
HAL Id: hal-01252135
https://inria.hal.science/hal-01252135

Submitted on 7 Jan 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Decidability, Introduction Rules and Automata
Gilles Dowek, Ying Jiang

To cite this version:
Gilles Dowek, Ying Jiang. Decidability, Introduction Rules and Automata. International Conferences
on Logic for Programming, Artificial Intelligence and Reasoning, Nov 2015, Bula, Fiji. �10.1007/978-
3-662-48899-7_8�. �hal-01252135�

https://inria.hal.science/hal-01252135
https://hal.archives-ouvertes.fr

Decidability, Introduction Rules, and Automata

Gilles Dowek1 and Ying Jiang2

1 Inria, 23 avenue d’Italie, CS 81321, 75214 Paris Cedex 13, France,
gilles.dowek@inria.fr.

2 State Key Laboratory of Computer Science, Institute of Software, Chinese
Academy of Sciences, 100190 Beijing, China, jy@ios.ac.cn.

Abstract. We present a method to prove the decidability of provability
in several well-known inference systems. This method generalizes both
cut-elimination and the construction of an automaton recognizing the
provable propositions.

1 Introduction

The goal of this paper is to connect two areas of logic: proof theory and automata
theory, that deal with similar problems, using a different terminology.

To do so, we first propose to unify the terminology, by extending the notions
of introduction rule, automaton, cut, and cut-elimination to arbitrary inference
systems. An introduction rule is defined as any rule whose premises are smaller
than its conclusion and an automaton as any inference system containing in-
troduction rules only. Provability in an automaton is obviously decidable. A
cut is defined as any proof ending with a non-introduction rule, whose major
premises are proved with a proof ending with introduction rules. We show that
a cut-free proof contains introduction rules only. A system is said to have the
cut-elimination property if every proof can be transformed into a cut-free proof.
Such a system is equivalent to an automaton.

Using this unified terminology, we then propose a general saturation method
to prove the decidability of an inference system, by transforming it into a system
that has the cut-elimination property, possibly adding extra rules. The outline
of this method is the following. Consider a proof containing a non-introduction
rule and focus on the sub-proof ending with this rule

π1

s1 ...

πn

sn
non-intro

s

Assume it is possible to recursively eliminate the cuts in the proofs π1, ..., πn,
that is to transform them into proofs containing introduction rules only, hence
ending with an introduction rule. We obtain a proof of the form

ρ11
s11 ...

ρ1m1

s1m1 intro
s1 ...

ρn1
sn1 ...

ρnmn

snmn intro
sn

non-intro
s

We may moreover tag each premise s1, ..., sn of the non-introduction rule as
major or minor. For instance, each elimination rule of Natural Deduction [15]
has one major premise and the cut rule of Sequent Calculus [13] has two. If the
major premises are s1, ..., sk and minor ones sk+1, ..., sn, the proof above can
be decomposed as

ρ11
s11 ...

ρ1m1

s1m1 intro
s1 ...

ρk1

sk1 ...

ρkmk

skmk intro
sk

π′k+1

sk+1 ...

π′n

sn
non-intro

s

A proof of this form is called a cut and it must be reduced to another proof.
The definition of the reduction is specific to each system under consideration. In
several cases, however, such a cut is reduced to a proof built with the proofs ρ11,
..., ρ1m1

, ..., ρk1 , ..., ρ
k
mk

, π′k+1, ..., π′n and a derivable rule allowing to deduce

the conclusion s from the premises s11, ..., s
1
m1

, ..., sk1 , ..., s
k
mk

, sk+1, ..., sn. Adding
such derivable rules in order to eliminate cuts is called a saturation procedure.

Many cut-elimination proofs, typically the cut-elimination proofs for Sequent
Calculus [9], do not proceed by eliminating cuts step by step, but by proving
that a non-introduction rule is admissible in the system obtained by dropping
this rule, that is, proving that if the premises s1, ..., sn of this rule are provable in
the restricted system, then so is its conclusion s. Proceeding by induction on the
structure of proofs of s1, ..., sn leads to consider cases where each major premise
si has a proof ending with an introduction rule, that is also proofs of the form

ρ11

s11 ...

ρ1m1

s1m1 intro
s1 ...

ρk1

sk1 ...

ρkmk

skmk intro
sk

πk+1

sk+1 ...

πn

sn
non-intro

s

In some cases, the saturation method succeeds showing that every proof can
be transformed into a proof formed with introduction rules only. Then, the in-
ference system under consideration is equivalent, with respect to provability, to
the automaton obtained by dropping all its non-introduction rules. This equiv-
alence obviously ensures the decidability of provability in the inference system.
In other cases, in particular when the inference system under consideration is
undecidable, the saturation method succeeds only partially: typically some non-
introduction rules can be eliminated but not all, or only a subsystem is proved
to be equivalent to an automaton.

This saturation method is illustrated with examples coming from both proof
theory and automata theory: Finite Domain Logic, Alternating Pushdown Sys-
tems, and three fragments of Constructive Predicate Logic, for which several
formalizations are related: Natural Deduction, Gentzen style Sequent Calculus,
Kleene style Sequent Calculus, and Vorob’ev-Hudelmaier-Dyckhoff-Negri style
Sequent Calculus. The complexity of these provability problems, when they are
decidable, is not discussed in this paper and is left for future work, for instance
in the line of [1, 14].

2

In the remainder of this paper, the notions of introduction rule, automa-
ton, and cut are defined in Section 2. Section 3 discusses the case of Finite
State Automata. In Sections 4 and 5, examples of cut-elimination results are
presented. In the examples of Section 4, the non-introduction rules can be com-
pletely eliminated transforming the inference systems under considerations into
automata, while this elimination is only partially successful in the undecidable
examples of Section 5. The proofs, and some developments, are omitted from
this extended abstract. They can be found in the long version of the paper
https://who.rocq.inria.fr/Gilles.Dowek/Publi/introlong.pdf.

2 Introduction rules, Automata, and Cuts

2.1 Introduction rules and Automata

Consider a set S, whose elements typically are propositions, sequents, etc. Let
S∗ be the set of finite lists of elements of S.

Definition 1 (Inference rule, Inference system, Proof). An inference rule
is a partial function from S∗ to S. If R is an inference rule and s = R(s1, ..., sn),
we say that the conclusion s is proved from the premises s1, ..., sn with the rule
R and we write

s1 ... sn
R

s

Some rules are equipped with an extra piece of information, tagging each premise
s1, ..., sn as major or minor. An inference system is a set of inference rules. A
proof in an inference system is a finite tree labeled by elements of S such that
for each node labeled with s and whose children are labeled with s1, ..., sn, there
exists an inference rule R of the system such that

s1 ... sn
R

s

A proof is a proof of s if its root is labeled by s. An element of S is said to be
provable, if it has a proof.

Definition 2 (Introduction rule, Pseudo-automaton). Consider a set S

and a well-founded order ≺ on S. A rule R is said to be an introduction rule
with respect to this order, if whenever

s1 ... sn
R

s

we have s1 ≺ s, ..., sn ≺ s. A pseudo-automaton is an inference system con-
taining introduction rules only.

Except in the system D (Section 5.4), this order ≺ is always that induced by
the size of the propositions and sequents. It is left implicit.

Definition 3 (Finitely branching system, Automaton). An inference sys-
tem is said to be finitely branching, if for each conclusion s, there is only a finite
number of lists of premises s1, ..., sp such that s can be proved from si with a
rule of the system. An automaton is a finitely branching pseudo-automaton.

3

2.2 Cuts

We define a general notion of cut, that applies to all inference systems considered
in this paper. More specific notions of cut will be introduced later for some
systems, and the general notion of cut defined here will be emphasized as general
cut to avoid ambiguity.

Definition 4 (Cut). A (general) cut is a proof of the form

ρ11

s11 ...

ρ1m1

s1m1 intro
s1 ...

ρk1

sk1 ...

ρkmk

skmk intro
sk

πk+1

sk+1 ...

πn

sn
non-intro

s

where s1, ..., sk are the major premises of the non-introduction rule. A proof
contains a cut if one of its sub-proofs is a cut. A proof is cut-free if it contains
no cut. An inference system has the cut-elimination property if every element
that has a proof also has a cut-free proof.

Lemma 1 (Key lemma). A proof is cut-free if and only if it contains intro-
duction rules only.

Proof. If a proof contains introduction rules only, it is obviously cut-free. We
prove the converse by induction over proof structure. Consider a cut-free proof.
Let R be the last rule of this proof and π1, ..., πn be the proofs of the premises
of this rule. The proof has the form

π1

s1 ...

πn

sn
R

s

By induction hypothesis, the proofs π1, ..., πn contain introduction rules only.
As the proof is cut-free, the rule R must be an introduction rule.

Consider a finitely-branching inference system I and the automatonA formed
with the introduction rules of I. If I has the cut-elimination property, then every
element that has a proof in I has a cut-free proof, that is a proof formed with
introduction rules of I only, that is a proof in A. Thus, I and A are equivalent
with respect to provability. Since A is decidable, so is I.

3 Finite State Automata

In this section, we show that the usual notion of finite state automaton is a
particular case of the notion of automaton introduced in Definition 3.

Consider a finite state automatonA. We define a languageL in predicate logic
containing a constant ε; for each symbol γ of the alphabet of A, a unary function
symbol, also written γ; and for each state P of A a unary predicate symbol, also
written P . A closed term in L has the form γ1(γ2...(γn(ε))), where γ1, ..., γn are

4

axiomΓ,A ⊢ A

atom if L ∈ PΓ ⊢ L

⊤-introΓ ⊢ ⊤
Γ ⊢ ⊥

⊥-elimΓ ⊢ A

Γ ⊢ A Γ ⊢ B
∧-introΓ ⊢ A ∧ B

Γ ⊢ A ∧ B
∧-elimΓ ⊢ A

Γ ⊢ A ∧ B
∧-elimΓ ⊢ B

Γ ⊢ A
∨-introΓ ⊢ A ∨ B

Γ ⊢ A ∨B Γ,A ⊢ C Γ, B ⊢ C
∨-elimΓ ⊢ C

Γ ⊢ B
∨-introΓ ⊢ A ∨ B

Γ ⊢ (c1/x)A ... Γ ⊢ (cn/x)A
∀-introΓ ⊢ ∀xA

Γ ⊢ ∀xA
∀-elimΓ ⊢ (ci/x)A

Γ ⊢ (ci/x)A
∃-introΓ ⊢ ∃x A

Γ ⊢ ∃x A Γ, (c1/x)A ⊢ C ... Γ, (cn/x)A ⊢ C
∃-elimΓ ⊢ C

Fig. 1. Finite Domain Logic

function symbols. Such a term is called a word, written w = γ1γ2...γn. A closed
atomic proposition has the form P (w), where P is a state and w a word. We

build an inference system that consists of, for each transition rule P
γ

−−→ Q of
A, the introduction rule

Q(x)

P (γ(x))

and, for each final state F of A, the introduction rule

F (ε)

It is routine to check that a word w is recognized by the automaton A in a state
I if and only if the proposition I(w) has a proof in the corresponding system.

4 From cut-elimination to automata

In this section, we present two cut-elimination theorems, that permit to com-
pletely eliminate the non-introduction rules and prove, this way, the decidability
of Finite Domain Logic and of Alternating Pushdown Systems, respectively.

4.1 Finite Domain Logic

We begin with a toy example, Finite Domain Logic, motivated by its simplicity:
we can prove a cut-elimination theorem, showing the system is equivalent to the
automaton obtained by dropping its non-introduction rules.

5

P1(x) ... Pn(x) intro n ≥ 0
Q(γ(x))

P1(γ(x)) P2(x) ... Pn(x) elim n ≥ 1
Q(x)

introQ(ε)
P1(x) ... Pn(x) neutral n ≥ 0

Q(x)

Fig. 2. Alternating Pushdown Systems

Finite Domain Logic is a version of Natural Deduction tailored to prove the
propositions that are valid in a given finite model M. The differences with the
usual Natural Deduction are the following: a proposition of the form A ⇒ B is
just an abbreviation for ¬A∨B and negation has been pushed to atomic propo-
sitions using de Morgan’s laws; the ∀-intro and the ∃-elim rules are replaced by
enumeration rules, and an atom rule is added to prove closed atomic propositions
and their negations valid in the underlying model.

If the model M is formed with a domain {a1, ..., an} and relations R1, ..., Rm

over this domain, we consider the language containing constants c1, ..., cn for the
elements a1, ..., an and predicate symbols P1, ..., Pm for the relations R1, ..., Rm.
The Finite Domain Logic of the model M is defined by the inference system of
Figure 1, where the set P contains, for each atomic proposition Pi(cj1 , ..., cjk),
either the proposition Pi(cj1 , ..., cjk) if 〈aj1 , ..., ajk〉 is in Ri, or the proposition
¬Pi(cj1 , ..., cjk), otherwise.

In this system, the introduction rules are those presented in the first column:
the axiom rule, the atom rule, and the rules⊤-intro, ∧-intro, ∨-intro, ∀-intro, and
∃-intro. The non-introduction rules are those presented in the second column.
Each rule has one major premise: the leftmost one. A cut is as in Definition 4.

Theorem 1 (Soundness, Completeness, and Cut-elimination). Let B be
a closed proposition, the following are equivalent: (1.) the proposition B has a
proof, (2.) the proposition B is valid in M, (3.) the proposition B has a cut-free
proof, that is a proof formed with introduction rules only.

Therefore, provability in Finite Domain Logic is decidable, as the provable
propositions are recognized by the automaton obtained by dropping the non-
introduction rules. Since the introduction rules preserve context emptiness, the
contexts can be ignored and the axiom rule can be dropped. This automaton
could also be expressed in a more familiar way with the transition rules

L →֒ ∅ if L ∈ P A ∨B →֒ {A}
⊤ →֒ ∅ A ∨B →֒ {B}

A ∧B →֒ {A,B} ∀x A →֒ {(c1/x)A, ..., (cn/x)A}
∃x A →֒ {(ci/x)A} for each ci

4.2 Alternating Pushdown Systems

The second example, Alternating Pushdown Systems, is still decidable [2], but a
little bit more complex. Indeed these systems, in general, need to be saturated—
that is extended with derivable rules—in order to enjoy cut-elimination.

6

Consider a language L containing a finite number of unary predicate symbols,
a finite number of unary function symbols, and a constant ε. An Alternating
Pushdown System is an inference system whose rules are like those presented
in Figure 2. The rules in the first column are introduction rules and those in
the second column, the elimination and neutral rules, are not. Elimination rules
have one major premise, the leftmost one, and all the premises of a neutral rule
are major. A cut is as in Definition 4.

Not all Alternating Pushdown Systems enjoy the cut-elimination property.
However, every Alternating Pushdown System has an extension with derivable
rules that enjoys this property: each time we have a cut of the form

ρ11
s11 ...

ρ1m1

s1m1 intro
s1 ...

ρk1

sk1 ...

ρkmk

skmk intro
sk

πk+1

sk+1 ...

πn

sn
non-intro

s

we add a derivable rule allowing to deduce directly s from s11, ..., s
1
m1

, ..., sk1 , ...,
skmk

, sk+1, ..., sn. This leads to the following saturation algorithm [4, 10, 11].

Definition 5 (Saturation). Given an Alternating Pushdown System,

– if it contains an introduction rule

P1(x) ... Pm(x)
intro

Q1(γ(x))

and an elimination rule
Q1(γ(x)) Q2(x) ... Qn(x)

elim
R(x)

then we add the neutral rule

P1(x) ... Pm(x) Q2(x) ... Qn(x)
neutral

R(x)

– if it contains introduction rules

P 1
1 (x) ... P 1

m1
(x)

introQ1(γ(x)) ...
Pn

1 (x) ... Pn

mn
(x)

introQn(γ(x))

and a neutral rule
Q1(x) ... Qn(x)

neutral
R(x)

then we add the introduction rule

P 1
1 (x) ... P

1
m1

(x) ... Pn

1 (x) ... Pn

mn
(x)

intro
R(γ(x))

– if it contains introduction rules

introQ1(ε) ... introQn(ε)

7

and a neutral rule
Q1(x) ... Qn(x)

neutral
R(x)

then we add the introduction rule

intro
R(ε)

As there is only a finite number of possible rules, this procedure terminates.

It is then routine to check that if a closed proposition has a proof in a
saturated system, it has a cut-free proof [4], leading to the following result.

Theorem 2 (Decidability). Provability of a closed proposition in an Alter-
nating Pushdown System is decidable.

Example 1. Consider the Alternating Pushdown System S

Q(x)
i1P (ax)

T (x)
i2P (bx)

T (x)
i3R(ax) i4R(bx)

P (x) R(x)
n1Q(x) n2T (x)

P (ax)
e1S(x)

The system S′ obtained by saturating the system S contains the rules of the
system S and the following rules

Q(x)
n3S(x) i5T (ε) i6T (ax)

Q(x) T (x)
i7Q(ax)

Q(x) T (x)
i8S(ax) i9T (bx)

T (x)
i10Q(bx)

T (x)
i11S(bx)

The automaton S′′ contain the rules i1, i2, i3, i4, i5, i6, i7, i8, i9, i10, i11.
The proof in the system S

n2
T (ε)

i2
P (b)

i4
R(b)

n1
Q(b)

i1
P (ab)

n2
T (b)

i3
R(ab)

n1
Q(ab)

i1
P (aab)

e1
S(ab)

reduces to the cut-free proof in the system S′′

i5
T (ε)

i10
Q(b)

i9
T (b)

i8
S(ab)

8

axiomΓ,A ⊢ A

⊤-introΓ ⊢ ⊤
Γ ⊢ ⊥

⊥-elimΓ ⊢ A

Γ ⊢ A Γ ⊢ B
∧-introΓ ⊢ A ∧ B

Γ ⊢ A ∧ B
∧-elimΓ ⊢ A

Γ ⊢ A ∧ B
∧-elimΓ ⊢ B

Γ ⊢ A
∨-introΓ ⊢ A ∨ B

Γ ⊢ B
∨-introΓ ⊢ A ∨ B

Γ ⊢ A ∨B Γ,A ⊢ C Γ, B ⊢ C
∨-elimΓ ⊢ C

Γ,A ⊢ B
⇒-introΓ ⊢ A ⇒ B

Γ ⊢ A ⇒ B Γ ⊢ A
⇒-elimΓ ⊢ B

Γ ⊢ A
∀-intro if x not free in ΓΓ ⊢ ∀xA

Γ ⊢ ∀xA
∀-elimΓ ⊢ (t/x)A

Γ ⊢ (t/x)A
∃-introΓ ⊢ ∃x A

Γ ⊢ ∃x A Γ,A ⊢ B
∃-elim if x not free in Γ,B

Γ ⊢ B

Fig. 3. Constructive Natural Deduction

5 Partial results for undecidable systems

In this section, we focus on Constructive Predicate Logic, leaving the case of
Classical Predicate Logic for future work. We start with Natural Deduction [15].
As provability in Predicate Logic is undecidable, we cannot expect to transform
Natural Deduction into an automaton. But, as we shall see, saturation permits
to transform first Natural Deduction into a Gentzen style Sequent Calculus [13],
then the latter into a Kleene style Sequent Calculus [13], and then the latter into
a Vorob’ev-Hudelmaier-Dyckhoff-Negri style Sequent Calculus [16, 12, 5, 7]. Each
time, a larger fragment of Constructive Predicate Logic is proved decidable.

Note that each transformation proceeds in the same way: first, we identify
some general cuts. Then, like in the saturation procedure of Section 4.2, we add
some admissible rules to eliminate these cuts. Finally, we prove a cut-elimination
theorem showing that some non-introduction rules can be dropped.

5.1 Natural Deduction

In Natural Deduction (Figure 3), the introduction rules are those presented in
the first column, they are the axiom rule and the rules ⊤-intro, ∧-intro, ∨-intro,
⇒-intro, ∀-intro, and ∃-intro. The non-introduction rules are those presented in
the second column, each of them has one major premise: the leftmost one.

Natural Deduction has a specific notion of cut: a proof ending with a ∧-elim,
∨-elim, ⇒-elim, ∀-elim, ∃-elim rule, whose major premise is proved with a proof

9

ending with a ∧-intro, ∨-intro, ⇒-intro, ∀-intro, ∃-intro rule, respectively. The
only difference between this specific notion of cut and the general one (Definition
4) is that the general notion has one more form of cut: a proof built with an
elimination rule whose major premise is proved with the axiom rule. For instance

axiom
P ∧Q ⊢ P ∧Q

∧-elim
P ∧Q ⊢ P

So proofs free of specific cuts can still contain general cuts of this form.
Saturating the system, like in Section 4.2, to eliminate the specific cuts, would

add derivable rules such as
Γ ⊢ A Γ ⊢ B

R∧
Γ ⊢ A

But they are not needed, as they are admissible in cut-free Natural Deduction.
The admissibility of some rules however are based on a substitution of proofs,

that may create new cuts on smaller propositions, that need in turn to be elimi-
nated. In other words, the termination of the specific cut-elimination algorithm
needs to be proved [15].

As general cuts with an axiom rule are not eliminated, this partial cut-
elimination theorem is not sufficient to eliminate all elimination rules and to
prove the decidability of Constructive Natural Deduction, but it yields a weaker
result: a (specific-)cut-free proof ends with introduction rules, as long as the
context of the proved sequent contains atomic propositions only. To formalize
this result, we introduce a modality [] and define a translation that freezes the
non atomic left-hand parts of implications, f(A ⇒ B) = [A] ⇒ f(B), if A is not
atomic, and f(A ⇒ B) = A ⇒ f(B), if A is atomic, f(A ∧ B) = f(A) ∧ f(B),
etc., and the converse function u is defined in a trivial way.

Definition 6. Let A be the pseudo-automaton formed with the introduction
rules of Constructive Natural Deduction, including the axiom rule, plus the in-
troduction rule

delay
Γ, [A] ⊢ B

Theorem 3. Let Γ ⊢ A be a sequent such that Γ contains atomic propositions
only. If Γ ⊢ A has a (specific-)cut-free proof in Constructive Natural Deduction,
then Γ ⊢ f(A) has a proof in the pseudo-automaton A and for each leaf ∆ ⊢ B

proved with the delay rule, the sequent u(∆ ⊢ B) has a proof in Constructive
Natural Deduction.

A first corollary of Theorem 3 is the decidability of the small fragment

A = P | ⊤ | ⊥ | A ∧A | A ∨ A | P ⇒ A | ∀x A | ∃x A

where the left-hand side of an implication is always atomic, that is no connective
or quantifier has a negative occurrence. As the pseudo-automaton obtained this
way is not finitely branching, we need, as well-known, to introduce meta-variables
to prove this decidability result.

10

A second corollary is that if A is a proposition starting with n connectors or
quantifiers different from ⇒, then a (specific-)cut-free proof of the sequent ⊢ A

ends with n+1 successive introduction rules. For n = 0, we obtain the well-known
last rule property of constructive (specific-)cut-free proofs. For a proposition A

of the form ∀x (B1 ∨B2), for instance, we obtain that a (specific-)cut-free proof
of ⊢ ∀x (B1 ∨B2) ends with three introduction rules. Thus, it has the form

π′

⊢ Bi

∨-intro
⊢ B1 ∨B2

∀-intro
⊢ ∀x (B1 ∨B2)

and π′ itself ends with an introduction rule. As a consequence, if the proposition
∀x (B1∨B2) has a proof, then either the propositionB1 or the proposition B2 has
a proof, thus the proposition (∀x B1) ∨ (∀x B2) has a proof. This commutation
of the universal quantifier with the disjunction is called a shocking equality [8].

5.2 Eliminating elimination rules: Gentzen style Sequent Calculus

To eliminate the general cuts of the form

axiom
A ∧B ⊢ A ∧ B

∧-elim
A ∧B ⊢ A

we could add an introduction rule of the form

I
A ∧B ⊢ A

But, this saturation procedure would not terminate.
A way to keep the number of rules finite is to add left introduction rules to

decompose the complex hypotheses, before they are used by the axiom rule: the
left rules of Sequent Calculus. However, this is still not sufficient to eliminate the
elimination rules of Constructive Natural Deduction. For instance, the sequent
∀x (P (x) ∧ (P (f(x)) ⇒ Q)) ⊢ Q has a proof using elimination rules

axiom
Γ ⊢ ∀x (P (x) ∧ (P (f(x)) ⇒ Q))

∀-elim
Γ ⊢ P (c) ∧ (P (f(c)) ⇒ Q)

∧-elim
Γ ⊢ P (f(c)) ⇒ Q

axiom
Γ ⊢ ∀x (P (x) ∧ (P (f(x)) ⇒ Q))

∀-elim
Γ ⊢ P (f(c)) ∧ (P (f(f(c))) ⇒ Q)

∧-elim
Γ ⊢ P (f(c))

⇒-elim
Γ ⊢ Q

where Γ = ∀x (P (x) ∧ (P (f(x)) ⇒ Q)), but none using introduction rules only.
So, we need to add a contraction rule, to use an hypothesis several times

Γ,A,A ⊢ G
contraction

Γ,A ⊢ G

11

axiom P atomicΓ, P ⊢ P
Γ,A,A ⊢ G

contractionΓ,A ⊢ G

⊤-right
Γ ⊢ ⊤

⊥-leftΓ,⊥ ⊢ G
Γ,A,B ⊢ G

∧-leftΓ,A ∧ B ⊢ G
Γ ⊢ A Γ ⊢ B

∧-right
Γ ⊢ A ∧ B

Γ,A ⊢ G Γ,B ⊢ G
∨-leftΓ,A ∨ B ⊢ G

Γ ⊢ A
∨-right

Γ ⊢ A ∨ B
Γ ⊢ B

∨-right
Γ ⊢ A ∨ B

Γ ⊢ A Γ,B ⊢ G
⇒-leftΓ,A ⇒ B ⊢ G

Γ,A ⊢ B
⇒-right

Γ ⊢ A ⇒ B
Γ, (t/x)A ⊢ G

∀-leftΓ, ∀xA ⊢ G
Γ ⊢ A

∀-right if x not free in Γ
Γ ⊢ ∀xA
Γ,A ⊢ G

∃-left if x not free in Γ,G
Γ, ∃x A ⊢ G
Γ ⊢ (t/x)A

∃-right
Γ ⊢ ∃x A

Fig. 4. Gentzen style Sequent Calculus: the system G

To prove that the elimination rules of Natural Deduction can now be eliminated,
we prove, using Gentzen’s theorem [9], that they are admissible in the system
G (Figure 4), the Gentzen style Sequent Calculus, obtained by dropping the
elimination rules of Constructive Natural Deduction. In this system, all the rules
are introduction rules, except the contraction rule. The system G does not allow
to prove the decidability of any larger fragment of Constructive Predicate Logic,
but it is the basis of the two systems presented in the Sections 5.3 and 5.4.

5.3 Eliminating the contraction rule: Kleene style Sequent Calculus

In the system G, the proof
ρ

Γ, ∀x A, (t/x)A ⊢ B
∀-left

Γ,∀x A,∀x A ⊢ B
contraction

Γ,∀x A ⊢ B

is a general cut and we may replace it by the application of the derivable rule

ρ

Γ, ∀x A, (t/x)A ⊢ B
contr-∀-left

Γ,∀x A ⊢ B

which is a rule à la Kleene. The other general cuts yields similar derivable rules.
But, as noticed by Kleene, the derivable rules for the contradiction, the conjunc-
tion, the disjunction and the existential quantifier can be dropped, while that

12

axiom P atomicΓ, P ⊢ P

⊤-right
Γ ⊢ ⊤

⊥-leftΓ,⊥ ⊢ G
Γ,A,B ⊢ G

∧-leftΓ,A ∧ B ⊢ G
Γ ⊢ A Γ ⊢ B

∧-right
Γ ⊢ A ∧ B

Γ,A ⊢ G Γ,B ⊢ G
∨-leftΓ,A ∨ B ⊢ G

Γ ⊢ A
∨-right

Γ ⊢ A ∨ B
Γ ⊢ B

∨-right
Γ ⊢ A ∨ B
Γ,A ⊢ B

⇒-right
Γ ⊢ A ⇒ B

Γ,A ⇒ B ⊢ A Γ,B ⊢ G
contr-⇒-leftΓ,A ⇒ B ⊢ G

Γ ⊢ A
∀-right if x not free in Γ

Γ ⊢ ∀x A
Γ, ∀x A, (t/x)A ⊢ G

contr-∀-leftΓ, ∀x A ⊢ G
Γ,A ⊢ G

∃-left if x not free in Γ,G
Γ, ∃x A ⊢ G
Γ ⊢ (t/x)A

∃-right
Γ ⊢ ∃x A

Fig. 5. Kleene style Sequent Calculus: the system K

for the implication can be simplified to

Γ,A ⇒ B ⊢ A Γ,B ⊢ G
contr-⇒-left

Γ,A ⇒ B ⊢ G

The rules⇒-left and ∀-left of the system G, that are subsumed by the rules contr-
⇒-left and contr-∀-left, can be also dropped. There are also other general cuts,
where the last rule is a contraction and the rule above is an introduction applied
to another proposition, but these cuts can be eliminated without introducing
any extra rule. In other words, after applying the contraction rule, we can focus
on the contracted proposition [6].

We get this way the system K (Figure 5). In this system, all rules are in-
troduction rules, except the rules contr-⇒-left and contr-∀-left. The system K
plus the contraction rule is obviously sound and complete with respect to the
system G. To prove that the contraction rule can be eliminated from it, and
hence the system K also is sound and complete with respect to the system G,
we prove the admissibility of the contraction rule in the system K—see the long
version of the paper for the full proof. The system K gives the decidability of a
larger fragment of Constructive Predicate Logic, where the implication and the
universal quantifier have no negative occurrences.

5.4 Eliminating the contr-⇒-left rule: Vorob’ev-Hudelmaier-
Dyckhoff-Negri style Sequent Calculus

In order to eliminate the contr-⇒-left rule, we consider the general cuts where a
sequent Γ,A ⇒ B ⊢ G is proved with a contr-⇒-left rule whose major premise

13

axiom P atomicΓ, P ⊢ P

⊤-right
Γ ⊢ ⊤

⊥-leftΓ,⊥ ⊢ G
Γ,A,B ⊢ G

∧-leftΓ,A ∧ B ⊢ G
Γ ⊢ A Γ ⊢ B

∧-right
Γ ⊢ A ∧ B

Γ,A ⊢ G Γ,B ⊢ G
∨-leftΓ,A ∨ B ⊢ G

Γ ⊢ A
∨-right

Γ ⊢ A ∨ B
Γ ⊢ B

∨-right
Γ ⊢ A ∨ B

Γ, P,B ⊢ G
⇒-leftaxiomΓ, P, P ⇒ B ⊢ G

Γ,B ⊢ G
⇒-left⊤Γ,⊤ ⇒ B ⊢ G

Γ, C ⇒ B ⊢ C Γ,D ⇒ B ⊢ D Γ,B ⊢ G
⇒-left∧Γ, (C ∧ D) ⇒ B ⊢ G

Γ,C ⇒ B,D ⇒ B ⊢ C Γ,B ⊢ G
⇒-left∨Γ, (C ∨ D) ⇒ B ⊢ G

Γ,C ⇒ B,D ⇒ B ⊢ D Γ,B ⊢ G
⇒-left∨Γ, (C ∨ D) ⇒ B ⊢ G

Γ,D ⇒ B,C ⊢ D Γ,B ⊢ G
⇒-left⇒Γ, (C ⇒ D) ⇒ B ⊢ G

Γ, (∀x C) ⇒ B ⊢ C Γ,B ⊢ G ⇒-left∀
x not free in Γ,BΓ, (∀xC) ⇒ B ⊢ G

Γ, (∃x C) ⇒ B ⊢ (t/x)C Γ,B ⊢ G
⇒-left∃Γ, (∃x C) ⇒ B ⊢ G

Γ,A ⊢ B
⇒-right

Γ ⊢ A ⇒ B
Γ ⊢ A ∀-right

x not free in ΓΓ ⊢ ∀xA
Γ, ∀xA, (t/x)A ⊢ G

contr-∀-leftΓ, ∀xA ⊢ G
Γ,A ⊢ G ∃-left

x not free in Γ,GΓ, ∃x A ⊢ G
Γ ⊢ (t/x)A

∃-right
Γ ⊢ ∃x A

Fig. 6. The system D

Γ,A ⇒ B ⊢ A is proved with an introduction rule, applied to the proposition
A. This leads to consider the various cases for A, that is hypotheses of the form
P ⇒ B, ⊤ ⇒ B, (C ∧ D) ⇒ B, (C ∨ D) ⇒ B, (C ⇒ D) ⇒ B, (∀x C) ⇒ B,
and (∃x C) ⇒ B. The case A = P , atomic, needs to be considered because the
premise Γ,A ⇒ B ⊢ A may be proved with the axiom rule, but the case ⊥ ⇒ B

does not, because there is no right rule for the symbol ⊥. This enumeration of
the various shapes of A is the base of the sequent calculi in the style of Vorob’ev,
Hudelmaier, Dyckhoff, and Negri [16, 12, 5, 7].

We obtain this way several types of general cuts that can be eliminated by
introducing derivable rules. These rules can be simplified leading to the system
D (Figure 6). The system D plus the contr-⇒-left rule is obviously sound and
complete with respect to the system K. To prove that the contr-⇒-left rule can
be eliminated, and hence the system D also is sound and complete with respect to

14

the system K, we use a method similar to that of [7], and prove the admissibility
of the contr-⇒-left rule—see the long version of the paper for the full proof.

This system D gives the decidability of a larger fragment of Constructive
Predicate Logic containing all connectives, shallow universal and existential
quantifiers—that is quantifiers that occur under no implication at all—and neg-
ative existential quantifiers. This fragment contains the prenex fragment of Con-
structive Predicate Logic, that itself contains Constructive Propositional Logic.

Acknowledgements

This work is supported by the ANR-NSFC project LOCALI (NSFC 61161130530
and ANR 11 IS02 002 01) and the Chinese National Basic Research Program
(973) Grant No. 2014CB340302.

References

1. D. Basin and H. Ganzinger, Automated Complexity Analysis Based on Ordered
Resolution, Journal of the ACM, 48, 1, 2001, 70-109.

2. A. Bouajjani, J. Esparza, and O. Maler, Reachability analysis of pushdown au-
tomata: Application to model-checking A. W. Mazurkiewicz, J. Winkowski (Eds.)
Concurrency theory, Lecture Notes in Computer Science, 1243, 1997, 135-150.

3. N. Dershowitz and Z. Manna, Proving termination with multiset orderings, Com-
munications of the ACM 22(8), 1979, 465476.

4. G. Dowek and Y. Jiang, Cut-elimination and the decidability of reachability in
alternating pushdown systems, arXiv:1410.8470 [cs.LO], 2014.

5. R. Dyckhoff, Contraction-Free Sequent Calculi for Intuitionistic Logic, The Jour-

nal of Symbolic Logic, 57, 3, 1992, 795-807.
6. R. Dyckhoff and S. Lengrand, LJQ: A Strongly Focused Calculus for Intuition-

istic Logic, (A. Beckmann et al. eds.) Computability in Europe, Lecture Notes in
Computer Science 3988, Springer, 2006, 173-185.

7. R. Dyckhoff and S. Negri, Admissibility of structural rules for contraction-free
systems of intuitionistic logic The Journal of Symbolic Logic, 65, 2000, 1499-1518.

8. J.-Y. Girard, Locus Solum, Mathematical Structures in Computer Science, 11,
2001, 301-506.

9. J.-Y. Girard, Y. Lafont, and P. Taylor, Proofs and Types, Cambridge University
Press, 1989.

10. T. Frühwirth, E. Shapiro, M. Vardi E. Yardeni, Logic Programs as Types for Logic
Programs, Logic in Computer Science, 1991, 300-309.

11. J. Goubault-Larrecq, Deciding H1 by Resolution, Information Processing Letters,
95(3), 2005, 401-408.

12. J. Hudelmaier, An O(n log n)-space decision procedure for intuitionistic propo-
sitional logic. Journal of Logic and Computation, 3, 1993, 63-76.

13. S.C. Kleene, Introduction to Metamathematics, North-Holland, 1952.
14. D.A. McAllester, Automatic Recognition of Tractability in Inference Relations,

Journal of the ACM, 40, 2, 1993, 284-303.
15. D. Prawitz, Natural Deduction, Almqvist & Wiksell, 1965.
16. N.N. Vorob’ev, A new algorithm for derivability in the constructive propositional

calculus, American Mathematical Society Translations, 2, 94, 1970, 37-71.

15

