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ABSTRACT

Microbenchmarking consists of evaluating, in isolation, the
performance of small code segments that play a critical role
in large applications. The accuracy of a microbenchmark
depends on two critical tasks: wrap the code segment into
a payload that faithfully recreates the execution conditions
that occur in the large application; build a scaffold that runs
the payload a large number of times to get a statistical esti-
mate of the execution time. While recent frameworks such
as the Java Microbenchmark Harness (JMH) take care of
the scaffold challenge, developers have very limited support
to build a correct payload.

In this work, we focus on the automatic generation of pay-
loads, starting from a code segment selected in a large ap-
plication. In particular, we aim at preventing two of the
most common mistakes made in microbenchmarks: dead
code elimination and constant folding. Since a microbench-
mark is such a small program, if not designed carefully, it
will be “over-optimized” by the JIT and result in distorted
time measures. Our technique hence automatically extracts
the segment into a compilable payload and generates addi-
tional code to prevent the risks of “over-optimization”. The
whole approach is embedded in a tool called AuToJMH,
which generates payloads for JMH scaffolds.

We validate the capabilities AUTOJMH, showing that the
tool is able to process a large percentage of segments in real
programs. We also show that AUTOJMH can match the
quality of payloads handwritten by performance experts and
outperform those written by professional Java developers
without experience un microbenchmarking.
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1. INTRODUCTION

Microbenchmarks allow for the finest grain performance
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testing (e.g., test the performance of a single loop). This
kind of test has been consistently used by developers in
highly dependable areas such as operating systems |30} |19],
virtual machines [9], data structures [32], databases |23,
and more recently in computer graphics |25] and high per-
formance computing[29]. However, the development of mi-
crobenchmarks is still very much a craft that only a few
experts master |9]. In particular, the lack of tool support
prevents the adoption of microbenchmarking by a wider au-
dience of developers.

The craft of microbenchmarking consists in identifying a
code segment that is critical for performance, a.k.a segment
under analysis (SUA in this paper), wrapping this segment
in an independent program (the payload) and then have it
executed a large number of times by the scaffold in order to
estimate its execution time. The amount of technical knowl-
edge needed to design both the scaffold and the payload hin-
der engineers from effectively exploiting microbenchmarks
12, 13 [9]. While recent frameworks such as JMH |2| |20, |18]
address the generation of the scaffold, the construction of
the payload is still an extremely challenging craft.

Engineers who design microbenchmark payloads very com-
monly make two mistakes: they forget to design the payload
in a way that prevents the JIT from performing dead code
elimination |9} |20} |7, [3] and Constant Folds/Propagations
(CF/CP) [1},120]. Consequently, the payload runs under dif-
ferent optimizations than the original segment and the time
measured does not reflect the time the SUA will take in
the larger application. For example, Click [9] found dead
code in the CaffeineMark and ScifiMark benchmarks, re-
sulting in infinite speed up of the test. Ponge also described
|21] how the design of a popular set of microbenchmarks
comparing JSON engineaﬂ was prone to “over-optimization”
through dead code elimination and CF/CP. In addition to
these common mistakes, there are other pitfalls for payload
design, such as choosing poorly initialization values or reach-
ing a steady state measuring an undesired behavior.

In this work, we propose a technique to automatically gen-
erate payloads for Java microbenchmarks, starting from a
specific segment inside a Java application. The generated
payloads are guaranteed to be free of dead code and CF/CP.
Our automatic generation technique performs a static slicing
to automatically extract the SUA and all its dependencies in
a compilable payload. Second, we generate additional code
to: (i) prevent the JIT from “over-optimizing” the payload
using dead code elimination (DCE) and constand folding/-

Thttps://github.com /bura/json-benchmarks
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constant propagation(CF/CP), (ii) initialize payload’s input
with relevant values and (iii) keep the payload in steady
state. Dead Code Elimination is avoided applying a novel
transformation called sink mazimization, while (CF/CP) is
mitigated by turning some SUA’s local variables into fields
in the payload. Finally, the payload is maintained in stable
state by smart reseting variables to their initial value. The
main objective of this technique is to assist Java developers
who want to test the performance of critical code segments.

We have implemented the whole approach in a tool called
AuToJMH. Starting from code segment identified with a
specific annotation, it automatically generates a payload for
the Java Microbenchmark Harness (JMH). We use JMH as
the scaffold for our microbenchmarks since it is the de-facto
standard for microbenchmarking today. The framework ad-
dress many of the common pitfalls when building scaffolds
such as Loop Hoisting and Strength Reduction, optimiza-
tions that can make the JIT reduce the number of times the
payload is executed.

We evaluate AUTOJMH according to three different di-
mensions. First, we evaluate to what extent our program
analyses can generate payloads out of large real-world pro-
grams. We run AUTOJMH on the 6 028 loops present in 5
mature Java projects: our technique can extract 4705 SUA
into microbenchmarks (74% of all loops) and find initializa-
tion values and generate complete payloads for 3462 (60%)
of the loops. Second, we evaluate the quality of the automat-
ically generated microbenchmarks: we use AUTOJMH to re-
generate 23 microbenchmarks handwritten by performance
experts to effectively detect 8 performance issues. Automat-
ically generated microbenchmarks measure the same times
as the microbenchmarks written by the JMH experts. Third,
we qualitatively compare the microbenchmarks generated by
6 professional Java engineers, noticing that engineers usu-
ally make naive decisions when designing their benchmarks,
distorting the measurement, while AUTOJMH prevents all
these mistakes by construction.

To sum up, the contributions of the paper are:

e A static analysis to automatically extract a code seg-
ment and all its dependencies

e Code generation strategies that prevent artificial run-
time optimizations when running the microbenchmark

e An empirical evaluation of the quality of the generated
microbenchmarks

e A publicly available tool and dataset to replicate all
our experiments

In section [2| we discuss and illustrate the challenges for
microbenchmark design, which motivate our contribution.
In section Bl we introduce our technical contribution for the
automatic generation of microbenchmarks in Java. In sec-
tion 4] we present a qualitative and quantitative evaluation
of our tool and discuss the results. Section [5] outlines the
related work and section 6] concludes.

2. PAYLOAD CHALLENGES

In this section, we elaborate on some of the challenges
that software engineers face when designing payloads. These
challenges form the core motivation for our work. In this
work we use the Java Microbenchmark Harness (JMH) as
to generate scaffolds. This allows us to focus on payload

Zhttps://github.com/autojmh

generation and to reuse existing efforts from the community
in order to build an efficient scaffold.

2.1 Dead Code Elimination

Dead Code Elimination (DCE) is one of the most common
optimizations engineers fail to detect in their microbench-
marks [9} 21}, |7} [20]. During the design of microbenchmarks,
engineers extract the segment they want to test, but usually
leave out the code consuming the segment’s computations
(the sink), allowing the JIT to apply DCE. It is not always
easy to detect dead code and it has been found in popu-
lar benchmarks [9, [21]. For example, listing [1| displays a
microbenchmark where the call to Math.log is dead code,
while the call to m.put is not. The reason is that m.put
modifies a public field, but the results of the Math.log are
not consumed afterwards. Consequently the JIT will apply
DCE when running the microbenchmark, which will distort
the time measured.

Map<String, Double> m = MapUtils.buildRandomMap () ;
@Benchmark
public void hiddenDCE() {

Math.log(m.put("Ten", 10));
}

Listing 1: An example of dead code

A key feature of the technique we propose in this work is
to automatically analyze the mircrobenchmark in order to
generate code that will prevent the JIT from running DCE
on this kind of benchmark.

2.2 Constant Folding / Constant Propagation

Constant Folding and Constant Propagation (CF/CP) is
another JIT optimization that removes all computations that
can be replaced by constants. While it is mostly consid-
ered prejudicial for measurements, in some punctual cases
a clever engineer may want to actually pass a constant to
a method in a microbenchmark to see if CF/CP kicks in,
since it is good for performance that a method can be con-
stant folded. However, when not expected the optimizations
causes microbenchmarks to return deceitfully good perfor-
mance times.

Good examples of both DCE and CF/CP optimizations,
as well as their impact on the measurements can be found in
literature |20]. Concrete evidence can also be found in the
JMH examples repositor

2.3 Non-representative data

Another source of errors when designing payloads is to
run a microbenchmark with data not representing the actual
conditions in which the system being measured works.

For example, suppose a maintenance being done over an
old Java project and that different sort methods are being
compared to improve performance, one of them being the
Collections.sort method. Suppose that the system con-
sistently uses Vector<T> but the engineer fails to see this
and uses LinkedLis<T> in the benchmarks, concluding that
Collections.sort is faster when given as input an already
sorted list. However, as the system uses Vector lists, the
actual case in production is the opposite: sorted lists will
result in longer execution times, as shown in table |1} mak-
ing the conclusions drawn from the benchmark useless.

3http://hg.openjdk.java.net /code-tools/jmh /file /tip/
jmh-samples/src/main/java/org/openjdk/jmh/samples/
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Table 1: Execution times of Collections.sort
Using a sorted list Using an unsorted list

203 ns 453 ns
1639 ns 645 ns

LinkedList
Vector

2.4 Reaching wrong stable state

The microbenchmark scaffold executes the payload many
times, warming up the code until it reaches a stable state
and is not optimized anymore. A usual pitfall is to build
microbenchmarks that reach stable state in conditions un-
expected by the engineer. For example, if we were to observe
the execution time of the Collection.sort while sorting a list,
one could build the following wrong microbenchmark:
LinkedList <Double> m = ListUtils.buildRandomList ();
@Benchmark

public void doSort () {
Collections.sort(m); }

Listing 2: Sorting a sorted list in each run

Unfortunately, after the first execution the list gets sorted.
In consecutive executions, the list is already sorted and con-
sequently, we end up measuring the performance of sorting
an already sorted list, which is not the situation we initially
wanted to measure.

3. AUTOJMH

AuToJMH automatically extracts a code segment and
generates a complete payload with inputs that reflect the be-
havior of the segment in the original application. The gener-
ation process not only wraps the segment in an independent
program, it also mitigates the risks of unexpected DCE and
CF/CP optimizations and ensures that it will reach stable
state in the same state executed by the SUA during the unit
tests.

Test Application
suite

0. check snippet

instrument and

execute 1. extract

segment and its

6. generate dependencies

initialization
5. generate values
test cases
| reg. test | Payload 2. sink maximization
cases

1
\ 3. CF / CP prevention
7

4. smart reset

Figure 1: Global process of AutoJMH for payload
generation.

Figure [I] illustrates the different steps of this process. If
the SUA satisfies a set of preconditions (detailed in sec-
tion , AuTOoJMH extracts the segment into a wrap-
per method. Then, the payload is refined to prevent dead
code elimination, constant folding and constant propagation
(steps 2, 3), as well as unintended stable state (step 4) when
the payload is executed many times. The last steps consist

in running the test suite on the original program to produce
two additional elements: a set of data inputs to initialize
variables in the payload; a set of regression tests that ensure
that the segment has the same functional behavior in the
payload and in the original application.

In the rest of this section we go into the details of each
step. We illustrate the process through the creation of a
microbenchmark for the return statement inside the Enu-
meratedDistribution: :value() method of Apache Com-
mon Math, shown in listing [3| The listing also illustrates
that a user identifies a SUA by placing the Javadoc-like com-
ment @bench-this on top of it. This comment is specific to
AuTOoJMH and can be put on top of every statement. The
resulting payload is shown listing [4]
double value (double x, double... param) throws
DimensionMismatchException, NullArgumentException {

validateParameters (param) ;

/** @bench-this */

return Sigmoid.value(x, param[0], param[1]);

}
Listing 3: An illustrating example: a SUA in
commons.math

In listing [@] we can see that AUTOJMH has wrapped the
return statement into a method annotated with @Bench-
mark. This annotation is used to indicate the wrapper method
that is going to be executed many times by the JMH scaf-
fold. The private static method Sigmoid.value has been ex-
tracted also into the payload, since it is needed by the SUA.
AuToJMH has turned variables x and params into fields
and provides initialization code from them, loading values
from a file, which is part of our strategy to avoid CF/CP.
Finally, AuToJMH ensures that some value is returned in
the wrapper method to avoid DCE.
class MyBenchmark {
double[] params;
@Setup
void setup() {

Loader 1 = new Loader("/data/Sigmoid_160.dat");

x = 1.loaddouble();

params = 1.loaddoubleArrayl();

}
double Sigmoid_value (

double x, double 1o, double hi) {
return lo + (hi - lo) / (1 + FastMath.exp(-x));

double x;

}
@Benchmark
public double payloadWrapper () {
return Sigmoid_value(x, params[0], params[1])}

}

Listing 4: An illustrating example: the payload
generated by AutoJMH

3.1 Preconditions

The segment extraction is based on a static analysis and
focuses on SUAs that meet the following conditions. These
preconditions ensure that the payload can reproduce the
same conditions than those in which the SUA is executed
in the original program.

1. Initialized variables used by the SUA are of the follow-
ing types: primitive (int, double, boolean), their
class counterparts (Integer, Double, Boolean), String,
types implementing the Serializable interface, or, col-
lections and arrays of all the above. Non-initialized
variables used by the SUA can be of any public type.



This condition ensures that AUTOJMH can store the
values of all variables used by the SUA

2. None of the methods invoked inside the SUA can have
a target not supported in item 1. This ensures that
AuToJMH is able to extract all methods used by the
SUA.

3. All private or protected methods used by the SUA can
be resolved statically. Dynamically resolved methods
have a different performance behavior than statically
resolved ones [4]. Using dynamic slicing we could make
available to the microbenchmark a non-public dynamic
method, but we would distort its performance behav-
ior.

4. The call graph of all methods used by the SUA can-
not be more than a user-defined number of levels deep
before reaching a point in which all used methods are
public. This sets a stopping criterion for the explo-
ration of the call graph.

3.2 SUA extraction

AuToJMH starts by extracting the segment under anal-
ysis (SUA) to create a compilable payload. This extraction
step processes the Abstract Syntax Tree (AST) of the large
application, which includes the source code of the SUA.
The segment’s location is marked with the @bench-this
Javadoc-like comment, introduced by AuTOJMH to select
the segments to be benchmarked. If the SUA satisfies the
preconditions, AUTOJMH statically slices the source code
of the SUA and its dependencies (methods, variables and
constants) from the original application into the payload.
Non-public field declarations and method bodies used by
the SUA are copied to the payload, their modifiers (static,
final, volatile) are preserved.

Some transformations may be needed in order to achieve
a compilable payload. Non-public methods copied into the
payload are modified to receive their original target in the
SUA as the first parameter (e.g., data.doSomething() be-
comes doSomething(data)). Variable and method may be
renamed to avoid name collision and to avoid serializing
complex objects. For example, suppose a segment using
both a variable data and a field myObject.data, AuTOJMH
declares two public fields: data and myObject_data. When
method renaming is required, AUTOJMH uses the fully qual-
ified name.

At the end of the extraction phase, AUTOJMH has sliced
the SUA code into the payload’s wrapper method. This
relieves the developer from a very mechanical task and its
automation reduces the risks of errors when copying and
renaming pieces of code. Yet, the produced payload still
needs to be refined in order to prevent the JIT from “over-
optimizing” this small program.

Preserving the original performance conditions.

We aim at generating a payload that recreates the ex-
ecution conditions of the SUA in the original application.
Hence, we are conservative in our preconditions before slic-
ing. We also performed extensive testing to be sure that
the code modifications explained above do not distort the
original performance of the SUA. These tests are publicly
available El Then, all the additional code generated by Au-
ToJMH to avoid DCE, initialize values, mitigate CF/CP

Yhttps://github.com/autojmh/syntmod

and keep stable state, is inserted before or after the wrapped
SUA.

3.3 Preventing DCE with Sink Maximization

During the extraction of the SUA, we may leave out the
code consuming its computations (the sink), giving the JIT
an opportunity for dead code elimination (DCE), which would
distort the time measurement. AUTOJMH handles this po-
tential problem featuring a novel transformation that we
call Sink maximization. The transformation appends code
to the payload, which consumes the computations. This is
done to maximize the number of computations consumed
while minimizing the performance impact in the resulting
payload.

There are three possible strategies to consume the results
inside the payload:

e Make the payload wrapper method return a re-
sult. This is a safe and time efficient way of preventing
DCE, but not always applicable (e.g., when the SUA
returns void).

e Store the result in a public field. This is a time
efficient way of consuming a value, yet less safe than
the previous solution. For example, two consecutive
writes to the same field can make the first write to be
marked as dead code. It can also happen that the pay-
load will read from the public field with a new value,
modifying its state.

e JMH Black hole methods. This is the safest so-
lution, which does not modify the microbenchmark’s
state. Black holes (BH) are methods provided by JMH
to make the JIT believe their parameters are used,
therefore preventing DCE. Yet, black holes have a small
impact on performance.

A naive solution is to consume all local variables live at
the end of the method with BHs. Yet, the accumulation of
BH method calls can be a considerable overhead when the
execution time of the payload is small. Therefore, we first
use the return statement at the end of the method, taking
into consideration that values stored in fields are already
sinked and therefore do not need to be consumed. Then,
we look for the minimal set of variables covering the whole
sink of the payload to minimize the number of BH methods
needed.

Sink mazimization performs the following steps to gener-
ate the sink code:

1. Determine if it is possible to use a return statement.

2. Determine the minimal set of variables Vi, covering
the sink of the SUA.

3. When the use of return is possible, consume one vari-
able from Vj,i, using one return and use BHs for the
rest. If no return is possible, use BHs to consume all
local variables in Vi ir,.

4. If areturn is required to satisfy that all branches return
a value and there is no variables left in V,,;n, return a
field.

To determine the minimal set Vi,in, the AUTOJMH con-
verts the SUA code into static single assignment (SSA) form|[34]
and builds a value dependency graph (VDG) [35]. In the
VDG, nodes represent variables and edges represent direct
value dependencies between variables. For example, if the
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value of variable A directly depends on B, there is an edge
from B to A. An edge going from one variable node to a phi
node merging two values of the same variable is a back-edge.
In this graph, sink-nodes are nodes without ingoing edges.

Initially, we put all nodes of the VDG in Vj,in, except
those representing fields values. Then, we remove all vari-
ables that can be reached from sink-nodes from V. After
doing this, if there are still variables in V;;, other than the
ones represented by sink-nodes, we remove the back-edges
and repeat the process.

int d = 0; a =b + c;
if (a>0) {
d = a + h;
a = 0;
¥
b = a;

Listing 5: A few lines of code to exemplify Sink
maximization

To exemplify the process of finding Viin within Sink Max-
imization let us consider listing[] The resulting VDG graph
is represented in figure Sink nodes are nodes d and b1,
which are represented as rounded nodes. The links go from
variables to their dependencies. For example, d depends on
a0 and h. Since it is not possible to arrive to all nodes from
a single sink d or b1, in the example Vi = {d,b1}. Con-
sequently both d and b must be consumed in the payload.

Phia0, 21) || a1 }——>[ 0 |

Figure 2: VDG of listing [5]

3.4 CF/CP mitigation

Since all SUA are part of a larger method, they most often
use variables defined upfront in the method. These variables
must be declared in the payload. Yet, naively declaring these
variables might let the JIT infer the value of the variables
at compile time and use constant folding to replace the vari-
ables with a constant. Meanwhile, if this was possible in
the original system, it should also be possible in the pay-
load. The challenge is then to detect when CF/CP must be
avoided and when it must be allowed to declare variables
and fields accordingly.

AuToJMH implements the following rules to declare and
initialize a variable in the payload:

e Constants (static final fields ) are initialized using
the same literal as in the original program.

e Fields are declared as fields, keeping their modifiers
(static, final, volatile) and initialized in the @Setup
method of the microbenchmark. Their initial values
are probed through dynamic analysis and logged in a
file for reuse in the payload (cf. section for details
about this probing process).

e Local variables are declared as fields and initialized
in the same way, except when (a) they are declared
by assigning a constant in the original method and

(b) all possible paths from the SUA to the beginning
of the parent method include the variable declaration
(i.e. the variable declaration dominates [34] the SUA)
, in which case their original declaration is copied into
the payload wrapper method. We determine whether
the declaration of the variable dominates the SUA by
analyzing the control flow graph of the parent method
of the SUA.

Listing@shows how the variables x and params are turned
into fields and initialized in the @Setup method of the pay-
load. The @Setup method is executed before all the execu-
tions of the wrapper method and its computation time is
not measured by the scaffold.

3.5 Keep stable state with Smart Reset

In Section [2] we discussed the risk for the payload to reach
an unintended stable state. This happens when the pay-
load modifies the data over which it operates. For example,
listing [6] shows that variable sum is auto-incremented. Even-
tually, sum will be always bigger than randomValue and the
payload will stop to execute the return statement.
public T sample() {

final double randomValue = random.nextDouble();

double sum = 0;

/** @bench-this */

for (int i = 0; i < probabilities.length; i++) {

sum += probabilities[i];
if (randomValue < sum) return singletons.get(i);
}

return singletons.get(singletons.size() - 1);

}

Listing 6: Variable sum needs to be reset to stay in
the same state

AuTOoJMH assumes that the computation performed in
the first execution of the payload is the intended one. Hence,
it automatically generates code that resets the data to this
initial state for each run of the SUA. Yet, we implement
this feature of AUTOJMH carefully to bring the reset code
overhead to a minimum. In particular, we reset only the
variables influencing the control flow of the payload. In list-
ing[] AuTOJMH determined that sum must be reset, and it
generates the code to do so.

@Benchmark
public double doBenchmark () {

sum = sum_reset; //<- SMART RESET HERE!

for (int i = 0; i < probabilities.length; i++) {

sum += probabilities([i];
if (randomValue < sum) return singletons.get(i);
}

return sum;

}

Listing 7: Variable sunm is reset by code appended to
the microbenchmark

To determine which variables must be reset, AuToJMH
reuses the VDG built to determine the sinks in the Sink
mazximization phase. We run Tarjan’s Strongly Connected
Components algorithm to locate cycles in the VDG, and all
variables inside a cycle are considered as potential candi-
dates for reset. In a second step we build a Control Flow
Graph (CFQG) and we traverse the VDG, trying to find paths
from variables found in the branching nodes of the CFG to
those found in the cycles of the VDG. All of the variables
that we succesfully reach are marked for reset.



3.6 Retrieving inputs for the payload

The last part of the microbenchmark generation process
consists in retrieving input values observed in the original
application’s execution (steps 5 and 6 of figure [1). To re-
trieve these values, we instrument the original program to
log the variables just before and after the SUA. Then, we
run once the test cases that cover the SUA in order to get
actual values.

In order to make the collected values available to the wrap-
per method in the payload, AUTOJMH generates a specific
JMH method marked with the @Setup annotation (which
executes only once before the measurements), containing all
the initialization code for the extracted variables. Listing []
shows an example where variables x and params are initial-
ized with values retrieved from a log file.

QTest
public void testMicroBench () {
Loader 1 = new Loader();

//Get values recorded before execution
1l.openStream("/data/Sigmoid_160.dat");
MyBenchmark m = new MyBenchmark() ;
m.x = l.readdouble();
m.params = 1l.readdoubleArrayl();
double mResult = m.payloadWrapper ();
//Get values recorded after program execution
1l.openStream("/data/Sigmoid_160_after.dat");
//Check with values after payload execution
assertEquals(m.x, l.readdouble());
assertArrayDoubleEquals (m.params, 1.
readdoubleArrayl ());

//Check results are equal in both executions
assertEquals (mResult, m.payloadWrapper ());

}

Listing 8: Generated unit test to ensure that the
microbenchmark has the same functional behavior
than the SUA

3.7 Veritying functional behavior

To check that the wrapper method has the same func-
tional behavior as the SUA in the original application (i.e.
produces the same output given the same input), AUTO-
JMH generates a unit test for each microbenchmark, where
the outputs produced by the microbenchmark are required
to be equal to the output values recorded at the output of
the SUA. These tests serve to ensure that no optimization
applied on the benchmark interferes with the expected func-
tional behavior of the benchmarked code. In the test, the
benchmark method is executed twice to verify that the re-
sults are consistent within two executions of the benchmark
and signal any transient state. Listing [§] shows a unit test
generated for the microbenchmark of listing

4. EVALUATION

We perform a set of experiments on large Java programs
to evaluate the effectiveness of our approach. The purpose
of the evaluation is twofold. First, a quantitative assessment
of AuUTOJMH aims at evaluating the scope of our program
analysis, looking at how many situations AUTOJMH is able
to handle for automatic microbenchmark generation. Sec-
ond, two qualitative assessments compare the quality of Au-
TOJMH’s generated microbenchmarks with those written by
experts and with those built by expert Java developers who
have little experience in microbenchmarking. We investi-
gate these two aspects of AutoJMH through the following
research questions:

RQ1: How many loops can AutoJMH automati-
cally extract from a Java program into microbench-
marks?

In addition to the generation of accurate microbenchmarks,
it is important to have a clear understanding of the reach
of AuToJMH’s analysis capacities. Remember that Au-
TOJMH can only handle those segments that meet certain
preconditions. Therefore, we need to quantify the impact of
these conditions when analyzing real-world code.

RQ2: How does the quality of AutoJMH’s gener-
ated microbenchmarks compare with those written
by experts?

Our motivation is to embed expert knowledge into AuTO-
JMH, to support Java developers who have little knowledge
about performance evaluation and who want to get accurate
microbenchmark. This research question aims at evaluating
whether our technique can indeed produce microbenchmarks
that are as good as the ones written by an expert.

RQ3: Does AutoJMH generate better microbench-
marks than those written by engineers without ex-
perience in microbenchmarking?

Here we want to understand to what extent AuToJMH
can assist Java developers who want to use microbenchmark-

ing .

4.1 RQI1: Automatic extraction of segments

We run AuToJMH on 5 real Java projects to find out to
what extent the tool is able to automatically extract loops
and generate corresponding payloads. We focus on the gen-
eration of benchmarks for loops since they are often a per-
formance bottleneck and they stress AUTOJMH’s capacities
to deal with transient states, although the only limitations
to the slicing procedure are the ones described in section[3.1]

We selected the following projects for our experiments,
because their authors have a special interest in performance

the exact versions can be found in AuTOJMH’s repository
él ): Apache Math is the Apache library for mathemat-
ics and statistics; Vectorz is a vector and matrix library,
based around the concept of N-dimentional arrays. Apache
Common Lang provides a set of utility methods to handle
Java core objects; Jsyn is a well known library for the gen-
eration of music software synthesizers. ImageLib2 is the
core library for the popular Java scientific image processing
tool ImageJ. To answer RQ1, we annotate all the 6 028 loops
in these 5 projects and run AUTOJMH to generate payloads.

Tablesumarizes our findings, one column for each project
and the last column shows totals. The row “Payloads gener-
ated” shows the number of loops that AuUTOJMH succesfully
analyzed and extracted in a payload code. The row “Pay-
loads Generated & Initialized” refines the previous number,
indicating those payloads for which AuToJMH was able to
generate code and initialization values (i.e. they were cov-
ered with at least one unit test). The row “Microbenchmarks
generated” further refines the previous numbers, indicating
the amount of loops for which AuToJMH was able to gen-
erate and initialize a payload that behaves functionally the
same as the SUA (i.e. equal inputs produce equal results).
The rows below detail the specific reason why some loops
could not be extracted. We distinguish between “Variables
unsupported” or “Invocations Unsupported”. As we can see,
the main reason for rejection are unsupported variables. Fi-
nally, row “Test Failed” shows the number of microbench-

®https://github.com/autojmh/autojmh-validation-data.git
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Table 2: Reach of AutoJMH
PROPERTY MATH % | VECT % | LANG % JSYN % | Img2 % | Total %
Total Loops 2851 1498 501 306 926 6082
Payloads generated 2086 73 | 1377 92 | 408 81 151 49 | 683 74 | 4705 77
Payloads generated & initialized | 1856 65 | 940 63 | 347 69 88 29 | 254 27 | 3485 57
Microbenchmarks generated | 1846 65 | 934 62 | 345 69 84 29 | 253 27 | 3462 57
Rejected: 765 26 | 121 8 93 19 155 50 | 243 26 | 1377 23
* Variables unsupported: 601 21 | 81 5 53 11 123 40 | 169 18 | 1027 17
+ Unsupported type collection | 52 2 12 1 2 0,4 18 6 15 2 99 2
+ Type is not public 132 5 2 0,118 2 23 7 0 - 165 3
+ Type is not storable 417 15 | 67 5 43 9 82 27 | 154 17 | 763 13
* Invocations unsupported: 164 6 40 3 40 8 32 10 | 74 8 350 6
+ Target unssuported 150 5 34 3 37 7,39 | 28 9 74 8 323 5
+ Levels too deep 0 0 0 0 2 04 |0 0 0 0 2 0.03
+ Private constructor 3 0,113 0,210 0 3 1 0 0 9 0.1
+ Protected abstract method 11 04 | 3 0,21 0,2 1 0310 0 16 0.3
Test failed 10 0,416 0,4 1|2 04 |4 1,3 |1 0,1 | 23 0.4

marks that failed to pass the generated regressions tests.
The percentages are overall percentages.

The key result here is that out of the 6 028 loops found in
all 5 projects, AUTOJMH correctly analyzed, extracted and
wrapped 3462 loops into valid microbenchmarks. These mi-
crobenchmarks resulted from 3485 payloads for which Au-
TOJMH was able to generate and find initialization values
and who’s regression test did not fail. In total, AuToJMH
generated the code for 4705 payloads. The tool rejected
1377 loops because they did not meet the preconditions.

Looking into the details, we observe that Vectorz and
Apache Lang contain relatively more loops that satisfy
the preconditions. The main reason for this is that most
types and classes in Vectorz are primitives and serializables,
while Apache Lang extensively uses Strings and collec-
tions. Apache Math also extensively uses primitives. The
worst results are to JSyn: the reason for this seems to be
that the parameters to the synthesizers are objects instead
of numbers, as we initially expected.

The results vary with the quality of the test suite of the
original project. In all the Apache projects, almost all loops
that satisfy the precondition finally turn into a microbench-
mark, while only half of the loops of Vectorz and JSyn that
can be processed by AUTOJMH are covered by one test case
at least. Consequently, many payloads cannot be initial-
ized by AuTOJMH, because it cannot perform the dynamic
analysis that would provide valid initializations.

outer:
for (int i = 0; i < csLen; i++) {
final char ch = cs.charAt(i);
/*%* Q@bench-this */
for (int j = 0; j < searchLen; j++) {
if (searchCharsl[j] ch) {
if (i < csLast && j < searchLast && Character.
isHighSurrogate (ch)) {
if (searchChars[j + 1]
continue outer; }
} else { continue outer;

cs.charAt (i + 1)) {

313

Listing 9: The SUA depends
properly

on outer code to work

Table 2] also shows that some microbenchmarks fail re-
gression tests. A good example is the inner loop of listing
[ extracted from Apache Common Lang. This loop de-
pends on the ch variable, obtained in its outer loop. In this

case, AUTOJMH generates a payload that compiles and can
run, but that does not integrate the outer loop. So the pay-
load’s behavior is different from the SUA and the regression
tests fails.

It is worth mentioning that while AuToJMH failed to
generate the inner loop, it did generate a microbenchmark
for the outer one.

Answer to RQ1l: AuToJMH was able to generate
3485 microbenchmarks out of 6 028 loops found in real-
word Java programs, and only 23% of the analyzed loops
did not satisfy the tool’s preconditions.

4.2 RQ2: AutoJMH generation vs Performance
engineers manual microbenchmarks

To answer RQ2, we automatically re-generate mircrobench-
marks that were manually designed by expert performance
engineers. We assess the quality of the automatically gener-
ated microbenchmarks by checking that the times they mea-
sure are similar to the times measured by the handwritten
microbenchmarks.

4.2.1 Microbenchmarks dataset

We re-generate 23 JMH microbenchmarks that were used
to find 8 documented performance regression bugs in projects
by Oracle ﬂ and Sowatec AG [12]. We selected microbench-
marks from Oracle, since this company is in charge of the
development of Hotspot and JMH. The flagship product of
Sowatec AG, Arreguloﬂ has reported great performance re-
sults using microbenchmarks. The microbenchmarks in our
dataset contained several elements of Java such as condi-
tionals, loops, method calls, fields and they where aimed at
variety of purposes.

Follows a small description of each one of the 23 mi-
crobenchmarks (MB) in our dataset:

MB 1 and 2: Measure the differences between ArrayList.
and ArrayList.addAll when adding multiple elements.

MB 3 to 5: Compare different strategies of creating ob-
jects using reflection, using as baseline the operator new.

8152910, 8050142,

Shttp://bugs.java.com.
8151481 and 8146071

"http://www.sowatec.com/en /solutions-services/arregulo/

Bugs ids:

add
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MB 6: Measure the time to retrieve fields using reflection.

MB 7 to 9: Compare strategies to retrieve data from
maps when the key is required to be a lower case string.

MB 10 and 11: Compare the ConcurrentHashMap.get
method vs. the NonBlockingHashMapLong.get method.

MB 12 to 14: See whether BigInteger.value can be
constant folded when given as input a number literal.

MB 15 and 16: Contrasts the performance of Math.max
given two numbers vs. a greater than (a > b) comparison.

MB 17: Evaluate the performance of the Matcher.reset
method.

MB 18 to 23: Evaluate the performance of the String.format

method using several types of input (double, long, String).

4.2.2 Statistical tests

We use the statistical methodology for performance eval-
uation introduced by George et. al. [13] to determine the
similarity between the times measured by the automatically
generated microbenchmarks and the handwritten ones. This
consists in finding the confidence interval for the series of ex-
ecution times of both programs and to check whether they
overlap, in which case there is no statistical reason to say
they are different. We run the experiment following the
recommended methodology, considering 30 virtual machine
invocations, 10 of which run for microbenchmarks and 10
warm up iterations to reach steady state. We select a confi-
dence level of 0,05.

To further assess the relevance of the features of AuTo-
JMH presented in section [3] we generate three other sets of
23 microbenchmarks. Each set of microbenchmark is prone
to the following pitfall: DCE, CF/CP and wrong initial val-
ues. DCE was provoked by turning off sink mazimization.
CF/CP was provoked by inverting the rules of variable dec-
laration where constants (static final fields) are declared as
regular fields and initialized from file; fields are redeclared
as constants (static final field) and initialized using literals
(10, "zero", 3.14f); local variables are always declared as
local variables and initialized using literals. In the third
set, we feed random data as input to observe differences in
measurements caused by using different data. Using these
3 different sets of microbenchmarks, we performed the pair-
wise comparison again between them and the handwritten
microbenchmarks.

Table 3: Similarity between generated and hand-
written benchmarks. Row 1 shows the set generated
with AutoJMH and rows 2,3 and 4 the benchmarks
generated without some features of AutoJMH

#  Set Successful tests
1 Generated with AutoJMH 23 /23
2 DCE 0/23
3 CF/CP 11/ 23
4 Bad initialization 3/23

Table B shows the results. The column “Successful tests”
shows for how many of the 23 automatically generated mi-
crobenchmarks measured the same times as the handwritten
microbenchmarks..

4.2.3 Analysis of the results

The key result of this set of experiments is that all the
23 microbenchmarks that we re-generated with AuToJMH

(line 2 of table |3) measure times that are statistically simi-
lar to the times measured by the handwritten microbench-
marks. We interpret this result as a strong sign of the accu-
racy of the microbenchmarks generated by AuTroJMH.

Line 3 of table [3] shows the strong impact of DCE on the
accuracy of microbenchmarks: 100% of microbenchmarks
that we generate without sink mazimization measure times
that are significantly different from the times of handwrit-
ten microbenchmarks. This was our expected result, since
indeed the JIT is extremely good at removing dead code.
The inverted rules for CF/CP take a toll on 12 microbench-
marks, for example the result of a comparison between two
constants is also a constant (MB 15) and therefore there
is no need to perform the comparison. Eleven microbench-
marks generated with wrong variable declarations still mea-
sure similar times, because some SUA cannot be constant
folded (e.g., the Map.get method in in MB 7 cannot be
constant folded). Finally, line 5 shows that passing wrong
initial values produces different results, since adding 5 ele-
ments to a list takes less time than adding 20 (MB 1, 2) or
converting into a string the PI constant (3,141592653589) is
certainly slower than a integer such 4 for example (MB 18
to 23). The three cases that measured correct times occur
when the fields that are initialized in the payload are not
used (as is the case in MB 5).

The code for all the microbenchmarks used in this ex-
periment, as well as the program and the unit test used to
rebuild them, can be found in the website of AUTOJMHﬂ

Answer to RQ2: microbenchmarks automatically gen-
erated by AuTOJMH systematically perform as good
as benchmarks built by a JMH experts with a confi-
dence level of 0.05. The code generated to prevent DCE,
CF/CP and initialize the payload plays a significant role
in the quality of the generated microbenchmarks.

4.3 RQ3: AutoJMH vs engineers without mi-
crobenchmarking experience

For this research question, we consider 5 code segments,
all contained in a single class and we ask 6 professional Java
developers with little experience in performance evaluation
to build a microbenchmark for each segment. This simulates
the case of software engineers looking to evaluate the per-
formance of their code without specific experience in time
measurement. This is a realistic scenario, as many engi-
neers arrive to microbenchmarking due to an eventual need,
gathering the knowledge they require by themselves using
available resources as Internet tutorials and conferences.

We provided all participants a short tutorial about JMH.
All participants had full access to Internet during the exper-
iment and we individually answered all questions relative to
better microbenchmarking. Participants were also reminded
that code segments may have multiple performance behav-
iors and that otherwise noticed, they should microbench-
mark all behaviors they could find.

4.3.1 Segments under analysis

Each of the 5 code segments is meant to test one different
feature of AuToJMH.

8https://github.com/autojmh
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SUA 1 in listing participants were requested to
evaluate the execution time of the for loop. Here we eval-
uate a segment which execution time depends on the dif-
ferent input’s types. The parameter ¢ of addFunction is of
type MyFunction, which is inherited by two subclasses, both
overriding the calc method. The calculations performed
by both subclass are different, which required several mi-
crobenchmarks to evaluate all possibilities.

SUA 2 and 3 in listing [T} participants were requested
to evaluate the time it takes to add one element into an array
list, and the time it takes to sort a list of 10 elements. Here
we wanted to test the participant’s ability at using different
reset strategies to force the microbenchmark reach stable
state measuring the desired case. The payload for SUA 2
must constrain the list size , otherwise the JVM runs out of
memory. For SUA 3 it is necessary to reset the list into an
unordered state.

SUA 4 and 5 in listing participants were requested
to estimate how long takes the expression to execute. The
segments consist of simple mathematical expressions meant
to investigate if participants are able to avoid DCE and con-
stant folding when transplanting a SUA into a payload.

All microbenchmarks used in this experiment are publicly
available in the github repository of AuToJMH

4.3.2  Resulting microbenchmarks

Figure [3| shows the execution times measured by all mi-
crobenchmarks. The y-axis shows execution times in mil-
liseconds (log scale). On the x-axis we show 6 clusters:
MB1la and MB1b for the two performance behaviors of SUA
1 and MB2 to MB5 for all other segments. Each cluster
includes the time measured by the microbenchmarks de-
signed by the 6 Java developers. In each cluster, we add
two microbenchmarks: one generated by AuToJMH and
one designed manually by us and that has been reviewed
by the main developer of JMH. The latter microbenchmark
(for short: the expert) is used as the baseline for comparison.
We use the similiraty of execution times for comparison: the
closest to the baseline, the better.

First, we observe that the times for the AuToJMH and
the baseline microbenchmarks are consistently very close to
each other. The main differences we can see are located in
SUAs 2 and 3. This is because AUTOJMH uses a generic
reset strategy consisting in clearing the list and adding the
values, which is robust and performs well in most cases.
However, the expert microbenchmarks and the one made by
Engineer 6 for SUA 3 featured specific reset strategies with
less overhead. The best strategy to reset in SUA 2 is to reset
only after several calls to the add method have been made,
distributing the reset overhead and reducing the estimation
error. In the expert benchmark for SUA 3, each element is
set to a constant value. A clever trick was used by engineer 6
in SUA 3 E the sort method was called twice with two dif-
ferent comparison functions (with equivalent performance),
changing the correct order in every call. This removes the
need to reset the list, since every consecutive call to sort is
considered unordered.

Second, we observe that Java developers build microbench-
marks that measure times that are very different from the
baseline. In order to understand the root cause of these dif-

9https://github.com/autojmh/autojmh-validation-data/
blob/master/engb/src/main/java/tr/inria/diverse/
autojmh/validation/eng6/ IransientStateListSortEngb6.java,
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Figure 3: Execution times comparison between mi-
crobenchmarks generated by AutoJMH those man-
ually built by Java developers and one JMH expert

ferences, we manually review all the microbenchmark. Here
we observe that the participants did encounter the pitfalls
we expected for each kind of segment: 3 participants fail
to distinguish 2 performance behaviors in MB1; 3 partici-
pants made mistakes when initializing MB2 and MB3; we
found multiple issues in MB4 and MB5, where 3 engineers
did not realize that their microbenchmark was optimized by
DCE, Engineer 6 allowed parts of its microbenchmark to be
constant folded and 3 participants bloated to some extend
their microbenchmark with overhead. An interesting fact
was that Engineer 6 was aware of constant folding, since
he asked about it, meaning that a trained eye is needed to
detect optimizations, even when one knows about them.

Answer to RQ3: microbenchmarks generated by Au-
TOJMH prevent mistakes commonly made by Java de-
velopers without experience in microbenchmarking.

4.4 Threats to validity

The first threat is related to the generalizablity of obser-
vations. Our qualitative evaluation was performed only with
5 segments and 6 participants. Yet, segments were designed
to be as different as possible and to cover different kinds of
potential pitfalls. The quantitative experiment also allowed
us to test AUTOJMH on a realistic code base, representative
of a large number of situations that can be encountered in
Java applications.

AuTOJMH is a complex tool chain, which combines code
instrumentation, static and dynamic analysis and code gen-
eration. We did extensive testing of our the whole infrastruc-
ture and used it to generate a large number of microbench-
marks for a significant number of different applications. How-
ever, as for any large scale experimental infrastructure, there
are surely bugs in this software. We hope that they only
change marginal quantitative things, and not the qualita-
tive essence of our findings. Our infrastructure is publicly
available on Github.

S. RELATED WORK

We are not aware of any other tool that automatically
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appendSorted (ArrayList<Integer> a,

int value) {
addFunction (MyFunction c) {

//SUA #2:
if (c == null) ¢ = new FunA(); a.add(value);
//SUA #1: //SUA #3:

for (int i = 0; i < 100; i++)
sinSum += c.calc(i);}

Listing 10: SUA 1. Differents
inputs in ’c’ define performance

generates the payload of a microbenchmark. However, there
are works related to many aspect of AuToJMH.

Performance Analysis.

The proper evaluation of performance is the subject of a
large number of papers [13] [24] |2, |18 9]. They all point
out non-determinism as the main barrier to obtain repeat-
able measurements. Sources of non-determinism arise in the
data, the code |20], the compiler[24], the virtual machine|14]
the operating system [24] and even in the hardware|10].
Various tools and techniques aim at minimizing the effect
of non-determinism at each level of abstraction|24] 10 [14].
JMH stands at the frontier between code and the JVM by
carefully studying how code triggers JVM optimizations|1].
AuTOJMH is at the top of the stack, automatically generat-
ing code for the JMH payload, avoiding unwanted optimiza-
tions that may skew the measurements.

Microbenchmarking determines with high precision the
execution time of a single point. This is complementary
to other techniques that use profiling |31} |5] and trace anal-
ysis [16, [15] that cover larger portions of the program at the
cost of reducing the measurement precision. Symbolic exe-
cution is also used to analyze performance (8} 36] however,
symbolic execution alone cannot provide execution times.
Finally several existing tools are specific for one type of bug
[26} |27] or even for one given class of software, like the one
by Zhang [36] which generates load test for SQL Servers.

AuTOJMH is a tool that sits between profiling/trace anal-
ysis and microbenchmarking, providing execution times for
many individuals points of the program with high precision.

Performance testing in isolation.

Specially close to our work are the approaches of Horky
(18, |17], Kuperberg [22] and Pradel [28].

Microbenchmarking, and therefore AuToJMH, evaluate
performance by executing one segment of code in isolation.
A simpler alternative favored by industry are performance
unit tests |10, |11], which consist in measuring the time a
unit test takes to run. Horky et.al. proposes methodologies
and tools to improve the measurements that can be obtained
using performance unit tests uses, unlike AUTOJMH, which
uses unit tests only to collect initialization data. Kuperberg
creates microbenchmarks for Java APIs using the compiled
bytecode. Finally, Pradel proposes a test generator tailored
for classes with high level of concurrency, while AuToJMH
uses the JMH built-in support for concurrency. All these
approaches warm-up the code and recognize the intrinsic
non-determinism of the executions.

The main distinctive feature of AUTOJMH over these sim-
ilar approaches is its unique capability to measure at the
statement level. These other approaches generate test exe-
cution for whole methods at once. Baudry [6] shows that

Listing 11: Segments 2 and 3

//SUA #4
angle += Math.abs(Math.sin(y)) /
PI;

a.sort (new Comparator<Integer>() {
compare (Integer ol, Integer o02) {
return ol - 02;}});}

//SUA #5
double ¢ = x * y;

Listing 12: SUAs 4 and 5

some methods use code living as far as 13 levels deep in the
call stack, which gives us an idea of how coarse can be ex-
ecuting a whole test method. AutoJMH is able to measure
both complete methods and statements as atomic as a single
assignment. During the warm-up phase the generated JHM
payload wrapper method gets in-lined and therefore, the mi-
crobenchmark loop do actually execute statements. Another
important distinction if that AutoJMH uses data extracted
from an expected usage of the code, (i.e. the unit tests).
Pradel uses randomly generated synthetic data, which may
produce unrealistic performance cases. For example, JIT
in-lining is a very common optimization that improves per-
formance in the usual case, while reducing it in less usual
cases. The performance improvement of this well known op-
timization is hard to detect assuming that all inputs have
the same probability of occurrence.

Program Slicing.

AuTOJMH creates a compilable slice of a program which
can be executed, stays in stable state and is not affected un-
wanted optimizations. Program slicing is a well established
field [33]. However, to the best of our knowledge, no other
tool creates compilable slices with the specific purpose of
microbenchmarking.

6. CONCLUSION AND FUTURE WORK

In this paper, we propose a combination of static and dy-
namic analysis, along with code generation to automatically
build JMH microbenchmarks. We present a set of code gen-
eration strategies to prevent runtime optimizations on the
payload, and instrumentation to record relevant input values
for the SUA. The main goal of this work is to support Java
developers who want to develop microbenchmarks. Our ex-
periments show that AuUTOJMH does generate microbench-
marks as accurate as those handwritten by performance en-
gineers and better than the ones built by professional Java
developers without experience in performance assessment.
We also show that AuTOJMH is able to analyze and extract
thousands of loops present mature Java applications in order
to generate correct microbenchmarks.

Even when have addressed the most common pitfalls found
in the current microbenchmarks today, we are far from be-
ing able to handle all possible optimizations and situations
detrimental for microbenchmark design, therefore, our fu-
ture work will consist in further improve AuToJMH to ad-
dress these situations.
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