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Low-Rankness Transfer for Realistic Denoising
Hicham Badri, Hussein Yahia and Driss Aboutajdine

Abstract—Current state-of-the-art denoising methods such as
non-local low-rank approaches have shown to give impressive
results. They are however mainly tuned to work with uniform
Gaussian noise corruption and known variance, which is far
from the real noise scenario. In fact, noise level estimation
is already a challenging problem and denoising methods are
quite sensitive to this parameter. Moreover, these methods are
based on shrinkage models that are too simple to reflect reality,
which results in over-smoothing of important structures such
as small-scale text and textures. We propose in this paper a
new approach for more realistic image restoration based on
the concept of low-rankness transfer (LRT). Given a training
clean/noisy image pair, our method learns a mapping between
the non-local noisy singular values and the optimal values for
denoising to be transfered to a new noisy input. One single image
is enough for training the model and can be adapted to the noisy
input by taking a correlated image. Experiments conducted on
synthetic and real camera noise show that the proposed method
leads to an important improvement both visually and in terms
of PSNR/SSIM.

Index Terms—Denoising, low-rank, learning.

I. INTRODUCTION

Image denoising is one of the most challenging problems
in imaging science. It is also one of the most important
long-standing problems because of its big commercial im-
pact. Even-though camera devices become every year more
powerful, noise is still present in pictures even using high-
end devices. The ISO settings in each camera device permit
to control the sensitivity of the sensor. Increasing the ISO
leads to a better representation of the scene but produces
more noise. High-end devices tend to capture less noise at
higher ISO settings, which permits to capture better pictures
but this comes at a much higher cost. The most simple way
to model image corruption is by supposing that the noise
is Gaussian uniform with known variance (AWGN model).
This model is adopted to tune most of the current denoising
methods. It is well known however that real camera noise
is far from being Gaussian and uniform due to the complex
camera imaging pipeline. For instance, the popular Charge-
Couple Device (CCD) image sensors pipeline includes various
perturbations such as atmospheric attenuation, lens/geometric
distortion, CCD imaging/Bayer pattern, interpolation, white
balancing and Gamma correction [26], [27]. In addition, at
least five noise sources are added in the process including fixed
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pattern noise, dark current noise, short noise, amlifier noise
and quantization noise. Due the complexity and non-linearity
of the pipeline, one popular approach consists in simplifying
the model to two noise corruptions of the irradiance where
one is uniform and the other is signal-dependent [26]. The
noisy image is then converted back with the camera response
function (CRF) of the corrupted irradiance. From this model,
a noise level function (NLF) can be calculated that maps the
brightness to standard deviation and clearly reflects the non-
uniformity of noise corruption. While this model is much
richer than the standard AWGN model, it is still a simpli-
fication of a complex pipeline. Moreover, even if the NLF is
well estimated, which is already a hard problem especially
when fine textures are present in the picture, it is not clear
how non-local methods can fully take advantage of it. As non-
local methods manipulate non-local matrices, even if the noise
levels of all the pixels are exactly known, the transformation
from the non-local patch matrices to the clean ones so far
takes into account only one noise level that controls the way
the non-local patch matrices are processed in an appropriate
domain.

On the other hand, working on the singular values of the
non-local patches has various interesting properties in the
context of non-local denoising. Using this approach, denoising
each non-local patch matrix reduces to manipulating its singu-
lar values. Suppose that the patch size is 8×8, and we consider
70 similar patches, which results in a non-local patch matrix
of size 64×70 and corresponds to 4480 unknown clean pixels
to recover. The number of singular values to manipulate is 64
in this case. However, as the energy is concentrated in the first
singular values, one can consider for example only the first 30
values, the rest can be set to zero. As a result, denoising all the
70 (8×8) patches reduces to estimating about 30 unknowns or
less. This is a powerful property that makes learning denoising
in this domain interesting due to the low dimensionality of the
domain transformation instead of simply shrinking the values
with sparse models [2], [4]. Based on this observation, we
propose a method that efficiently learns the low-rankness for
denoising based on a pair of clean/training image. Efficient
training and transfer is however not straightforward in this
domain as it is not clear what are the best singular values
to map to. For that, we need first to derive a formulation of
the optimal denoising singular values. This is achieved via an
inverse problem that takes into account both the clean and
noisy training non-local matrices. Secondly, we propose a fast
and efficient method to learn the correspondence between the
noisy and derived optimal denoising values. As the derived
optimal values do not correspond to ”true” singular values
because they are not necessary in decreasing order, learning
a shrinkage function is not suitable in this domain. We rather
propose to learn various full mapping functions between the



IEEE TRANSACTIONS ON IMAGE PROCESSING 2

values via robust optimization of multiple singular values
clusters for a richer model. Our training model is simple
and fast while being efficient compared to more advanced
function mapping learning techniques such as neural networks.
Finally, we evaluate our technique on synthetic and real noise
corruptions. First, we use uniform and non-uniform Gaussian
noise via the CCD-CRF model for synthetic evaluation. Sec-
ondly, we use real-world camera noise samples extracted with
the help of professional photographers for a more realistic
noise evaluation. Finally, we evaluate the proposed method on
real noisy images with unknown camera settings. Experiments
show that the proposed approach leads to better denoising
results even in the presence of challenging small-scale textures
and text structures.

The paper is organized as follows. Sec. II gives an overview
of related work on image restoration and noise modeling. Sec.
III shows how and why we derive a closed-form of the optimal
denoising singular values. Sec. IV presents the proposed
learning model and solver of the optimization problem. The
proposed denoising method is evaluated in Sec. V against
some state-of-the-art methods in the case of synthetic noise,
real noise samples and real noisy images. A conclusion and
discussion are presented in the final section.

II. RELATED WORK

In this section, we give an overview of the most recent
existing denoising methods in the literature. There are mainly
three approaches to image denoising that are classified in the
literature as follows : 1) internal-based, where only the image
structures within the noisy image are used to perform restora-
tion, 2) learning-based, where learning is used to improve the
recovery of the latent clean image, 3) external-based, where
external information from correlated images is directly used
to improve recovery.

A. Internal-Based Denoising

Internal-based denoising is solely based on using infor-
mation within the noisy image itself. Early methods per-
form pixelwise operations by exploring neighboring pixels
via Gaussian filtering, bilateral filtering [6], total variation [7]
or wavelet thresholding [8]. Preliminary work on non-local
processing [9] has shown to lead to a dramatic improvement.
The standard Non-Local Means (NLM) means approach [9],
[10] consists in simply perfoming weighted averaging. The
idea has been generalized by gathering similar patches in
a matrix (a.k.a. non-local matrix), process this matrix in a
domain and reconstruct the patches back. Various domains
of processing have been proposed such as 3D collaborative
filtering transform (BM3D) [12] and singular values [14], [2],
[4]. Other internal-based methods have been proposed such as
denoising by exploring patch recurrence accross scales [15],
matching gradient histograms [16] or exploiting marginal
histograms [5].

B. Learning-Based Denoising

Learning has significantly improved image restoration qual-
ity. Methods [17], [18] permit to learn a dictionary to perform

denoising via Orthogonal Matching Pursuit (OMP) locally [18]
or non-locally [19], [20]. Learning priors via high-order MRF
models [22], Gaussian mixture models [3], [11] or shrinkage
functions [23], [24] has shown to give interesting results in
image denoising. Plain learning via neural networks has shown
to give interesting results as well [25].

However, as these methods try to learn one single model
based on various clean sources, performance compared to
BM3D is not impressive and challenging structures such as
textures (grass, trees, grainy wall,...) and small-scale texts are
still not well restored. Moreover, both internal and external-
based methods suppose that the noise level is known and most
of the time, the noise is supposed to be uniform (AWGN),
which is far from the real case senario. As a result, even
if these methods can be tuned to perform well in this case,
they lose their potential on real noise corruption when exact
noise estimation is almost impossible and does not reflect the
complex camera pipeline.

C. External-Based Denoising

External-based denosing is a relatively new approach that
consists in exploiting directly external information using a set
of correlated images. The approach by Burger et al. propose to
use learning to combining denoising results from internal and
external results [28]. The method in [31] uses web images to
recover correlated images and use external patches in BM3D.
Similarly, methods in [29], [30] combine internal and external
patches extracted from correlated images in the BM3D frame-
work. While these methods improve considerably restoration
quality, they require that the external correlated images should
be too similar to the input noisy image containing the same
patterns, which is only possible in specific scenarios.

We propose a powerful learning-based method that manip-
ulates only the internal patch correlations of the noisy image.
Our method performs processing on the non-local singular val-
ues similar to internal-based denoising methods SAIST [2] and
WNNM [4]. However, unlike these methods that use simple
shrinkage operators via sparse priors, we learn a mapping
between the noisy singular values and the derived optimal
denoising values. Learning in our method does not consist
in learning dictionaries [17], [19] or shrinkage functions [23].
We rather learn a mapping similar to neural networks [25],
but in the singular values domain, which reduces considerably
the number of latent variables to infer. Contrary to previous
learning-based methods such as [17], [19], [3], [25], our
method does not need a very large amount of patches to
learn a model that can take a lot of time, sometimes days
to train one single model ; the proposed approach uses only
one single image pair for training. Moreover, training is fast
as it consists in solving few linear systems. This transfer
approach that consists in learning a denoising model on a pair
of clean/noisy pair has many advantages. First of all, we do
not consider the Gaussian noise assumption ; a model can
be trained easily for various types of corruption. Secondly,
the denoising quality can be improved by choosing a pair
that is somehow similar to the noisy instance. Thirdly, as
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various camera devices respond differently, our method can
use noise samples from the camera device at hand and adapt
the learned model to the device. To demonstrate the potential
of the proposed approach, we evaluate it against some leading
methods on various types of noise : uniform Gaussian noise,
non-uniform noise, Poisson noise, speckle noise, salt & pepper
noise and real noise sampled from a camera. Moreover, by
learning a model based on a Nikon D-600, we show how
our method produces high-quality results even if the noise
corruption is not the same as that of the training pair.

III. PROBLEM FORMULATION

Let xc be a clean image and xn its corrupted version.
Non-local image restoration exploits the self-similarities in
natural images. The approach consists in gathering similar
patches of xn, stack them in a matrix Xn where the columns
correspond to the vectorized versions of the patches, applying
a transformation, reconstruct the estimated clean matrices X̂c,
and finally reconstruct the clean image x̂c by aggregating
all the transformed matrices. Methods such as SAIST [2]
and WNNM [4] use low-rank estimation as a transformation
by imposing sparsity models on the singular values. More
precisely, the problem can be posed in the following general
formulation

X̂c = argmin
Xc

1

2
||Xc −Xn||22 + λψ∗(Xc), (1)

where ψ∗ models the sparsity of the singular values of the
clean matrix Xc. ψ∗ can take the form of the nuclear norm [2]
or the reweighted-nuclear norm [4]. While these methods tend
to model the singular values of the clean matrices Xc, it turns
out that the singular values of the matrices Xc in the clean
natural image do not correspond to the optimal denoising
singular values. This is because we do not have the true
orthogonal matrices of Xc for the complete decomposition.
The values that need to be modeled should rather depend on
the whole decomposition of the noisy patches. In fact, the
actual optimal values do not even correspond necessary to
a true low-rank transformation. As a result, a sparsity-based
model that leads to a shrinkage operator cannot take fully
advantage of this observation.

Optimal Singular Values Denoising

Given a pair of clean/noisy non-local patch matrices Xc/Xn,
we would like to derive the best denoising singular values that
we denote by Σo. In other words, Σo are the optimal singular
values that permit to reconstruct Xc from Xn. Suppose the
Singular Value Decomposition (SVD) of both Xc and Xn

Xc = Ucdiag(Σc)V
T
c , Xn = Undiag(Σn)V Tn , (2)

where diag is the diagonal matrix operator that extracts the
diagonal from a matrix or builds a diagonal matrix from
a vector. Typically, sparsity-based methods [2], [4] try to
denoise Xn by applying a shrinkage operator (shrink(Σn)). By
supposing that the corruption is dense, the best singular values

Σo to estimate Xc from Xn can be recovered by minimizing
the error between Xc and its reconstruction

argmin
Σo

||Undiag(Σo)V
T
n −Xc||2F . (3)

By rewriting the diagonal operator as a linear operation :

diag(A) = A1, (4)

where 1 is an all-ones vector. The solution of the problem is
given as follows

Σo = UTnXcVn1 = diag(UTnXcVn). (5)

As there is no particular prior on the solution, Σo do not
necessarily correspond to ”true” singular values. In fact, they
can be even negative and in a non-decreasing order. As the
energy is concentrated in the first values, we consider only
around half of the values for training, the rest is set to zero.

First, we would like to verify denoising results given by the
optimal values Σo and compare with previous shrinkage-based
methods SAIST and WNNM to see how far are these methods
from the optimal bound. We compare also denoising results
given by using the clean values Σc. The results are conducted
on the popular house and barbara images with Gaussian noise
of standard deviation 50. As can be clearly seen in Fig. 1,
the derived optimal denoising values Σo lead to much better
denoising results. One can clearly see that the clean values Σc
do not correspond to the right singular values for denoising.

IV. LEARNING THE LOW-RANK MAPPING

Given a pair of noisy/optimal singular values Σn/Σo, we
would like to learn a mapping function F such that F (Σn) ≈
Σo. The good thing about the proposed approach is that
denoising each set of similar patches is reduced to estimat-
ing few singular values, which makes learning easier. One
approach would be to learn a shrinkage function as adopted
in some techniques such as [23]. However, as explained before,
the mapping F (Σn) ≈ Σo does not correspond to a shrinkage
as the optimal singular values Σo do not correspond to real
singular values : they are not necessarily in decreasing order,
are hard to fit and they can be even negative. A general model
for a shrinkage shrink(.) can be formulated as follows

Σo ≈ shrink(Σn) = max(0,Σn − βw(Σn)), (6)

where β is a postive regularization term and w is a weight
function. This shrinkage function is the solution (or first-order
solution) of the proximal operator of the form

argmin
Σo

1

2
||Σo − Σn||22 + βψ(Σo), (7)

where ψ is a prior. Learning a shrinkage function S is reduced
to learning the weight function w(.) ≥ 0. However, as can be
clearly seen in Eq. (6), a shrinkage function is by definition
monotonic. As a result, learning a shrinkage function is not
appropriate in our case because of the nature of Σo. Instead,
we learn an actual point-by-point mapping.
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(a) Ground-truth (b) Noisy (14.17 dB) (c) SAIST (29.87 dB) (d) WNNM (30.47 dB) (e) Σc-den. (28.64 dB) (f) Σo-den. (32.02 dB)

(g) Ground-truth (h) Noisy (14.15 dB) (i) SAIST (27.30 dB) (j) WNNM (27.78 dB) (k) Σc-den. (25.90 dB) (l) Σo-den. (29.21 dB)

Fig. 1: Non-local low-rank denoising comparison (σ = 50). As can be seen, the derived optimal denoising singular values Σo
lead to better results compared to shrinkage-based methods SAIST and WNNM. The singular values of the clean non-local
patches Σc clearly do not correspond to the best values to reconstruct Xc from Xn.

A. Transfer Problem Formulation

A straightforward way to estimate this mapping F is to
use a neural network (function fitting neural network). While
this approach works well in practice, it is time consuming
especially if the training image is large. The method that we
propose is a simple yet efficient learning approach that is fast
as it requires solving few linear systems and can benefit from
sparsity for robust estimation. We formulate the mapping as a
linear model with a latent matrix W that minimizes the fitting
error in a high-dimensional space. The problem is formulated
as follows

argmin
W

1

Mp

M∑
j=1

||WTφ(Σn,j)− Σo,j ||pp + λ||W ||2F

F (Σn) = WTφ(Σn),

(8)

where λ = 0.001 is a small regularization term to prevent
numerical problems, p ≤ 1 represents the lp-norm for robust
fitting and φ(.) is a non-linear mapping to a high-dimensional
space. Σn,j and Σo,j correspond to the singular values of the
matrices Xn,j and Xc,j extracted from the training pair. The
total number of such matrices is M . Typically, φ(.) is a basis
function that can take any form as long as it is independent of
the weights. In our case, we use a polynomial basis function
of the following form

φ(Σn,j) =
[

1 ΣTn,j (ΣTn,j)
2 (ΣTn,j)

3 ...
]T
. (9)

Optimization

To estimate a solution to the problem (8), we use a
Majorization-Minimization (MM) approach [1]. Training con-
sists in estimating the weights W minimized over all the
singular values pairs Σn/Σo in the training image. Due to
the use of the lp≤1-norm to prevent the influence of outliers,
the energy cannot be minimized directly via Euler-Lagrange

equations. The MM method consists in majorizing the non-
convex term leading to a more tractable energy

argmin
W,Y

1
Mp

∑M
j=1

∑N
i=1 Y

p/2
i

s.t.
(
WTφ(Σn,j)− Σo,j

)2
i
≤ Yi,

i = 1, ..., N, ||W ||2F ≤ ξ,

(10)

where N is the number of optimal singular values per non-
local matrix. The relaxation (10) is in the following general
form

argmin
v

h(v) s.t. v ∈ C, (11)

where C is a convex set and h(v) = vp/2 is a concave function
that admits the following linearization

v(l+1) = argmin
v

h(v(l)) +∇h(v(l))(v − v(l)). (12)

The estimated solution thus corresponds to a reweighted-least
squares problem (IRLS) [33], [34]

W (l+1) = A(l)−1∑M
j=1

(
φ(Σn,j)Z

(l)
j Σo,j

T
)

A(l) =
∑M
j=1(φ(Σn,j)Z

(l)
j φ(Σn,j)

T )+λI

Z
(l+1)
j = diag

(
1

|φ(Σn,j)TW
(l)−ΣTo,j |

2−p+ε

)
,

(13)

where ε = 0.001 is set for stability. However, this is a slow
estimate as the weights Z should be evaluated for each patch
matrix. Instead, we use the following estimation that computes
directly one least-squares solution instead of performing M
estimation of the weights Zj

W (l+1)≈
(
φ(Σ̄n)Z(l)φ(Σ̄n)T +λI

)−1(
φ(Σ̄n)Z(l)Σ̄o

T
)

Z(l+1) = diag
(

1
1
M

∑M
j=1(|φ(Σn,j)TW

(l)−ΣTo,j)|
2−p+ε

)
,

(14)
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where Σ̄n and Σ̄o correspond to the matrices containing all
the singular values for all the M patch matrices along the
columns

Σ̄n =
[

Σn,1 · · · Σn,M
]
, Σ̄o =

[
Σo,1 · · · Σo,M

]
.

(15)
This estimation is based on the observation that (8) aims at
minimizing the mean error over all the M patch matrices. We
thus take the re-weighting that corresponds to the mean over
all the M weights Zj .

B. Fitting a Richer Model

Problem (8) attempts to learn a mapping between a pair
of noisy singular values and their corresponding optimal
denoising values over all the patch matrices of the training im-
age pairs, which corresponds to only one denoising pass. Non-
local low-rank denoising methods [2], [4] are implemented in
an iterative framework that adds the filtered noise back to the
denoised image as follows

x(k+1)
n = x(k)

n + γ(xn − x(k)
n ), (16)

where k denotes the current iteration and γ is a positive
regularization term. The initial image is simply the noisy input
x

(0)
n = xn. This iterative regularization technique used in

previous works has shown to significantly improve restoration
quality. We use the same approach where a new model Wk is
learned at each iteration k.

Additionally, in order to fit a more flexible model, we gather
the singular values in clusters and train a separate model for
each cluster and for each iteration. The number of clusters R
that we use in the experiments is typically around 3, not too
high to prevent over-fitting. The proposed training method is
summarized in Algorithm 1 and an overview of the training
approach is given in Fig. 2.

Inference consists in a similar workflow, with a difference
that the singular values Σ

(k)
n,j are first used to determine the

right cluster r by minimizing the l2 distance, then the optimal
singular values ˆΣo,j

(k)
are estimated as follows

ˆΣo,j
(k,r)

= W (k,r)Tφ(Σn,j
(k,r)), (17)

where W (k,r) denotes the trained model for cluster number r
during iteration k.

C. Extension to Full Color Denoising

Color images contain important correlations along the chan-
nels that need to be taken into account. Our method is easily
extended to full color image denoising. Instead of processing
the non-local matrices of each channel separately, we simply
concatenate the color patches in one vector. As a result, we
only need to learn LRT for few singular values per non-local
color matrix, which is faster both for training and denoising.
We call this full color denoising approach C-LRT and the
grayscale version G-LRT.

Algorithm 1: Proposed LRT training method.
Data: Pair of clean/corrupted image(s).
Result: Training model

({Wr,k} , r = 1, ..., R, k = 1, ...,K).
Init : Compute the location of similar patches;
Main processing :
for k=1 to K do

- Compute the current image with Eq. (16);
- Gather the non-local matrices X(k)

c,j and X(k)
n,j ;

- Calculate the SVD decomposition of X(k)
n,j and Σ

(k)
o,j

via Eq. (2) and Eq. (5);
- Cluster the singular values into R clusters and

estimate W (k,r) for each one via Eq. (14);

- Reconstruct the estimated clean matrices X̂j
(k)

via
Eq. (17) and Eq. (2);

- Aggregate all the estimated matrices to form the
restored image and store it in x(k)

n ;

D. Processing Time

The main bottleneck in both non-local and learning-based
denoising methods is the processing time. Our training model
is fast compared to previous learning-based methods that can
take hours or even days for large data [25], [3], [23]. For an
image from the Kodak dataset (500×750), learning the model
(Eq. (8)) at each iteration for 3 clusters takes only 1.50 seconds
for full color filtering and 0.70 seconds for the grayscale
version. Predicting the denoising singular values takes 0.13
seconds for the full color filtering and 0.08 for the grayscale
version. We have implemented both training and denoising in
parallel using the Matlab Parallel Computing Toolbox on an
Intel Xeon E5-2609 CPU (8 cores). It takes a total of 378
seconds to denoise the full color version and 136 seconds to
denoise the grayscale version for 8 iterations (the total training
time is similar). Compared to WNNM [4], our implementation
is more than 11 times faster.

V. EXPERIMENTAL RESULTS

In this section, we perform extensive experiments to show
the potential of the proposed method. Experiments are first
conducted on the standard Kodak dataset. For test images,
we select 10 images of the dataset. For training, half of the
training images are selected from the dataset itself, and the
other half consists of external images recovered by choosing
one single result from Google Image Search. It turns out that
Google Image Search is quite robust to noise, able to give a
good correlated image even if the input is noisy. These images
are presented in Fig. 3.

A. Synthetic Noise Experiments

The first experiments consist in evaluating the proposed
denoising against previous methods using the standard Gaus-
sian noise setup with fixed standard deviation. While this
model is far from more realistic noise models that we use in
the next subsections, it gives us an idea about the potential of
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Fig. 2: Overview of the proposed training approach. First, the SVD decomposition of the noisy non-local matrices is used
together with the clean non-local matrices to calculate the optimal singular values Σo,j for denoising. The pair of noisy/optimal
singular values is then used for training after clustering. Afterward, the denoised instance is used to regularize the noisy image
and the process is repeated for several iterations.

the proposed method. In this case, the noisy image is generated
as follows

xn = xc + ση, (18)

where η is here a Gaussian noise of zero mean and unit
standard deviation. The noisy images are then truncated to
fit values between 0 and 255 and the optimal noise level is
re-estimated by calculating the standard deviation between
the clean and noisy image. We compare with four leading
methods : BM3D [12], EPLL [3], SAIST [2] and WNNM [4]
for the grayscale case. For full color denoising, we compare
with CBM3D [13]. The results are given in Table I. As
can be seen, the proposed method leads to better empirical
restoration in terms of both PSNR and SSIM [32] for higher
noise level. It is worth noting that the proposed method
successfully transfers denoising even if the training image is
not correlated with the test image, which is not possible with
external-based methods. Visual results are given in Fig. 5
that demonstrate the ability of the proposed method to better
denoise textured regions such as grass, trees and water.

To demonstrate the effectiveness of the proposed learning-
based method, we run experiments using 3 types of noise :
Poisson, Speckle (with multiplicative factor 0.05) and Salt
& Pepper (10% corruption). The results presented in Fig. 7
demonstrate the performance of the approach .

B. Synthetic Signal-Dependent Noise Experiments

The second set of experiments consists in evaluating the
proposed method using a synthetic realistic noise level. In
order to perform experiments with more realistic noise, we
propose to use the CCD-CRF model that reflects better the
non-uniformity of the corruption. This model is a simplifica-
tion of the non-linear complicated imaging pipeline that in-
cludes various perturbations and noise corruptions. Following
previous work [26], [27], the noise model is given as follows

xn = f(L+ ns + nc) + nq, (19)

where L is the clean irradiance, xn is the resulting corrupted
image and f(.) = CRF denotes the camera response function
(CRF). This model considers mainly two types of noise : nc
that is independent of the signal before gamma correction and
ns represents all the noise components that depend on the
irradiance L. nq is the minimum camera noise that is ignored.
As previous methods are tuned to work with Gaussian noise,
the noises ns and nc are generated based on Gaussian noise as
well. The noise ns is zero-mean with variance Var(ns) = Lσ2

s

and nc is zero-mean with variance Var(nc) = σ2
c . This model

is further simplified to take the signal-dependent variance
model

xn = xc + ση(xc)η, (20)

where η is supposed a zero-mean independent random noise
with unit standard deviation and the noise level ση depends
on the intensity level xc, described by the noise level function
(NLF). For noise simulation, we use a simple noise synthesis
technique proposed in previous works [26]. The CRF function
is downloaded from the popular camera response database
http://www.cs.columbia.edu/CAVE/databases/. Various meth-
ods to estimate the NLF are available [26], [27]. In this
experiment however, we have access to the true CRF and
the noise levels σs and σc, so we can recover the exact NLF
using the technique in [26]. The CRFs and the corresponding
NLFs (normalized to [0,1]) for two noise setups are given in
Fig. 4. The empirical denoising results are given in Table I.
As can be seen again, the proposed method leads to better
denoising results, even in the case of non-uniform corruption.
This demonstrates the ability of the proposed method to
automatically adapt to internal structures of the image.

C. Real Noise Experiments

This experiment uses real noise samples directly instead of
a synthetic noise model. We extract real camera noise sampled
from a Canon 5D MK3, corrupt a ground-truth and denoise it.
To perform this task, we first need a noise model to simulate
the corrupted images. The sampled noise at a fixed ISO setting
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(a) (b) (c) (d) (e) (f) (g) (h) (i) (j)

Fig. 3: Kodak dataset images used for the experiments. Top row are the test images and the bottom row are the training images.

Uniform Gaussian σ = 25 Uniform Gaussian σ = 50
Images C-LRT CBM3D G-LRT BM3D SAIST WNNM EPLL C-LRT CBM3D G-LRT BM3D SAIST WNNM EPLL

(a)
33.56 dB 33.72 dB 30.33 dB 31.66 dB 31.72 dB 31.92 dB 31.34 dB 30.13 dB 29.92 dB 28.34 dB 28.14 dB 28.00 dB 28.30 dB 27.80 dB
0.8859 0.8914 0.8459 0.8517 0.8507 0.8570 0.8406 0.8181 0.8195 0.7732 0.7652 0.7617 0.7715 0.7392

(b)
31.77 dB 31.66 dB 30.02 dB 29.99 dB 29.94 dB 30.20 dB 29.65 dB 28.69 dB 28.27 dB 27.33 dB 27.19 dB 27.15 dB 27.35 dB 26.49 dB
0.8521 0.8518 0.8064 0.8016 0.7964 0.8069 0.8042 0.7786 0.7623 0.7384 0.7214 0.7229 0.7230 0.6990

(c)
33.76 dB 33.55dB 31.74 dB 31.71 dB 31.90 dB 32.11 dB 31.39 dB 29.65 dB 29.20 dB 28.11 dB 28.03 dB 27.96 dB 28.22 dB 27.54 dB

0.9286 0.9272 0.9023 0.8998 0.9049 0.9084 0.8913 0.8702 0.8619 0.8232 0.8181 0.8255 0.8266 0.7890

(d)
30.93 dB 30.75 dB 29.38 dB 29.30 dB 29.31 dB 29.45 dB 29.44 dB 27.85 dB 27.56 dB 26.90 dB 26.78 dB 26.55 dB 26.85 dB 26.72 dB
0.8261 0.8192 0.7558 0.7503 0.7469 0.7561 0.7610 0.7136 0.7029 0.6558 0.6491 0.6369 0.6536 0.6450

(e)
29.74 dB 29.53 dB 27.51 dB 27.43 dB 27.53 dB 27.81 dB 26.79 dB 26.01 dB 25.29 dB 23.91 dB 23.38 dB 23.54 dB 23.72 dB 22.98 dB
0.8924 0.8953 0.8465 0.8487 0.8480 0.8584 0.8317 0.8075 0.8070 0.7381 0.7257 0.7296 0.7466 0.7003

(f)
32.36 dB 32.24 dB 30.28 dB 30.14 dB 30.15 dB 30.36 dB 30.10 dB 29.19 dB 28.79 dB 27.71 dB 27.45 dB 27.19 dB 27.49 dB 27.12 dB
0.8661 0.8594 0.7995 0.7895 0.7835 0.7960 0.7858 0.7517 0.7449 0.6789 0.6699 0.6591 0.6706 0.6490

(g)
29.78 dB 29.54 dB 27.45 dB 27.31 dB 27.48 dB 27.57 dB 27.27 dB 25.74 dB 25.00 dB 23.99 dB 23.41 dB 23.45 dB 23.52 dB 23.46 dB

0.8841 0.8837 0.8154 0.8151 0.8169 0.8240 0.8198s 0.7574 0.7399 0.6685 0.6467 0.6406 0.6486 0.6514

(h)
33.57 dB 33.36 dB 31.69 dB 31.88 dB 31.69 dB 32.02 dB 31.64 dB 30.51 dB 29.68 dB 29.62 dB 28.77 dB 28.74 dB 28.98 dB 28.33 dB

0.8600 0.8623 0.8043 0.8217 0.8105 0.8223 0.8121 0.7835 0.7899 0.7564 0.7525 0.7504 0.7516 0.7319

(i)
27.57 dB 27.47 dB 25.13 dB 24.91 dB 25.12 dB 25.24 dB 25.28 dB 23.67 dB 23.55 dB 22.03 dB 21.71 dB 21.97 dB 22.02 dB 22.12 dB

0.8281 0.8104 0.7295 0.6919 0.6932 0.7148 0.7323 0.6463 0.6138 0.5314 0.5007 0.5055 0.5282 0.5360

(j)
30.11 dB 29.88 dB 28.22 dB 28.05 dB 28.10 dB 28.25 dB 28.24 dB 26.68 dB 25.96 dB 25.34 dB 24.99 dB 24.93 dB 25.07 dB 25.08 dB
0.8339 0.8273 0.7536 0.7466 0.7427 0.7553 0.7605 0.7052 0.6901 0.6253 0.6171 0.6068 0.6231 0.6250

Mean
31.31 dB 31.17 dB 29.17 dB 29.24 dB 29.29 dB 29.49 dB 29.11 dB 27.81 dB 27.32 dB 26.33 dB 25.99 dB 25.95 dB 26.15 dB 25.76 dB
0.8657 0.8628 0.8059 0.8017 0.7994 0.8099 0.8039 0.7632 0.7532 0.6989 0.6866 0.6839 0.6943 0.6766

Uniform Gaussian σ = 70 Uniform Gaussian σ = 100
Images C-LRT CBM3D G-LRT BM3D SAIST WNNM EPLL C-LRT CBM3D G-LRT BM3D SAIST WNNM EPLL

(a)
28.31 dB 27.73 dB 26.87 dB 26.41 dB 26.28 dB 26.54 dB 26.00 dB 26.47 dB 25.04 dB 24.99 dB 24.22 dB 23.79 dB 24.16 dB 23.70 dB
0.7731 0.7710 0.7311 0.7113 0.7196 0.7262 0.6885 0.7216 0.7204 0.6755 0.6550 0.6701 0.6802 0.6366

(b)
26.94 dB 26.11 dB 25.82 dB 25.45 dB 25.38 dB 25.55 dB 24.38 dB 25.11 dB 23.31 dB 23.97 dB 23.22 dB 22.99 dB 23.32 dB 22.01 dB

0.7361 0.7165 0.6989 0.6756 0.6795 0.6797 0.6398 0.6865 0.6717 0.6413 0.6198 0.6346 0.6480 0.5758

(c)
27.28 dB 26.62 dB 26.17 dB 26.09 dB 26.13 dB 26.15 dB 25.38 dB 24.86 dB 23.75 dB 24.09 dB 23.86 dB 23.40 dB 23.73 dB 23.02 dB

0.8160 0.8104 0.7643 0.7606 0.7690 0.7733 0.7196 0.7457 0.7517 0.6746 0.6819 0.6977 0.7105 0.6374

(d)
26.47 dB 25.75 dB 25.62 dB 25.52 dB 25.25 dB 25.51 dB 25.23 dB 24.77 dB 23.22 dB 24.26 dB 23.66 dB 23.19 dB 23.55 dB 23.21 dB
0.6594 0.6512 0.6039 0.6028 0.5998 0.6096 0.5935 0.5995 0.5947 0.5580 0.5523 0.5526 0.5637 0.5424

(e)
24.01 dB 22.97 dB 22.13 dB 21.42 dB 21.40 dB 21.59 dB 20.96 dB 21.79 dB 20.28 dB 20.11 dB 19.24 dB 19.07 dB 19.30 dB 18.67 dB

0.7381 0.7386 0.6601 0.6425 0.6457 0.6603 0.6138 0.6343 0.6331 0.5512 0.5407 0.5344 0.5548 0.4993

(f)
28.19 dB 27.41 dB 26.64 dB 26.06 dB 25.88 dB 26.08 dB 25.53 dB 26.32 dB 23.77 dB 25.56 dB 23.94 dB 23.78 dB 23.95 dB 23.24 dB
0.7047 0.6985 0.6317 0.6176 0.6140 0.6216 0.5992 0.6232 0.6205 0.5952 0.5711 0.5815 0.5888 0.5606

(g)
23.84 dB 22.65 dB 22.32 dB 21.57 dB 21.40 dB 21.53 dB 21.43 dB 21.78 dB 19.95 dB 20.76 dB 19.54 dB 19.27 dB 19.44 dB 19.21 dB
0.6738 0.6472 0.5792 0.5571 0.5393 0.5505 0.5507 0.5574 0.5374 0.4855 0.4619 0.4401 0.4552 0.4486

(h)
29.22 dB 27.09 dB 28.37 dB 26.77 dB 26.71 dB 26.96 dB 26.03 dB 27.62 dB 23.65 dB 26.84 dB 23.96 dB 23.98 dB 24.27 dB 22.98 dB
0.7541 0.7515 0.7305 0.7202 0.7215 0.7238 0.6950 0.7300 0.7188 0.7008 0.6843 0.7016 0.7095 0.6618

(i)
22.21 dB 21.68 dB 20.76 dB 20.47 dB 20.62 dB 20.65 dB 20.63 dB 20.49 dB 19.60 dB 19.73 dB 19.15 dB 19.05 dB 19.14 dB 18.98 dB
0.5515 0.5155 0.4483 0.4215 0.4383 0.4442 0.4375 0.4296 0.4119 0.3540 0.3429 0.3372 0.3442 0.3388

(j)
25.06 dB 23.74 dB 24.10 dB 23.37 dB 23.20 dB 23.35 dB 23.23 dB 23.09 dB 21.00 dB 22.76 dB 21.36 dB 21.08 dB 21.29 dB 20.98 dB

0.6361 0.6135 0.5611 0.5483 0.5381 0.5498 0.5488 0.5472 0.5245 0.5020 0.4781 0.4661 0.4789 0.4728

Mean
26.15 dB 25.18 dB 24.88 dB 24.31 dB 24.23 dB 24.39 dB 23.88 dB 24.23 dB 22.36 dB 23.31 dB 22.21 dB 21.96 dB 22.22 dB 21.60 dB
0.7043 0.6914 0.6409 0.6258 0.6265 0.6339 0.6086 0.6275 0.6185 0.5738 0.5588 0.5616 0.5734 0.5374

Non-Uniform Gaussian (σc = 0.02, σs = 0.06) Non-Uniform Gaussian (σc = 0.04, σs = 0.10)
Images C-LRT CBM3D G-LRT BM3D SAIST WNNM EPLL C-LRT CBM3D G-LRT BM3D SAIST WNNM EPLL

(a)
35.87 dB 35.30 dB 34.21 dB 33.66 dB 32.90 dB 33.56 dB 32.65 dB 33.15 dB 32.67 dB 31.19 dB 31.08 dB 30.78 dB 30.73 dB 30.17 dB

0.9253 0.9101 0.9103 0.8927 0.8782 0.8866 0.8731 0.8948 0.8776 0.8658 0.8503 0.8487 0.8491 0.8253

(b)
33.364 dB 33.24 dB 31.51 dB 31.41 dB 30.96 dB 31.22 dB 30.64 dB 30.98 dB 30.85 dB 29.20 dB 29.31 dB 29.15 dB 29.09 dB 28.42 dB

0.8845 0.8905 0.8431 0.8455 0.8422 0.8437 0.8410 0.8265 0.8244 0.7908 0.7793 0.7827 0.7745 0.7612

(c)
35.66 dB 35.10 dB 33.69 dB 33.16 dB 32.81 dB 33.45 dB 32.18 dB 32.72 dB 32.27 dB 30.66 dB 30.38 dB 30.44 dB 30.48 dB 29.76 dB

0.9491 0.9414 0.9297 0.9204 0.9126 0.9195 0.9028 0.9192 0.9079 0.8839 0.8732 0.8777 0.8761 0.8560

(d)
32.40 dB 32.23 dB 31.08 dB 30.69 dB 30.50 dB 30.67 30.44 dB 29.87 dB 29.71 dB 28.64 dB 28.51 dB 28.40 dB 28.46 dB 28.27 dB

0.8627 0.8557 0.8227 0.8008 0.7933 0.7977 0.7987 0.7861 0.7773 0.7260 0.7165 0.7112 0.7163 0.7137

(e)
32.07 dB 31.50 dB 29.96 dB 29.45 dB 29.35 dB 29.52 28.43 dB 28.97 dB 28.40 dB 26.99 dB 26.57 dB 26.56 dB 26.49 dB 25.50 dB
0.9200 0.9082 0.8924 0.8783 0.8739 0.8752 0.8506 0.8704 0.8603 0.8323 0.8176 0.8202 0.8130 0.7794

(f)
33.75 dB 33.32 dB 31.72 dB 31.39 dB 31.04 dB 31.26 dB 30.61 dB 31.21 dB 30.96 dB 29.38 dB 29.25 dB 29.19 dB 29.33 dB 28.80 dB
0.8954 0.8843 0.8470 0.8331 0.8195 0.8251 0.8150 0.8315 0.8233 0.7628 0.7557 0.7537 0.7611 0.7436

(g)
31.45 dB 31.31 dB 29.20 dB 28.89 dB 29.00 dB 29.12 dB 28.59 dB 28.48 dB 28.25 dB 26.36 dB 26.12 dB 26.28 dB 26.25 dB 26.01 dB
0.9123 0.9125 0.8623 0.8568 0.8568 0.8618 0.8517 0.8488 0.8447 0.7753 0.7678 0.7728 0.7731 0.7687

(h)
35.87 dB 34.14 dB 34.58 dB 33.23 dB 31.98 dB 32.53 dB 31.83 dB 33.38 dB 32.034 dB 32.13 dB 30.78 dB 28.78 dB 28.75 dB 28.75 dB

0.9055 0.8713 0.8842 0.8468 0.8159 0.8248 0.8145 0.8540 0.8181 0.8267 0.7773 0.7345 0.7453 0.7289

(i)
29.62 dB 29.58 dB 26.99 dB 26.93 dB 27.08 dB 27.07 dB 26.98 dB 26.57 dB 26.37 dB 24.28 dB 24.03 dB 24.27 dB 24.20 dB 24.29 dB

0.8786 0.8735 0.8022 0.7830 0.7916 0.7910 0.8030 0.7766 0.7581 0.6757 0.6446 0.6520 0.6640 0.6777

(j)
31.62 dB 31.39 dB 29.77 dB 29.39 dB 29.31 dB 29.45 dB 29.20 dB 28.95 dB 28.69 dB 27.25 dB 27.08 dB 26.98 dB 27.01 dB 27.04 dB
0.8722 0.8641 0.8137 0.7937 0.7870 0.7872 0.7901 0.7903 0.7841 0.7128 0.7035 0.6929 0.7044 0.7083

Mean
33.18 dB 32.71 dB 31.27 dB 30.82 dB 30.50 dB 30.79 dB 30.16 dB 30.43 dB 30.02 dB 28.61 dB 28.31 dB 28.08 dB 28.08 dB 27.70 dB

0.9006 0.8912 0.8608 0.8451 0.8371 0.8413 0.8340 0.8398 0.8276 0.7852 0.7686 0.7646 0.7677 0.7563

TABLE I: PSNR and SSIM results on Kodak dataset for uniform and non-uniform Gaussian noise.
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Fig. 4: CRFs and simulated NLFs on the pattern (a) used in the non-uniform Gaussian noise experiments for mid and high
noise setups.
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(a) Ground-truth (b) Noisy (c) BM3D/CBM3D (d) WNNM (e) Proposed

Fig. 5: Image denoising with high amount of uniform Gaussian noise (σ = 70). Note how the proposed method is able to
recover challenging structures such as textures.

corresponds to blank frames with known unique background
color (typically black) that we note η. We first zero-mean η
to remove the background color and normalize the standard
deviation to control the amount of corruption with a parameter
ση . Given a clean color image xc, we generate the noisy output
xn based on the noise level function (NLF) as follows

xn = xc + σηNLF(xc/255, η). (21)

Following previous works, the NLF can be estimated from the
CRF and the variances Var(nc),Var(ns). As we do not have
access to the CRF of the Canon 5D MK3 device, we use a
simple NLF that gives less weights to brighter pixels and more
weights to darker pixels similar to standard NLFs. For each
image, we fine-tune the noise level to get the best denoising
result with methods BM3D, EPLL, SAIST and WNNM as
the noise in this case is not uniform. In fact, each method
required a different optimal noise level and standard methods

for noise estimation failed to give an accurate estimation. To
demonstrate the ability of our method to recover structures
such as text and textures, we use two challenging images : one
of a tiger with a fur and another one of books with various
text sizes. The results are presented in Fig. 6. Note how the
proposed method is able to recover the fur of the tiger and the
text of the books. The other methods, even-though fine-tuned,
result in over-smoothing. It is worth noting that, in the second
example, the training image is not even visually close to the
ground-truth, but contains text. Our training model is able to
capture such structures and successfully transfer it to another
noisy image.

Furthermore, to demonstrate the flexibility of the proposed
method, we present denoising results using three different
training images in Fig. 8. As can be seen, the results are
of high-quality even-though the training image pair is not
necessarily correlated with the latent image.
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(a) Noisy Input (b) Ground-Truth (c) Clean Training image (d) Proposed (28.65 dB |0.839)

(e) CBM3D [13] (28.22 dB | 0.814) (f) EPLL [3] (28.13 dB | 0.811) (g) SAIST [2] (28.27 dB | 0.820) (h) WNNM [4] (28.07 dB | 0.800)

(i) Noisy Input (j) Ground-Truth (k) Clean Training image (l) Proposed (30.30 dB |0.838)

(m) CBM3D [13] (28.92 dB | 0.782) (n) EPLL [3] (28.90 dB | 0.786) (o) SAIST [2] (28.62 dB | 0.775) (p) WNNM [4] (28.27 dB | 0.770)

Fig. 6: Synthetic realistic image denoising experiments with (PSNR | SSIM). The proposed approach is able to to adapt to
other types of noise (best viewed in full resolution).

D. Real Noisy Images Experiments

We evaluate in this section the proposed method on true
real noisy images with unknown camera model and ISO
settings. The images used in these experiments were taken with
different devices. For training, we use one model trained on a
Nikon D-600 device for a high ISO setting (see Fig. 10). To
get the best results with previous methods, we generate various
denoised outputs for various noise levels and choose the best
result. We compare as well with the popular software NeatIm-
age that is one of the best denoising softwares available. As
can be seen in Fig. 9, our model trained on the real clean/noisy
pair is able to produce high-quality results, preserving details
such as text (see close-up). The other methods need noise
estimation that is very hard when no uniform regions are
available in the image (in which case NeatImage fails at
automatically settings parameters). We run another experiment
on a popular real noisy image instance cave. This image
contains both rich textures and smooth regions, which is very

challenging. Unfortunately, the clean/noisy training pair that
we have (Fig. 10) does not contain enough rich textures to be
transfered to this image. In this case, we sample directly the
noise from the input, duplicate the noise pattern, and add it to
a training image. The (cropped) results are given in Fig. 11.
Note how the proposed method is able to recover the texture
of the wall, which is very challenging in this case. The full
resolution results are given in the supplementary material.

VI. CONCLUSION

We present in this paper a new approach to image denoising
based on the principle of non-local low-rankness transfer
(LRT). Instead of using shrinkage operators to apply on
the non-local singular values, we learn a mapping using a
simple but efficient training model. This approach can support
various types of corruption. Experiments on uniform and non-
uniform noise as well as real camera noise show the ability
of the proposed method to successfully recover challenging
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(a) Ground-truth (b) Poisson (27.78 dB | 0.6577) (c) Speckle (19.97 dB | 0.3571) (d) Salt & Pepper (15.40 dB | 0.1912)

(e) Ground-truth (f) CBM3D (34.98 dB | 0.9141) (g) CBM3D (28.254 dB | 0.7218) (h) CBM3D (27.11 dB | 0.7001)

(i) Ground-truth (j) Proposed (35.42 dB | 0.9264) (k) Proposed (30.03 dB | 0.8270) (l) Proposed (27.72 dB | 0.7434)

Fig. 7: Denoising results with different types of noise. The first line presents noisy results, the second and third lines represent
respectively denoising results produced with CBM3D and the proposed method with PSNR and SSIM. As can be seen, the
proposed approach produces high-quality restoration results.

(a) Noisy (19.24 dB | 0.3865) (b) Training image 1 (c) Training image 2 (d) Training image 3

(e) Oracle (30.70 dB | 0.8551) (f) Result using (b) (30.53 dB | 0.8506) (g) Result using (c) (30.47 dB | 0.8475) (h) Result using (d) (30.49 dB | 0.8493)

Fig. 8: Image denoising results with various training images. The oracle image is produced by using the clean ground-truth
image as the training image (optimal). The proposed method produces fairly good results even using one single training pair
that is not necessarily correlated with the latent image.
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(a) Noisy input (b) CBM3D (c) SAIST (d) NeatImage (e) Proposed

Fig. 9: Real Image denoising using one single training model based on Nikon D-600 device (see Fig. 10). Without estimating
the noise level, our method is able to produce high-quality denoising results.

(a) Clean (ISO-100) (b) Noisy (ISO-25600)

Fig. 10: Real clean/noisy training pair based on a Nikon D-
600.

details and textures that are over-smoothed with previous
methods even when fine-tuned. Note that in this paper, we use
only one single training image and we do not fine-tune the
training parameters. Our approach can be greatly improved
by using better training images, automatically selecting the
best training parameters via cross-validation and/or designing
a new learning method such as neural networks. We believe
the LRT approach can be useful not just for image restoration
but for other low-rank based approaches as well that require
low-rank estimation.
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