by the Smalltalk
environment. This is necessary in the discovery stage, but it
raised several questions:

• How to document groups of methods that participate in a
given idiom? As we say in Section 2, method protocols are
not suitable: they partition methods by feature or theme,
but idioms are overlapping patterns of code factorization
and object interaction.

• How to specify, check and enforce idioms in the code?
This is related to architecture conformance techniques [7].

Our goal is not to provide definitive solutions or recom-
mendations, but rather to provide a starting point for discus-
sion around the complexity of the design space, and towards
more understandable, reusable, and robust APIs.

References
[1] ANSI, New York. American National Standard for Infor-

mation Systems – Programming Languages – Smalltalk,
ANSI/INCITS 319-1998, 1998. http://wiki.squeak.org/squeak/
uploads/172/standard_v1_9-indexed.pdf.

[2] K. Beck. Smalltalk Best Practice Patterns. Prentice-Hall,
1997.

4 While clever uses for mutable literals have been demonstrated in the past,
we think it is a surprising feature and should not be enabled by default.

http://wiki.squeak.org/squeak/uploads/172/standard_v1_9-indexed.pdf
http://wiki.squeak.org/squeak/uploads/172/standard_v1_9-indexed.pdf

[3] A. Bergel, S. Ducasse, O. Nierstrasz, and R. Wuyts. Class-
boxes: Controlling visibility of class extensions. Journal of
Computer Languages, Systems and Structures, 31(3-4):107–
126, Dec. 2005.

[4] J. Blanchette. The little manual of API design. http://www4.in.
tum.de/~blanchet/api-design.pdf, June 2008.

[5] C. Clifton, G. T. Leavens, C. Chambers, and T. Millstein. Mul-
tiJava: Modular open classes and symmetric multiple dispatch
for Java. In OOPSLA 2000 Conference on Object-Oriented
Programming, Systems, Languages, and Applications, pages
130–145, 2000.

[6] K. Cwalina and B. Abrams. Framework Design Guidelines:
Conventions, Idioms, and Patterns for Reusable .Net Libraries.
Addison-Wesley Professional, first edition, 2005.

[7] S. Ducasse and D. Pollet. Software architecture reconstruction:
A process-oriented taxonomy. IEEE Transactions on Software
Engineering, 35(4):573–591, July 2009.

[8] R. E. Griswold and M. T. Griswold. The Icon Programming
Language. Peer-to-Peer Communications, Dec. 1996.

[9] R. Hickey. Clojure transducers. http://clojure.org/transducers.

[10] S. Murer, S. Omohundro, D. Stoutamire, and C. Szyperski.
Iteration abstraction in sather. ACM Transactions on Program-
ming Languages and Systems, 18(1):1–15, Jan. 1996.

[11] M. Piccioni, C. A. Furia, and B. Meyer. An empirical study
of API usability. In IEEE/ACM Symposium on Empirical
Software Engineering and Measurement, 2013.

[12] J. Stylos, S. Clarke, and B. Myers. Comparing API design
choices with usability studies: A case study and future direc-
tions. In P. Romero, J. Good, E. A. Chaparro, and S. Bryant,
editors, 18th Workshop of the Psychology of Programming
Interest Group, pages 131–139. University of Sussex, Sept.
2006.

[13] J. Stylos and B. Myers. Mapping the space of API design
decisions. In IEEE Symposium on Visual Languages and
Human-Centric Computing, pages 50–57, 2007.

[14] B. Woolf. Null object. In R. Martin, D. Riehle, and
F. Buschmann, editors, Pattern Languages of Program Design
3, pages 5–18. Addison Wesley, 1998.

Appendix — Classifying the Pharo String API
Finding
Methods returning places in the string (indices, ranges).

findString: findString:startingAt:
findString:startingAt:caseSensitive:
findLastOccurrenceOfString:startingAt:
allRangesOfSubString: findAnySubStr:startingAt:
findCloseParenthesisFor: findDelimiters:startingAt:
findWordStart:startingAt: no senders
findIn:startingAt:matchTable: auxiliary method
findSubstring:in:startingAt:matchTable: auxiliary method
findSubstringViaPrimitive:in:startingAt:matchTable: one sender
indexOf: indexOf:startingAt: indexOf:startingAt:ifAbsent:
indexOfSubCollection: mispackaged
indexOfSubCollection:startingAt:ifAbsent:
indexOfFirstUppercaseCharacter redundant, one sender
indexOfWideCharacterFrom:to:
lastSpacePosition

lastIndexOfPKSignature: adhoc or mispackaged
skipAnySubStr:startingAt: skipDelimiters:startingAt:

Extracting
Methods returning particular substrings.

wordBefore:
findSelector mispackaged, specific to code browser
findTokens:
findTokens:escapedBy: no senders (besides tests)
findTokens:includes: one sender
findTokens:keep:
lineCorrespondingToIndex:
squeezeOutNumber ugly parser, one sender
splitInteger what is the use-case?
stemAndNumericSuffix duplicates previous method

Splitting
Methods returning a collection of substrings.

lines
subStrings:
substrings not a call to previous one, why?
findBetweenSubStrs:
keywords adhoc, assumes receiver is a selector

Enumerating
linesDo: lineIndicesDo: tabDelimitedFieldsDo:

Conversion to other objects
Many core classes such as time, date and duration that have a
compact and meaningful textual description extend the class
String to offer conversion from a string to their objects. Most
of them could be packaged with the classes they refer to, but
splitting a tiny core into even smaller pieces does not make a
lot of sense, and there are legitimate circular dependencies

http://www4.in.tum.de/~blanchet/api-design.pdf
http://www4.in.tum.de/~blanchet/api-design.pdf
http://clojure.org/transducers

in the core: a string implementation cannot work without
integers, for example. Therefore, most of these methods are
part of the string API from the core language point of view:

asDate asNumber asString asSymbol
asTime asInteger asStringOrText
asDuration asSignedInteger asByteArray
asDateAndTime asTimeStamp

Some other methods are not as essential:

asFourCode romanNumber string stringhash

Conversion between strings
A different set of conversion operations occurs between
strings themselves.

• typography and natural language: asLowercase, asUpper-
case, capitalized, asCamelCase, withFirstCharacterDown-
shifted, asPluralBasedOn:, translated, translatedIfCorre-
sponds, translatedTo:

• content formatting: asHTMLString, asHex, asSmalltalkCom-
ment, asUncommentedSmalltalkCode,

• internal representation: asByteString, asWideString, asOctet-
String

Streaming
printOn: putOn: storeOn:

Comparing
caseInsensitiveLessOrEqual: caseSensitiveLessOrEqual:
compare:with:collated: compare:caseSensitive:
compare: sameAs:

Testing
endsWith: endsWithAnyOf:
startsWithDigit endsWithDigit endsWithAColon ad-hoc
hasContentsInExplorer should be an extension
includesSubstring:caseSensitive: includesSubstring:
includesUnifiedCharacter hasWideCharacterFrom:to:
isAllDigits isAllSeparators isAllAlphaNumerics
onlyLetters inconsistent name
isString isAsciiString isLiteral
isByteString isOctetString isLiteralSymbol
isWideString
beginsWithEmpty:caseSensitive: bad name, duplicate
occursInWithEmpty:caseSensitive: bad name, mispackaged

Querying
lineCount lineNumber:
lineNumberCorrespondingToIndex: leadingCharRunLengthAt:
initialIntegerOrNil numericSuffix indentationIfBlank:
numArgs selector-related
parseLiterals contents of a literal array syntax

Substituting
copyReplaceAll:with:asTokens: copyReplaceTokens:with:

expandMacros expandMacrosWithArguments:
expandMacrosWith: expandMacrosWith:with:
expandMacrosWith:with:with:
expandMacrosWith:with:with:with:
format:
replaceFrom:to:with:startingAt: primitive
translateWith: translateFrom:to:table:
translateToLowercase translateToUppercase

Correcting
correctAgainst: correctAgainst:continuedFrom:
correctAgainstDictionary:continuedFrom:
correctAgainstEnumerator:continuedFrom:

Operations
contractTo: truncateTo:
truncateWithElipsisTo:
encompassLine: encompassParagraph:
withNoLineLongerThan:
withSeparatorsCompacted withBlanksCondensed
withoutQuoting
withoutLeadingDigits withoutTrailingDigits
withoutPeriodSuffix withoutTrailingNewlines
padLeftTo: padLeftTo:with:
padRightTo: padRightTo:with:
padded:to:with: duplicates the two previous
surroundedBy: surroundedBySingleQuotes
trimLeft:right: trim trimmed
trimLeft trimBoth trimRight
trimLeft: trimBoth: trimRight:

Encoding
convertFromEncoding: convertFromWithConverter:
convertToEncoding: convertToWithConverter:
convertToSystemString encodeDoublingQuoteOn:
withLineEndings: withSqueakLineEndings
withUnixLineEndings withInternetLineEndings
withCRs convenience, used a lot

Matching
alike: howManyMatch: similarity metrics
charactersExactlyMatching: bad name: common prefix length
match: startingAt:match:startingAt:

Low-Level Internals
hash typeTable
byteSize byteAt: byteAt:put:
writeLeadingCharRunsOn:

Candidates for removal
While performing this analysis we identified some possibly
obsolete methods.

asPathName asIdentifier: asLegalSelector
do:toFieldNumber:
indexOfFirstUppercaseCharacter

	Introduction
	Pharo: Symptoms of Organic API Growth
	Recurring Patterns
	Inconsistencies and Smells
	The ANSI Smalltalk Standard
	An Overview of Expected String Features
	Discussion and Perspectives

