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ABSTRACT

Smartphones, the devices we carry everywhere with us, are
being heavily tracked and have undoubtedly become a ma-
jor threat to our privacy. As “Tracking the trackers” has be-
come a necessity, various static and dynamic analysis tools
have been developed in the past. However, today, we still
lack suitable tools to detect, measure and compare the on-
going tracking across mobile OSs. To this end, we propose
MobileAppScrutinator, based on a simple yet efficient dy-
namic analysis approach, that works on both Android and
i0S (the two most popular OSs today). To demonstrate the
current trend in tracking, we select 140 most representative
Apps available on both Android and iOS AppStores and
test them with MobileAppScrutinator. In fact, choosing the
same set of apps on both Android and iOS also enables us
to compare the ongoing tracking on these two OSs. Finally,
we also discuss the effectiveness of privacy safeguards avail-
able on Android and iOS. We show that neither Android nor
iOS privacy safeguards in their present state are completely
satisfying.
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1. INTRODUCTION

Smartphones no longer involve only the user and the com-
munication service (GSM/CDMA) provider. The revolu-
tionary arrival of app store model for application distribu-
tion brings a large number of new actors. In the literature,
service providers to whom the user directly interacts with
are considered as first-party, the user being the second-party.
However, there are many additional actors whose presence
is not obvious to most users: Advertisers and Analytics
(A&A) companies, application performance monitors, crash
reporters, or push senders to name a few. The situation has
become even more complex with the development of new
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advertising models for In-App advertising, leading to new
actors like Mobile Ad Networks, Advertisers, Ad exchange
networks for real-time bidding (RTB). Globally, these actors
whose services are not directly used by the user, are called
third-parties.

A user may accept to have data exchanges with a first-
party depending on the service provided and the legal terms
and conditions upon which they agreed. However, the data
collection by third-parties without explicit user consent is
something abnormal. Among all third-parties present on
the smartphone, the presence of A&A companies is most
dominant and privacy intrusive due to economic reasons. In
order to increase their revenue, advertisers want to show
the user personalized Ads. Therefore A&A companies are
incited to collect as much information as possible to better
profile user’s interests and behavior. In order to achieve this
goal, they need a way to identify the smartphone/user via
an identifier that can uniquely be associated with a smart-
phone/user. This whole process of data collection is called
“third-party smartphone tracking” or simply “track-
ing” and the process of showing user-specific Ads based on
user profile is termed as “targeted advertising”.

Smartphone tracking and targeted-advertising are accept-
able if the user is aware of it and if he agrees to receive
targeted Ads based on his personal interests. Some users
could also find the presence of third-parties on the smart-
phone beneficial, for instance being a counterpart for free
services and applications. However problems arise when
A&A companies collect Personally-Identifiable Information
(PII) without users’ knowledge. In fact, Ad libraries some-
times also include APIs through which an application can
deliberately leak user PII [1]. This creates serious privacy
risks for users if proper cautions are not taken. With the
rapidly growing number of smartphones, people are increas-
ingly exposed to such risks. Moreover, a smartphone is
particularly intrusive, revealing all user movements as it is
equipped with a lot of sensors, and it stores a plethora of
information either generated by these sensors, by the tele-
phony services (calls and SMS), or by the user himself (e.g.,
calendar events and reminders). Finally, various scandals in
the past (e.g.,[2, 3]) make it difficult to trust all these actors
present on smartphones.

Motivation.

As “Tracking these trackers” has become a necessity, var-
ious tools have been developed in the past. These tools
are based on either static analysis or dynamic analysis or



interception of network traffic through Man-in-the-middle
(MITM) approach. Even though static analysis techniques
do scale well, they fail on obfuscated applications and there-
fore, are not suited to accurately detect and measure the
ongoing tracking. Similarly, MITM based approaches have
the limitation with respect to SSL traffic. Dynamic anal-
ysis techniques do exist on Android, TaintDroid [4] being
the most prominent work in this field. Otherwise, on iOS,
there does not exist any dynamic analysis technique capa-
ble of detecting and measuring the ongoing tracking. As
we lack suitable dynamic analysis tools readily available on
both Android and iOS, there is no measurement study in
the literature which provides concrete evidences of ongoing
tracking as well as the comparision across mobile OSs.

Contributions.
The contributions of this paper are threefold:

1. We introduce the MobileAppScrutinator platform in
Section 3 to detect and measure the ongoing tracking
on Android and iOS. It follows a dynamic analysis ap-
proach, and it is the first platform for iOS to detect
private data leakage based on dynamic analysis.

2. We test a set of the most representative applications,
available on both Android and iOS, using the Mo-
bileAppScrutinator platform. Our study considers not
only PII, but also modified versions of PII (e.g., after
encryption or hashing) sent over the Internet in clear-
text or using SSL. Tracking modified PII is a key for
reliable measurements as some identifiers (e.g., WiFi
MAC address, AndroidID, IMEI) are often modified
before being sent. Our findings are presented in Sec-
tions 5 and 6.

3. Finally, we discuss the effectiveness of privacy safe-
guards available on both Android and iOS in Section 7.
We show that neither Android nor iOS privacy safe-
guards in their present state are completely satisfying.

2. RELATED WORK

Our work can be compared with existing works on two
axes: 1) Tracking measurement technology /tools and 2) Mea-
surement of PII leakage. Below we discuss and compare our
work with some most representative works along these two
axes.

2.1 Tracking measurement technology

Tools to measure the ongoing tracking might be based
on either interception of generated network traffic, or static
analysis of the application code, or dynamic analysis of ap-
plications.

Interception of generated network traffic.

This approach is based on snooping the network data us-
ing Man-In-The-Middle (MITM) proxy. For example, Mo-
bileScope [5], based on MITM proxy, was used in WSJ study
[2] to investigate the top 100 applications on both Android
and i0S. However, this technique cannot be used to inter-
cept the SSL traffic which seriously limits the effectiveness of
this approach; as we see in Sections 5 and 6 that almost half
of PII leakage is through SSL. Additionally, MITM approach
will not be able to detect the leakage of PII generated by the
system (values not known to the user and therefore, could
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not be searched in the network traffic). This includes differ-
ent PII, for example, unique IDs generated and shared by
applications and user location. Also, MITM based approach
would fail in cases where user PII is modified (e.g., hashed
or encrypted) before being sent (and our experiments have
shown that this is rather a common practice). Finally, be-
ing a network packet analysis approach, it is not always easy
or feasible to identify the application having generated the
monitored traffic, which makes the (manual) analysis rather
complex. MobileAppScrutinator, in contrast, makes analy-
sis directly at the operating system level, and thus does not
suffer from such limitations.

Static analysis.

Past works (PiOS [6] on iOS, FlowDroid [7], ScanDroid [8],
CHEX [9], AndroidLeaks [10], SymDroid [11], ScanDal [12]
and Applntent [13] on Android) are based on statically de-
tecting a flow of data from a PII source to a network sink.
These works can be classified in two categories: 1) static
tainting-based (e.g., FlowDroid [7], ScanDroid [8], CHEX [9],
AndroidLeaks [10]) and 2) symbolic execution based (e.g.,
SymDroid [11], ScanDal [12] and AppIntent [13]). Among
the ones based on symbolic execution, SymDroid [11] designs
a symbolic executor based on their simple version of Dalvik
VM, i.e., micro-dalvik. Similarly, ScanDal [12] designs an
intermediate language, called Dalvik Core, and collects all
the program states during the execution of the program for
all inputs. Considering the Android’s special event-driven
paradigm, ApplIntent [13] proposes a more efficient event-
space constraint guided symbolic execution. On iOS, PiOS
was designed for binaries compiled with GCC/G++ com-
piler and since then, Apple switched to LLVM compiler.
Therefore, PiOS needs to be adapted to support the analysis
of binaries compiled with LLVM. Furthermore, PiOS is not
available publicly, so one needs to build it from scratch to
use it to detect and measure the ongoing tracking. In gen-
eral, static analysis techniques do scale well but they lack
dynamic information tracking and therefore, lead to false
negatives.

Dynamic analysis.

TaintDroid [4] and PMP [14] are based on dynamic anal-
ysis on Android and iOS respectively. On Android, Taint-
Droid is a dynamic taint-based technique to detect and mea-
sure private data leakage. However, TaintDroid has its own
limitations: 1) taint-based tracking can be easily circum-
vented using indirect information flows [15] 2) requires to
make a trade-off between false positives and false negatives
([4] did not taint IMSI due to false positives) 3) misses na-
tive code (both for taint propagation and as a source of
information). On iOS, PMP [14] is a dynamic/runtime tool
that offers the functionality of choosing access to what in-
formation a user is willing to share with a particular appli-
cation. As iOS’s own privacy control feature provides the
same functionality, PMP [14] is an enhancement in terms
of the number of different types of private data considered.
In fact, PMP fails to notify users if the accessed informa-
tion is being sent to a remote server or not. As existing
dynamic analysis tools on iOS are not sufficient to measure
the ongoing tracking on iOS, one possibility could have been
a taint-based dynamic analysis technique. However, this is
not be possible to do on an iOS device because the code
of applications is native (C, C++ and Objective-C). Prop-



agating taint would require to emulate native code, which
involves serious changes to the system and would have a
significant performance penalty. Therefore, we opted for a
dynamic analysis approach, described in the next section,
which can be used on both Android and iOS. To measure
the effectiveness of MobileAppScrutinator on Android with
TaintDroid, we perform tests on identical set of applications
using TaintDroid and MobileAppScrutinator.

2.2 Measurement of PII leakage

To best of our knowledge, no previous work provides a
complete picture of tracking on Android and iOS. Web-
browser tracking has been thoroughly studied [16, 17], but
it is not the case with smartphone tracking. We are first
to provide detailed analysis and measurement data for both
Android and i0S. [18] sheds some light on third-party track-
ing being taken place on Android using TaintDroid but is
not as comprehensive as ours. Also, all other static and
dynamic analysis tools proposed in the literature, for exam-
ple, PiOS [6] and TaintDroid [4], analyzed some applications
and presented a number of applications leaking user PII, but
none of them presented a complete analysis as we do in Sec-
tion 5 and 6. Also, as tracking technologies rapidly change
with OS revisions, it is crucial to have up-to-date tools and a
recent picture of tracking technology. Furthermore, we also
consider the remote servers where PII is sent and attempted
to distinguish them among first and third-parties, with the
available information.

3. MOBILEAPPSCRUTINATOR

Design choices.

From tracking detection and measurement point of view,
it is ideal to analyse what applications are doing at operating
system level. However, we want to have a system that does
not require too intrusive modifications of the OSs and does
not have too many false positives (unlike dynamic tainting-
based techniques). The system should work well with non-
malicious application on real devices so that it can be used
by anyone. Thus the design of MobileAppScrutinator starts
with a simple approach: intercepting the source, sink and
data manipulation system APIs. As the same approach is
applied to both Android and iOS, it enables us to have a
comparative view of tracking on these OSs. Even though
MobileAppScrutinator is based on this simple approach, its
implementation on Android and iOS differs significantly due
to the differences of these OSs. However, the basic governing
philosophy remains the same.

Overall architecture.

As developer APIs are public on both Android and iOS, we
are able to identify all source and sink methods (i.e., meth-
ods related to access or modification of private data along
with network operations either in clear-text or encrypted).
MobileAppScrutinator hooks these APIs and includes extra
code to these APIs. This added extra code collects various
information from the application environment. Specifically,
it collects information about PII being accessed, modified,
or transmitted by an application along with the informa-
tion about that application. Any access, or modification, or
transmission of PII corresponds to an event and is stored lo-
cally in an SQLite database. This database is later analyzed
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Figure 1: MobileAppScrutirrator Android implementation.

automatically to detect and measure privacy leaks.
In the next two subsections, we give details of how Mo-
bileAppScrutinator is implemented on Android and iOS.

3.1 Implementation on Android

As the Android source (from Android Open Source Project
(AOSP)) is publicly available, MobileAppScrutinator directly
modifies source code of various APIs in Java frameworks.
This modified source is compiled and a new system image
is generated. We develop and add a system application to
this new system image. This system application runs two
Android services that are responsible for receiving data from
different sources. The App is also responsible for storage of
data in a local SQLite database.

Here it is to be noted that Android application frameworks
are written on top of (or utilizing) core Java frameworks, i.e.,
during compilation of Android source, core Java frameworks
are compiled before the Android application frameworks. As
AIDL! is part of Android application framework, it cannot
be used within core Java frameworks to send data to Mo-
bileAppScrutinator system application. Thus, in modified
APIs of core Java frameworks, MobileAppScrutinator uses
socket APIs of libe library to send data to a dedicated ser-
vice running inside MobileAppScrutinator system applica-
tion. Fig. 1 provides a broad picture of how MobileApp-
Scrutinator is implemented on Android OS.

3.2 Implementation on iOS

Fig. 2a depicts an overall picture of implementation of
MobileAppScrutinator on iOS. The APIs of interest in iOS
frameworks are modified to capture and send data related
to application context as well as the PII being accessed, or
modified, or transmitted (clear-text or SSL). The data com-
munication between various processes running our custom
code and the daemon is through mach messages. In order
to execute self-signed code and get privileged access to the
system, the default 108 software stack needs to be modified
to remove the restrictions imposed by Apple (a technique
known as “Jailbreaking” in the iOS world).

On i0OS, developers may write code in C, C++ and Objective-

"http://developer.android.com/guide/components/
aidl.html
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C languages. In fact, all iOS executables are linked with
the Objective-C runtime [19] and this runtime environment
provides a method called method_setImplementation. There-
fore, we use this method to change the implementation of
existing Objective-C methods whereas to change the im-
plementation of C/C++ functions, we use trampoline tech-
nique [20]. MobileSubstrate [21], an open-source framework,
greatly simplifies this task. Finally, the source code respon-
sible for modification of various APIs of interest is com-
piled into a dynamic library (dylib) which is loaded using
launchd [22], into all or subset of running processes. Fig. 2b
depicts how a dylib is loaded into a process using launchd.

3.3 Post-analysis of SQLite Data

The events stored in local SQLite database are processed
by automated Python scripts. It is a two-step process: a first
pass over the database on a per-application basis results into
a JSON file, and a second pass over the JSON file derives
various statistics.

Our first level analysis consists of the following steps:

1. Find all types of PII accessed by each application.

2. Check if PII is really sent over the network or not, and
if yes, to which server it is sent to.

3. Search for the PII in the input to data modification
APIs (cryptographic and hashing) and if found, look
for the result in the data sent over the network.

First-level analysis results into a JSON file that stores 1)
accessed PII, 2) PII passed to encryption or hash APIs 3)
(un)modified PII sent over the Internet in cleartext or using
SSL. Once the first pass over the database is finished, the
resulted JSON file containing per-App details is processed to
infer or derive various statistics. Here it is worth to mention
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that various PII accessed by an application are searched only
in the network traffic and hash/cryptographic calls of that
specific application.

In various APIs, the access to data is at byte level and in
this case, the raw bytes are first attempted to be decoded
using UTF-8 encoding. Since a different encoding may be
used or in case of binary data, the hexadecimal representa-
tion of these raw bytes is also stored alongside. Searching in
the network, or in the input to cryptographic or hash APIs
is done for both UTF-8 encoded data and hexadecimal rep-
resentation of the raw bytes.

3.4 Limitations

The PII leakage would remain undetected if the data is
modified by the application developer using custom data
modification functions before sending over the network. If
the PII is modified using OS provided data modification
APIs (e.g., encryption, hashing) before sending over net-
work, MobileAppScrutinator would correctly be able to de-
tect the PII leakage. As an App developer is not bound to
use system provided hash and encryption APIs, MobileApp-
Scrutinator might miss some PII leakage instances.

Also, Android implementation only deals with the Java
code and would miss the detection of PII leakage if the di-
rect calls are made by applications to C/C++ APIs using
JNI framework. Here it is worth mentioning that it’s not
the limitation of the approach but rather limitation of im-
plementation of MobileAppScrutinator on Android.

4. EXPERIMENTAL SETUP

In order to investigate the tracking mechanisms being used
by third-parties, we test 140 representative (most popular
Apps in each category) free Apps available both on Android
and i0S. Experiments have been conducted on i0S 6.1.2 and
Android 4.1.1_r6.

We manually ran applications for approximately one minute
each. We could interact with some applications during this
one minute duration as others required the user to log in
or sign up. We did not sign up or log in as our ultimate
goal was not to track the manually entered user PII but the
seamless background tracking done without any user inter-
vention/interaction. Also, we did not set out for covering all
possible execution paths as third-party library code mostly
starts execution when the application is first launched.

Apart from device or operating system unique identifiers
and information, we also entered other information such as
addressbook, calendar events, accounts etc. This enables us
to know if such data is accessed and transmitted by apps.

S. CROSS-APP THIRD-PARTY TRACKING

Smartphone users mostly use dedicated Apps rather than
websites for accessing services, essentially because of the rel-
atively small screen size and the lack of mobile-optimized
web pages (even if this later aspect has largely improved).
Therefore tracking is no longer performed through “third-
party cookies” as in web sites (that can easily be disabled
by the user) but through dedicated identifiers that we now
detail.

5.1 Unique identifiers from the system

First of all, let us consider the system level unique iden-
tifiers. The situation is rather different depending on the
target OS.
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5.1.1 Android.

Various system identifiers are available on Android. A
user permission is required to access hardware-tied IMEI
and Wi-Fi MAC address as well as SIM-tied IMSI and phone
number. OS-tied Serial Number and AndroidID identifiers
are freely available to be accessed.

Our study reveals that these unique system identifiers are
collected by various parties (see Table 1). Many times, both
first and third-parties send these unique identifiers over the
Internet to their servers unmodified (e.g., without hashing)
and in clear-text (without SSL). This is a serious threat to
user privacy as users can easily be identified by a network
eavesdropper by simply looking at the clear-text data.

Our study reveals that third-parties collect these unique
identifiers more often than first-parties, and that third-parties
collect more than one identifier in most cases. Depending
on the App permissions, third parties try to collect as many
identifiers as they can: for instance, the ad-z.co.uk, adz-
tracking.com and mobilecore.com third-parties collect and
send the AndroidID, IMEI and WiFi-MAC address to their
servers in clear-text.

Finally, we find that various unique identifiers are also sent
to some [P addresses without any hostname information. It
is not easy to identify to whom they belong to and why the

data is sent to them. Table 1 provides the whole list of such
IP addresses and the corresponding unique identifiers sent
to them.

Along with these identifiers, third-parties collect and send
the names of Apps in which their code is present (we no-
tice that User-Agent http header field contains package/App
name.). Knowing the Apps of a user reveals a lot about user
interests [23]. The collection of this behavioral data is pro-
portional to the number of Apps in which third-party code is
present. So it is interesting to quantify the number of Apps
sending these unique identifiers. Fig. 3a presents statistics
about the collection of these identifiers, focusing on quanti-
fying the presence of these third-parties in Apps. Looking at
both Table 1 and Fig. 3a, it can easily be deduced that the
presence of third-parties in Android Apps is huge. Globally,
we find that 31% (44 out of 140) of Apps send, at least, one
(un)modified unique identifier over the network.

5.1.2 i0S.

Here also our study reveals that these unique system iden-
tifiers are collected by many third-parties (see Table 2).
However, there are fewer system identifiers accessible to
Apps compared to Android (for instance the IMEI, IMSI
and Serial Number cannot be accessed). Non surprisingly,
the “Adldentifier” is largely used, which is explicitely the rea-
son why it has been added (Advertizing and Analytics) as
a replacement to the deprecated UDID. However we notice
that some companies (e.g., tapjoyads.com, greystripe.com,
mdotm.com, admob.com and ad-inside.com) still did not
switch to using Adldentifer and keep on using the UDID,
which has been permited for some time after its depreca-
tion. We also observe that fewer data is sent in clear-text
compared to Android.

With iOS, the device name (DeviceName) is set by the
user during the initial device setup and often contains the
user’s real name. Since this device name is stable (the user
will not generally modify it later on), even if it is not guar-
anteed to be unique across all devices, it is a stable identifer
that can probably be used for tracking purposes. If addi-
tionally it is set with the user’s real name, it also reveal its
identity.

Fig. 3b presents statistics about the collection of these
identifiers focusing on quantifying third-parties presence in
iOS Apps. We notice that these identifiers are always col-
lected when the user starts/stops interacting with the App.
This means that third-parties can even know how long a user
is using a particular App and the time when a user goes idle,
revealing user habits?.

As, globally, 60% (i.e., 84 out of 140) of Apps send, at
least, one (un)modified unique identifier over the network,
the risk here is huge. Comparing this number with An-
droid reveals that third-parties presence in iOS Apps is more
widespread as compared to Android but iOS Apps leak less
hardware-tied system identifiers as compared to Android
Apps.

5.2 Unique identifiers generated by third-parties

Let us now consider unique identifiers designed specifi-
cally by third-parties in order to bypass some restrictions of
the OS. This is a practice that our study highlights on iOS

2A possible implication: Someone rarely using Apps after
10pm, will probably not be interested in night life (bars or
clubs) and therefore Ads in this category can be concealed.



Table 1: Unique System Identifiers transmitted by 140 Android Apps tested

Server

AndroidID

[ [
[ Modified [ Unmodified | © noneNo

IMEI

{ [
| Modified | Unmodified |

SerialNo ‘ IMSI ‘ WiFi MAC

Third-parties

Clear

amazonaws.com

v

v

ad-x.co.uk

mobilecore.com

SNENEN

kochava.com

apsalar.com

mdotm.com

adtilt.com

estat.com

SNENENERENENEN

sophiacom.fr

appnext.com

flurry.com

SNENENEN ENENENENENENEN

socialquantum.ru

sitestat.com

pureagency.com

smartadserver.com

xiti.com

playhaven.com

yoz.io

seattleclouds.com

ad-market.mobi

SSL

tapjoyads.com

airpush.com

revmob.com

appwiz.com

NEN

amazon.com

adcolony.com

fiksu.com

crittercism.com

ENENERENENENENENENENENENENEN

googleapis.com

appsilyer.com

dataviz.com

mobileapptracking.com

NN

First-parties

Clear

mobage.com

jjinshan.com

blitzer.de

SNENENERENENENENEN

eurosport.com

cdiscount.com

SNEN

SSL

google.com

badoo.com

NN

dropbox.com

klm.com

airfrance.com

airbnb.com

groupon.com

adobe.com

Unidentified

Clear

72.21.194.112

dxsvr.com

69.28.52.39

198.61.246.5

183.61.112.40

61.145.124.113

SNENENENEN

74.217.75.7

ENENENENEN B EN AN ENENENENENENEN

183.61.112.40

linode.com

93.184.219.20

107.6.111.137

startappexchange.com

91.103.140.6

209.177.95.171

ati-host.net

adkmob.com

SSLj

fastly.net

ENENERENENEN

canal-off.sbw-paris.com

vi




Table 2: Unique System Identifiers transmitted by 140 iOS Apps tested

Server

AdlIdentifier

UDID

DeviceName Wiki MAC

Modified | Unmodified

Pasteboard IDs

Third-parties

Clear

clara.net

v

v

v

appads.com

v

amazonaws.com

1e100.net

adcolony.com

facebook.com

your-server.de

ENENIENEN

sophiacom.fr

smartadserver.com

mopub.com

ENENEN

sofialys.net

visuamobile.com

AN

swelen.com

adtilt.com

SNENEN

nanigans.com

tapjoyads.com

greystripe.com

SNENEN

mdotm.com

sofialys.net

visuamobile.com

admob.com

ad-inside.com

xiti.com
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(that is more restrictive in terms of accessible system iden-
tifiers) but is absent from Android (that already provides
all the needed system unique identifiers, some of them being
even freely accessible, without having to ask for any permis-
sion). There are two motivations: (1) having an identifier
independant of the system, usable even if these later become
obsolete; (2) having a cross-application mechanism

As Apps are sandboxed on i0OS (and Android), there must
exist a way through which third-parties can somehow pre-
serve the state across Apps to be able to track user activities
across the device.

On i0S, after deprecation of UDID, third-parties had to
look for other options of tracking. In fact, there exists a class
called UIPasteBoard [24] on i0S that is specifically designed
for cut/copy/paste operations, with the ability to share data
between Apps. The data shared by Apps with this class can
be persistently stored even across device restarts. Among
the Apps we tested, we found that a large number of third-
parties use the UIPasteboard class to share a unique third-
party identifier across Apps. Out of 140 Apps we tested,
63 Apps create at least one new pasteboard entry at the
initiative of a third-party library (looking at the names and
types of pasteboards created and the servers where these
values are sent) included in the application.

Essentially, third-party code present inside an applica-
tion stores a pasteboard entry with its unique name, type
and value. Later, if an App containing the code from the
same third-party is installed, it retrieves the value corre-
sponding to its pastebaord name. To have a look on paste-
board names, types and values used by various third-parties
present inside 140 iOS Apps tested, please refer to Table 7
in the Appendix. Here it is to be noted that user has no
control over this kind of tracking and “Limit Ad Tracking”
feature of iOS is ineffective in this case.

However, on Android, we did not find Apps using this
technique as various system identifiers are readily avaialble
to be accessed by Apps, so third-parites do not need to gen-
erate their own identifiers. Of course, as tracking through
system identifiers is stronger, there is no need to opt for this
solution on Android.

6. COLLECTION OF USER PII

To create a rich user profile, third-parties can use various
means to collect a wide variety of user PII:

1. By directly collecting as much information as possible
from the device (i.e., by adding the appropriate code
in the libraries to be included by the App developers).

2. By retrieving it from other third-parties who have al-
ready collected this information (thereby, aggregating
the user PII [25]).

3. By obtaining it from first-parties.

It is difficult to measure how much information are being
shared among third-parties themselves or among first and
third-parties, but we can measure what kinds of data and to
which extent are being collected by these third-parties di-
rectly from the smartphone. The collection of wide variety
of user PII as detailed in this section shows how desperate
these third-parties are to collect user PII. It also indicates
the lack of legal actions as these third-parties and App de-
velopers are not afraid of legal authorities to be fined; oth-
erwise, such tracking would have been discouraged.
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6.1 PII collection on Android

Various personal data of the user is available to be ac-
cessed by Apps on Android which includes location of the
user, contacts, accounts stored, etc. Our experiments with
140 Android Apps reveal that different kinds of user PII is
being sent over the Internet to various first and third-parties.
Table 3 presents the whole list of servers where the user PII
is actually sent to.

Our study reveal that user location is sent to six third-
parties in clear-tert. In fact, it is more often sent in clear-
text than using SSL to third-parties. We also find that user
location is sent (encrypted or in clear-text) to nine third-
parties whereas it is sent to only three first-parties. This
means that user location is used more often for tracking
and profiling the user and not for providing a useful service.
Otherwise, we note that the name of the telephony operator
and the SIM network code is being collected by a lot of first
and third-parties.

Fig. 4a presents number of Apps sending different kinds of
data over the Internet. We see that network code and opera-
tor name is sent by 17 and 16 Apps respectively. Moreover,
as the Apps installed on a device is highly valuable infor-
mation for trackers/advertisers to infer user interests and
habits, we detect and measure the leakage of this informa-
tion too. We find that 5 third-parties know 4 or more Apps
installed by a user. Specifically, “tardemob.com”, present in
“Booking.com” App, collects the list of all Apps installed on
the device and sends this list to its server. Interested read-
ers may refer to Table 8 in the Appendix of the paper to
know about the list of Apps and corresponding third-parties
knowing them.

6.2 PII collection on iOS

iOS also makes accessible many kinds of user PII (e.g.,
Accounts, Location, or Contacts) to Apps. This is necessary
so that a wide variety of Apps can be developed. As opposed
to Android, we find that iOS Apps leak less user PII. In
total, there are 8 (as opposed to 21 on Android) third-parties
where user PII is sent to on iOS. Also, both first and third-
parties did not send much data to their servers in clear-text.

If we look at the location data, it is sent to only two third-
parties (to one in clear-text and one using SSL). There is
only one third-party server and one first-party server where
user location is sent in clear-text as compared to six and one
respectively on Android. Globally, we note that iOS Apps
sent lesser user PII over the Internet and also, they used SSL
more often than their Android counterparts. Table 4 depicts
details about the transmitted user PII and where this user
PII is actually sent to.

Figure 4b presents the number of Apps sending user PII
over the Internet. We find that 10 Apps (out of 140) send
user location over the Internet as compared to 6 Apps on
Android. However, more third-parties collect and send user
location over the Internet on Android. This means that on
iOS, the presence of a third-party is more spread over Apps
even though the number of third-parties are present more
on Android.

Also, we find out that iOS Apps leak more information
about the list of installed Apps on the phone as compared to
Android Apps. Nine third-parties know, at least, 5 names of
the installed packages. Flurry, for example, knows 25 Apps
installed on the phone. It is included in all these Apps and
this library sends the name of App in which it is present



Table 3: User PII transmitted by a total of 140 Android Apps tested

Server [ Accounts [ Contacts [

Location [

Operator Name | SIM Network code | WiFi Scan/Config |

seventynine.mobi

v

kiip.me

v

google.com

ENENENEN

3g.cn

doubleclick.net

<4

goforandroid.com

adtilt.com

Clear

207.net

nexage.com

ad-market.mobi

mopub.com

mydas.mobi

Third-parties

startappex-
change.com

airpush.com

appwiz.com

agoop.net

ENENEN

tapjoyads.com

SSL

crittercism.com

inmobi.com

appsflyer.com

googleapis.com v

betomorrow.com

leas

avast.com

NS

google.com

ENEN
<

badoo.com

SL

checkmin.com

S

groupon.de

m6replay.fr

91.103.140.193 v

ENENEN N EN I ENEN R ENERENEN

adkmob.com

dsxvr.com

Clear

amazonaws.com

<

Unidentified First-parties

183.61.112.40

ENEENENIN

Table 4: User PII transmitted by a total of 140 iOS Apps tested

[ Server [ Accounts [ AddressBook ]|

Device Name |

Location [ SIM Network Name [  SIM Number |

clara.net

v

aImazonaws.com

v

Clear

bkt.mobi

capptain.com

v v

fring.com

crittercism.com

SSL

Third-parties

boxcar.io

testflightapp.com

mobilevoip.com v

groupon.de

Clear

sncf.com

groupon.de

<<

ebay.com

First-parties

SSL

foursquare.com

paypal.com

twitter.com v

as part of the communication with their servers. Moreover,
the collection of this information is in plain-text. To get
the complete list of these third-parties as well as the pack-
age names known to them, please refer to Table 9 in the
appendix of the paper.

7. DISCUSSION

In order to provide transparency and control over pri-
vacy, both Android and iOS involve user decisions along
with mechanisms adopted by their respective systems. How-
ever, the approach followed by Android and iOS is differ-
ent: Android employs a static install-time permission system
whereas 10S solicits explicit user permission at runtime. No
doubt these OS mechanisms are mostly effective, they lack
behavirol analysis, i.e., when, where and how often the ac-
cessed information is sent over network. For example, it is
vital to distinguish the fact if the PII is sent to an applica-
tion server or to a remote third-party. In fact, a user giving
access to her PII for a desired service does not necessar-
ily mean that she also wants to share this information with
other parties, for example, advertisers or analytics compa-
nies. Similarly, an application accessing and sending user
location only at installation time is not the same as sending
it every 5 minutes.

Below we discuss the effectiveness of various privacy safe-
guards avaialabe on both Android and iOS based on our
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experiments and results.

Resetting the “Adldentifier” on iOS.

The effect of resetting the AdIdentifier is not similar to
“Deleting the cookies” in web tracking and could easily be
nullified. Resetting the AdIdentifier, in theory, is meant to
prevent trackers from linking the user activity before and
after the reset. However the trackers can easily detect the
Adldentifier change and link the two values even if Apple
explicitly tells not to do so. Apps are not technically re-
stricted by iOS to do so. In our study, we find that 20%
Apps send the IdentifierForVendor® along with the AdIden-
tifier to third-parties. Table 6 shows the servers where the
IdentiferForVendor is sent to. It is noticeable that many
third-parties collect this identifier, whereas it was princi-
pally designed by Apple to be used only by first-parties. As
IdentifierForVendor is being collected by third-parties, they
are able to link the AdIdentifiers before and after the reset.

Apps bypassing the “Adldentifier" on iOS.

We have seen that many Apps are using other tracking
mechanisms to track the user in addition to the AdIdenti-
fier. In our experiments we discovered that 93 Apps out

3This is a stable identifier unique to all Apps of a single
developer on a particular device, that cannot be changed or
reset by the user.
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Figure 4: # Apps sending PII out of a total of 140 Apps

of 140 (i.e., approx. 66%) will continue to track the user
after a reset of the Adldentifier. This measurement does
not consider the applications employing the previously de-
scribed technique to match the changed/reset Adldentifiers
as we cannot be sure what third-parties do with their data
collected. In iOS 7, Apple banned the access to WiFi MAC
Address, but the percentage only reduces from 66% to ap-
proximately 42% (60 Apps out of a total of 140 Apps.), i.e.,
if we exclude the Apps (24%) using only WiFi MAC address
as a unique identifier for tracking.

8. CONCLUSION

This paper first introduces the MobileAppScrutinator plat-
form for the study of third-party smartphone tracking. To
the best of our knowledge, this platform is the first one that
embraces both iOS and Android, using the same dynamic
analysis methodology in both cases. For the first time, it
provides in-depth insights on what PII is accessed, what PII
is hashed and/or encrypted (possibly with other pieces of
information), and what PII is sent to remote servers, either
in clear-text or encrypted in SSL connections. This in-depth
analysis capability is a key to analyze the applications and
understand what is going on.

The second major contribution of this work is the be-
havioral analysis, thanks to the MobileAppScrutinator plat-
form, of 140 free and popular Apps, selected so that they

are available on both mobile OSs in order to enable com-
parisons. Two important aspects are considered: first we
show that many stable identifiers are collected on Android,
in order to track individual devices in the long term. On
i0S, availability of system-level identifiers is less common,
but techniques have been designed to create new cross-app,
stable identifiers by third-parties themselves. The second
aspect concerns the user-related information. We show that
a significant amount of PII is being collected by third-parties
who implicitly know a lot about the user interests (e.g., by
collecting the list of Apps installed or currently running).

Finally, this work enables to have a comparative view
of ongoing tracking on Andorid and iOS. Our experiments
show that Android apps are more privacy-invasive as com-
pared to iOS Apps as the presence of third-parties is cleary
more in Android applications. In all cases, protective mea-
sures are required to be taken by device manufactureres, OS
designers and various regulatory authorities in a coordinated
way to control the collection and usage of PII.
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APPENDIX
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Table 5: Detection of PII leakage using TaintDroid 4.3
(Same applications are tested to compare the results with
MobileAppScrutinator platform).
‘ IMEI ‘

Browser
History

Address

S
‘ erver Book

‘SMS‘

hinet.net
enovance.net
aol.com
kimsufi.com
typhone.net
betacie.net
1e100.net
dolphin-server.co.uk
linode.com
amazon.com
ati-host.net
amazonaws.com
1e100.net
skyhookwireless.com
akamaitechnologies.com
teamviewer.com
badoo.com
shazamteam.net
sves.paypal.com
amazon.com
162.13.174.5
69.28.52.38
195.154.141.2
188.165.90.225
91.103.140.225
61.145.124.113
69.28.52.36 v
183.61.112.40 v
91.213.146.11
31.222.69.213
212.31.79.7
92.52.84.202
69.194.39.80
72.26.211.237
192.225.158.1
54.256.81.235
67.222.111.117 v

Clear

Third-parties
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SSL
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Table 6: Servers where IdentifierForVendor is communicated
in 140 iOS Apps tested

‘ Third-parties ‘
‘ Clear ‘ SSL ‘
mobileroadie.com,
clara.net,
appads.com,
adcolony.com,

First-parties ‘

SSL |

Clear

eamobile.com,
dailymotion.com,
foursquare.com,

tapjoyads.com,
tapjoy.com,

adzcore.com, eurosport.com,

sophiacom.fr, fiksu.com, gameloft.com google.com,
7mobile7.com, crittercism.com, googleapis.com,
sitestat.com, ad-x.co.uk paypal.com

mediatemple.net
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Table 7: Different Pasteboard Names, Types and Values created by 140 iOS Apps tested

‘ Pasteboard Names ‘ Pasteboard Types ‘ Pasteboard Values
fb_app_attribution, org.OpenUDID.slot.0 to 99,
com.hasoffers.matsdkref, com.ad4screen.bmads.dLOG, WiFi MAC Address,
com.ad4screen.bmadsavedatal24780, 2501110D-69B7-415A-896B-4F7A83591263,
com.flurry.pasteboard, com.fiksu.288429040-store, com.crittercism.uuid, 1D521411E3-D88E-426E-9B7D-
com.fiksu.pb-0 to 19, org.secureudid-0 to 99, org.OpenUDID,public.utf8-plain-text, com.fiksu.id, 1060C0772C89969DC466, 363046414344413130433230,
com.ebay.identity, com.paypal.dyson.linker_id, public.secureudid, com.google.maps.SSUC, 8211d087-cabb-42¢3-ala2-7Tb3779f6¢206,
AmazonAdDebugSettings, com.flurry. UID, com.bmw.ada.switcher.featureinfo 81C65A17-9F0E-4BFE-83A7-1C2C070C3353,
CWorks.5cb7¢5449e677be888147c58, container, E6644EEB-04B3-4AEF-8562-A2C29E323CCE,
amobeePasteboard, com.google.maps, 55b0a791-517e-4bd4-8398-414dd527417b, And other
com.google.plus.com.deezer.Deezer, binary data instances
com.bmw.ada.switcher.featureInfos and many more

Table 8: List of third-parties knowing names of installed packages on Android (out of a total of 140 Apps tested)

[ Third-party (Comm type) | Process Names
trademob.com(SSL) All the processes running on the phone
google.com(SSL) All the processes running on the phone

com.anydo, com.rechild.advancedtaskkiller, com.spotify.mobile.android.ui, com.google.android.googlequicksearchbox,

google-analytics.com(SSL) com.dailymotion.dailymotion, com.aa.android, com.comuto, com.airbnb.android
doubleclick.net(plain-text) com.tagdroid.android, com.rechild.advancedtaskkiller, bbc.mobile.news.ww, ua.in.android_wallpapers.spring_nature
crashlytics.com(SSL) com.evernote, com.path, com.lslk.sleepbot, com.twitter.android, com.dailymotion.dailymotion

Table 9: List of third-parties knowing names of installed packages on iOS (out of a total of 140 Apps tested)

‘ Third-party (Comm type) ‘ Process Names

flurry.com(plain-text) TopEleven, Bible, RATP, Transilien, TripIt, DespicableMe, FlyAirIndia, Viadeo, Bankin’, VDM, OCB, DuplexA86, SleepBot, Snapchat,
. Appygraph, Booking.com, foodspotting, Badoo, EDF-Releve, WorldCup2011, Quora, UrbanDictionary, babbelSpanish, MyLittleParis, Volkswagen

google-analytics.com(SSL) InstantBeautyProduction, Evernote, LILIGO, Transilien, Viadeo, VDM, comuto, easyjet, VintedFR, Volkswagen

crashlytics.com(SSL) dailymotion, TopEleven, AmazonFR, Path, RunKeeper, foodspotting, babbelSpanish, Deezer

urbanairship.com(SSL) ‘Wimbledon, RATP, HootSuite, DuplexA86, Appygraph, foodspotting, Volkswagen

xiti.com(plain-text) laposte, ARTE, myTF1, lequipe, SoundCloud, 20minv3, Leboncoin

admob.com(plain-text) VSC, BBCNews, WorldCup2011, RF12, UrbanDictionary

capptain.com(plain-text) Viadeo, myTF1, rtl-fr-radios, 20minv3, iDTGV
tapjoy.com(SSL) TopEleven, Bible, DespicableMe, OCB, MCT
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