
Dynamically Composing Collection
Operations through Collection Promises

Juan Pablo Sandoval Alcocer 1, Marcus Denker2, Alexandre Bergel1, Yasett Acurana1
1Department of Computer Science (DCC), University of Chile, Santiago, Chile

2INRIA- Lille Nord Europe, France

Abstract
Filtering, mapping, and iterating collections are frequent operations.
It is known that composing a number of these operations may create
intermediate collections causing an additional and unnecessary over-
head. To reduce the number of intermediate collections it is often
necessary to rewrite the source code and combine the operations.
However, for some cases such reduction becomes aplicable only
after a source code refactoring (i.e., when the collection operations
are in different methods) which could introduce code duplication.

In this paper we propose Collection Promises to dynamically
compose collection operations in order to reduce the number of
unnecessary intermediate collections. Collection Promises delay a
number of collection operations and then merge them using com-
positions rules. By using Collection Promises developers can auto-
matically reduce the intermediate collections even if the collection
operations are in different methods.

1. Introduction
It is known that abstractions for data collections play a significant
role in application performance. This situation is exacerbated in
Pharo since loops and iterations are operations performed on collec-
tions. It has been shown that a considerable number of performance
bugs and regressions are related with loops and collections [7, 8].

Composing collection operations involves the combination of
collection operations, typically filtering, mapping, and iterating. For
instance, consider the methods on: and elementsNotEdge in the
Roassal application:

ROAdjustSizeOfNesting class>>on: element
element elementsNotEdge do: [:el | ...].

ROElement>>elementsNotEdge
ˆ elements reject: #isEdge

Both methods realize a combined operation over a collection of
elements. First, the method elementsNotEdge filters the collection,
then the method on: iterates over the collection that results from the
filter. Composing collection operations can introduce an additional
overhead because each operation could create an intermediate and
temporary collection. For instance, in the previous example the result

[Copyright notice will appear here once ’preprint’ option is removed.]

of the reject: operation is temporary and intermediate. Creating
these intermediate collections may lead to unnecessary overhead
depending on the size of the collection, the number of composed
collection operations, and the collection type.

Reducing the number of intermediate collections is a natural
action to reduce the overhead. For instance, a composition of reject:
and do: operations can be optimized by avoiding the intermediate
collection, using the following method:

SequenceableCollection>>reject: rejectBlock thenDo: aBlock
| each |
1 to: self size do: [:index |

(rejectBlock value: (each := self at: index))
ifFalse: [aBlock value: each]].

The Pharo class Collection already provides a number of these
“utility” methods to perform a combination of composed operations
without using intermediate collections. Using these methods some
optimizations can be applied replacing a sequence of calls to reject:

and do: by a call to reject:thenDo:. However, in some cases
this optimization becomes applicable only after a source code
refactoring. For instance, to apply the method reject:thenDo:

in our previous example, we need to join the methods on: and
elementsNotEdge together, but we need to consider that the method
elementsNotEdge is called in different methods. Therefore, these
source code refactoring could produce code duplications.

This paper proposes Collection Promises, an alternative to com-
posing collection operations that reduces the number of intermediate
and temporary collections. Collection Promises delay a number of
collection operations and then merge them using compositions rules.
Composing collection operations through collection promises al-
low us to dynamically compose collection operations, even if the
operations are in different methods.

We present an extension of the class OrderedCollection that
supports promises. Our initial experiment that shows the overhead
of using Collection Promise is almost insignificant compared to an
“optimal” collection operation composition. Therefore, we conclude
that Collection Promise is a good alternative to compose collection
operations.

This paper is structured as follows: Section 2 illustrates the
challenges to compose collection operations. Section 3 describes
the concept of collection promises. Section 4 describes our initial
prototype. Section 5 presents our initial experiment. Section 7 gives
an overview of the related work. Section 8 concludes and presents
future work.

1 2016/7/31

2. Challenges

Inter-procedural Composed Collection Operations. Operations on
collections may be performed across several methods. For instance,
consider the following example:

RGBehaviorDefinition>>traits
ˆ self environment isRingObject

ifTrue: [self traitNames collect: [:each | self environment
traitNamed: each]]

ifFalse:[#()]

RGBehaviorDefinition>>traitNames
tokens := self traitCompositionSource parseLiterals flattened.
ˆtokens select: [:each | each first isUppercase].

The method traitNames executes two collection operations over
the tokens collection (select: then collect:) and each one of
these operations is performed in a particular method. The composed
collection operation could therefore be optimized using the method
select:thenCollect: that executes both operations without using
an intermediate and temporary collection. However, we need to
consider that the method traitNames could have different senders
and the use of the method select:thenCollect: could introduce
code duplication.

Detecting Temporary and Intermediate Collections. To apply this
collection-related optimizations, it is necessary to detect temporary
and intermediate collections. For instance, consider the following
example of the Morph project.

MenuMorph>>detachSubMenu: evt
| possibleTargets item subMenu index |
possibleTargets := self items select:[:any| any hasSubMenu].
possibleTargets size > 0 ifTrue:[

index := UIManager default
chooseFrom: (possibleTargets collect:[:t| t contents

asString])
title: 'Which menu?' translated.

index = 0 ifTrue:[ˆself]].
item := possibleTargets at: index.
...

Two collection operations are performed over the items collection.
The collection resulting from the operation select: is stored in
a temporary variable in order to use it in following instructions.
Storing the collection resulting from an operation in a variable
is a good indicator that the results may not be temporary and
intermediate. However, there are cases where the collection result is
stored in a variable and the result is still temporary and intermediate.
For instance, consider the method selectedCategories of the class
CategoryWidget.

CategoryWidget>>selectedCategories
| associations |
associations := self categoriesSelection associations select: [

:assoc | assoc value].
associations := associations collect: [:assoc | assoc key].
ˆ associations select: [:each | each notNil]

The method selectedCategories has three composed collection
operations. This method saves the result of the first select: opera-
tion in a variable, but this result is temporary and intermediate. The
previous method could be improved as follows:

CategoryWidget>>selectedCategories
| result associations |
associations := self categoriesSelection associations.
result := OrderedCollection new.
associations do: [:assoc|

OrderedCollection

…
lazySelect: aBlock
lazyCollect: aBlock
lazyReject: aBlock

ProtoObject

doesNotUnderstand: aMessage
lazySelect: aBlock
lazyCollect: aBlock
lazyReject: aBlock
select: aBlock
collect: aBlock
reject: aBlock

CollectionPromise

collection
selector
args

Figure 2. Implementation - Class Diagram

(assoc value and: [assoc key notNil]) ifTrue: [
result add: assoc key.

].
].
ˆ result.

This new version of the method selectedCategories does not
create intermediate collections. However, it could be more difficult
to read and understand.

3. Collection Promise
We refer to a Collection Promise as an object which represents the
collection result of an operation which is not yet computed. We pro-
pose the use of Collection Promise to delay the operations that create
intermediate and temporary collections as long as possible, particu-
larly, the operations select:, collect:, and reject:. A Collection
Promise is computed when any other operation is executed.

The delayed operations are composed using composition rules to
reduce the number of intermediate collections. For instance, consider
the following contrived but representative example:

((students
select: [:each | each gpa > threshold])
collect: [:each | each age])
median.

It contains a sequence of three collection operations select:,
collect: and median. The first two operations could be de-
layed and combined to reduce the intermediate collection (i.e.,
select:thenCollect:). The third operation forces the evaluation
of the previous two operations because the result of the operation
median is not a collection. Another common operation that could
force the computation of a collection promise is do: which needs to
iterate over the collection.

4. Implementation
This section presents a prototype of Collection Promises. The goal
of our implementation is to support an initial experiment to see
if the idea of Collection Promises is worthwhile, but the final
implementation would need more work to compose a larger variety
of combined operations.

Figure 2 shows the class diagram of our implementation. We
add three methods to the class OrderedCollection: lazySelect:,
lazyCollect:, lazyReject:. Instead of executing the operation and
returning the collection result, these methods return an object of
the class CollectionPromise which represents a promise to apply
an operation in an ordered collection. In our implementation, we
consider the operation select:, collect:, and reject: because
these methods usually return a possible intermediate collection. For
instance, the method select: is implemented as follows:

2 2016/7/31

Collection:
encodingNames

lazySelect: aBlock

Client:

promise

Promise: promise

new

promise

lazyCollect: anotherBlock

promise

asArray

value

collection := encodingNames.
selector := #select.
args := {aBlock}.

value := (collection
 perform: operation
 withArguments: args) asArray

selector := #select:thenCollect.
args := {aBlock . anotherBlock}

Figure 1. Composing Collection Operations using a Collection Promise

OrderedCollection>>lazySelect: aBlock
ˆ CollectionPromise new

collection: self;
selector: #select:;
args: { aBlock };
yourself.

To compose a collection operation promise the class Collection

Promise has also the same methods lazySelect:, lazyCollect:,
and lazyReject:. These methods have a number of rules to compose
the promises without intermediate and temporary collections. For
instance, consider the implementation of the method lazySelect::

CollectionPromise>>lazySelect: aBlock
”... composition rules ...”
(self selector = #select:) ifTrue:[

|arg|
arg := self args first.
self args: {[:ele | (arg value: ele) and: [aBlock value:ele]]}.
ˆ self.].

(self selector = #collect:) ifTrue:[
self selector: #collect:thenSelect:.
self args: {args first . aBlock}.
ˆ self].

”... if none of the rules could be applied ...”
self collection: (self evaluate).
self selector: #select:.
self args: { aBlock }.
ˆself.

This method contains two rules, the first one composes two
select: operations and the second one composes a collect:

thenSelect: operation. If none of these rules can be applied, then
the promise that receives the message is evaluated and the method
returns a select: promise over the resulted collection.

If a promise receives a message that can not be delayed, then the
promise is evaluated and the message is sent to the collection that
results from the promised operations.

CollectionPromise>>doesNotUnderstand: aMessage
ˆ self evaluate perform: aMessage selector withArguments:

aMessage arguments.

A collection promise also supports select:, collect: and
reject: operations. Unlike the lazy operations, the results of these
operations are expected to be collections and not promises. An easy
solution to support these methods is to evaluate the promise and then
apply the operation over the resulting collection, but we could miss

an opportunity to compose the operation. Therefore, if a promise
receives a select:, collect:, or reject: operation, we first try to
compose these operations by calling their lazy equivalent method,
then we evaluate the promise and return the result. For instance,
consider the implementation of the method select: on the class
CollectionPromise:

CollectionPromise>>select: aBlock
ˆ (self lazySelect: aBlock) evaluate.

This method first calls to the method lazySelect: in order to
apply the rules to compose the operations by using promises, then
evaluates the composed promise.

To use our implementation of collection promises we need to
call the methods lazySelect:, lazyCollect:, and lazyReject:.
For instance, consider the following code of the Greace project that
we adapt to use collection promises.

GRCode class>allCodecs
ˆ self subclasses

inject: self codecs asArray
into: [:result :each | result , each allCodecs]

GRPharoGenericCodec>>codecs
ˆ (TextConverter allEncodingNames

lazySelect: [:each | self supportsEncoding: each])
lazyCollect: [:each | self basicForEncoding: each greaseString
]

We replace the collection operations select: and collect: in
the method codecs by lazySelect: and lazyCollect: respectively.
Figure 1 illustrates the execution of the expression self codecs

asArray. By using collection promises in this particular example,
the results of the operation lazySelect: is a collection promise,
and the result of the operation lazyCollect: is a promise of a com-
posed operation select:thenCollect:. The promised operations
are executed when a method asArray is executed, because in our
implementation the method asArray does not support promises.
Therefore the method doesNotUnderstand: is executed, which com-
putes the promise.

Note that the result of the operation select: is no longer needed
because it is temporary and intermediate, then it is not necessary
to create a new promise object of the collect: operation. We
can reuse the object of the select: promise and change its state
to a select:thenCollect promise. By reusing the object of the
select: promise we assume that the collection promise is temporary
and intermediate. If a collection promise is not temporary or
intermediate, it could introduce a side effect, causing an unexpected

3 2016/7/31

behavior at run-time. Therefore, we need to analyze which collection
operations (i.e., select:, collect: and reject) could be safely
replaced by lazy operations (i.e., lazySelect:, lazyCollect:, and
lazyReject:) through collection promises. The analysis and the
replacement could be done by using a dedicated profiler or during
the compilation process.

Table 1 lists the composed collection operations that our im-
plementation supports. Our current implementation composes the
operations on demand and in pairs. For instance, to compose a se-
quence of three operations, it attempts to compose the first two
operations and then composes the result with the third operation.
Therefore, the composition could change depending on the order
of the operations. As future work, we plan to support a larger va-
riety of collection operations and rules to combine more than two
operations.

5. Case Study

Baseline for comparison. We compare three different ways to
perform a sequence of collection operations:

• With Intermediate Collections, using a combination of the
methods select, collect, and reject.

• With Collection Promises, using a combination of the methods
lazySelect:, lazyCollect:, and lazyReject:.

• Without Intermediate Collections, manually avoiding the
the intermediate collection, for instance, using the method
select:thenCollect: directly.

Micro-benchmarks. We define a set of micro-benchmarks and com-
pare six pairs of collection operations. For instance, the benchmarks
for the operations select then select are:

benchWithIntermediateCollections
((collection select:#even) collect:[:x | x + 1]) size

benchManuallyOptimized
(collection select:#even thenCollect:[:x| x + 1]) size

benchWithPromises
((collection lazySelect:#even) lazyCollect:[:x | x + 1]) size.

Table 1 summarizes all the combinations that we compare.

Results. We run the benchmarks 25 times with a previous warm-
up session. For this experiment we use a collection of 10,000,000
numbers. Table 1 gives the execution time of each benchmark. It
also shows the error margin with a confidence interval of 90%. As
expected, the results show that the benchmarks that use interme-
diate collections run slower than the benchmarks that do not use
intermediate collections. We also see that the benchmarks that use
promises are slower than the manually optimized benchmarks. How-
ever, the benchmarks that use promises are considerable faster than
the benchmarks that use intermediate collections.

Collection Size. The results of the table 1 can change depending
on the collection size. To better understand how the collection
size affects our experiments we measure the execution time of
the benchmark select:thenCollect: using three collections of size
1,000; 100,000 and 10,000,000 respectively. The results in Figure
3 show that the difference between executing composed collection
operations is most notorious with bigger collections. Figure 3
also shows that composed collection operations using promises
introduce almost the same overhead than the manual (and “optimal”)
composition.

Table 1. Micro-benchmarks Comparison. (w/=with , w/o = without)
w/ Intermediate

Collection
w/ Collection

Promises
w/o Intermediate

Collection
select then select 2115ms +/-21ms 1696ms +/-15ms 848.6ms +/-9.1ms
collect then collect 1164ms +/-19ms 724.3ms +/-6.9ms 628ms +/-34ms
collect then select 2015ms +/-37ms 1520ms +/-13ms 1492ms +/-16ms
reject then collect 1712ms +/-17ms 1484ms +/-16ms 1483ms +/-14ms
select then collect 1669ms +/-24ms 1503ms +/-14ms 1465ms +/-15ms
collect then reject 1963ms +/-29ms 1893ms +/-11ms 1886ms +/-16ms

6. Discussion
By using collection promises we can reduce the overhead associated
to create and fill unnecessary intermediate collections, but we need
to consider that the use of collection promises also introduces an
overhead.

In the previous section, we have shown that (for a particular
case study) the overhead associated to create and fill intermediate
collections is greater than the overhead associated to use collection
promises, particularly with big collections. However, there are a
number of scenarios where the use of collection promises could
lead to a small performance regression. For instance, if we delay
a collection operation that will not be composed in the future or if
the operations are done over empty collections. As future work, we
plan to automatically identify these scenarios in order to avoid small
performance regressions.

7. Related Work
There are several works that improve the queries in relational
databases and objects [1]. A number of approaches have been
proposed for a closer integration of queries in the programing
language [6, 9]. For instance, LINQ [4, 5], LINQ reifies queries
on collections to analyze and optimize them. These queries can be
executed in a variety of backends, for instance, SQL databases.
There are also many approaches to integrate SQL queries into
programs, such as HaskellDB [5] or Ferry [3].

Similar to our work, Giarrusso et al. introduce SQUOPT a deep
embedding of a version of the Scala collections API which reifies
queries and can optimize them at run-time [2]. SQUOPT reifies the
collection queries syntactic structure as expression trees to finally
optimizing them. To use SQUOPT it is necessary to slightly adapt
the code in a similar way to our work.

Our work focuses on improving the way that collection opera-
tions are composed along software execution in dynamically typed
object-oriented programs, which is the case of Pharo. Compared to
these works, we have already implemented few collection-related op-
timizations, as future work we plan to improve our work by applying
more advanced optimizations.

8. Conclusion
We have introduced the challenges to efficiently compose collection
operations in dynamically typed object-oriented languages. We pro-
pose Collection Promise as an alternative solution to dynamically
compose collection operations. Thanks to Collection Promises it is
possible to compose collection operations even if they are in dif-
ferent methods. We present a small experiment that shows that the
overhead of using Collection Promise is almost insignificant com-
pared to an “optimal” collection operation composition. As future
work we plan to: 1) automatically detect temporary and intermedi-
ate collections, and 2) support a larger variety of collections and
operations.

4 2016/7/31

common manual promise

0.
0

0.
5

1.
0

1.
5

2.
0

common manual promise
6

8
10

12
14

common manual promise

14
00

15
00

16
00

17
00

18
00

collection-size = 1000 collection-size = 100000 collection-size = 10000000

m
illi

se
co

nd
s

w/ intermediate
collections

w/ collections
promises

w/o intermediate
collections

w/ intermediate
collections

w/ collections
promises

w/o intermediate
collections

w/ intermediate
collections

w/ collections
promises

w/o intermediate
collections

Figure 3. Composing Collection Overhead vs Collection Size (w/=with , w/o = without)

Acknowledgments
Juan Pablo Sandoval Alcocer is supported by a Ph.D. scholarship
from CONICYT, Chile, CONICYT-PCHA/Doctorado Nacional para
extranjeros/2013-63130199.

References
[1] Leonidas Fegaras and David Maier. Optimizing object queries using

an effective calculus. ACM Trans. Database Syst., 25(4):457–516,
December 2000.

[2] Paolo G. Giarrusso, Klaus Ostermann, Michael Eichberg, Ralf Mitschke,
Tillmann Rendel, and Christian Kästner. Reify your collection queries for
modularity and speed! In Proceedings of the 12th Annual International
Conference on Aspect-oriented Software Development, AOSD ’13, pages
1–12, New York, NY, USA, 2013. ACM.

[3] Torsten Grust, Manuel Mayr, Jan Rittinger, and Tom Schreiber. Ferry:
Database-supported program execution. In Proceedings of the 2009 ACM
SIGMOD International Conference on Management of Data, SIGMOD
’09, pages 1063–1066, New York, NY, USA, 2009. ACM.

[4] Language Integrated Queries. http://plone.org/products/archgenxml.

[5] Erik Meijer, Brian Beckman, and Gavin Bierman. LINQ: reconciling
object, relations and XML in the .NET framework. In SIGMOD ’06:
Proceedings of the 2006 ACM SIGMOD international conference on
Management of data, pages 706–706, New York, NY, USA, 2006. ACM.

[6] V. K. S. Nerella, S. Madria, and T. Weigert. Efficient caching and
incrementalization of object queries on collections in programming
codes. In Computer Software and Applications Conference (COMPSAC),
2014 IEEE 38th Annual, pages 229–238, July 2014.

[7] Juan Pablo Sandoval Alcocer and Alexandre Bergel. Tracking down
performance variation against source code evolution. In Proceedings of
the 11th Symposium on Dynamic Languages, DLS 2015, pages 129–139,
New York, NY, USA, 2015. ACM.

[8] Juan Pablo Sandoval Alcocer, Alexandre Bergel, and Marco Tulio Va-
lente. Learning from source code history to identify performance failures.
In Proceedings of the 7th ACM/SPEC on International Conference on
Performance Engineering, ICPE ’16, pages 37–48, New York, NY, USA,
2016. ACM.

[9] Darren Willis, David J. Pearce, and James Noble. Efficient object
querying for java. In Proceedings of the 20th European Conference
on Object-Oriented Programming, ECOOP’06, pages 28–49, Berlin,
Heidelberg, 2006. Springer-Verlag.

5 2016/7/31

	Introduction
	Challenges
	Collection Promise
	Implementation
	Case Study
	Discussion
	Related Work
	Conclusion

