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Fusion of Perception and V2P Communication
Systems for Safety of Vulnerable Road Users

Pierre Merdrignac1,2 , Oyunchimeg Shagdar1,2 , and Fawzi Nashashibi1

Abstract—With cooperative intelligent transportation systems
(C-ITS), vulnerable road users (VRU) safety can be enhanced
by multiple means. On one hand, perception systems are based
on embedded sensors to protect VRUs. However, such systems
may fail due to the sensors’ visibility conditions and imprecision.
On the other hand, Vehicle-to-Pedestrian (V2P) communication
can contribute to the VRU safety by allowing vehicles and
pedestrians to exchange information. This solution is, however,
largely affected by the reliability of the exchanged information,
which most generally is the GPS data. Since perception and
communication have complementary features, we can expect that
a fusion between these two approaches can be a solution to the
VRU safety. In this work, we propose a cooperative system that
combines the outputs of communication and perception. After
introducing theoretical models of both individual approaches, we
develop a probabilistic association between perception and V2P
communication information by means of multi-hypothesis track-
ing (MHT). Experimental studies are conducted to demonstrate
the applicability of this approach in real-world environments.
Our results show that the cooperative VRU protection system
can benefit of the redundancy coming from the perception and
communication technologies both in line-of-sight (LOS) and non-
LOS (NLOS) conditions. We establish that the performances of
this system are influenced by the classification performances of
the perception system and by the accuracy of the GPS positioning
transmitted by the communication system.

Index Terms—Vulnerable Road Users, Cooperative ITS,
Vehicle-to-Pedestrian (V2P), Information Fusion.

I. INTRODUCTION

PROTECTING vulnerable road users (VRUs) has been a
topic of interest for the past years. VRUs are defined as

”non-motorized road users, such as pedestrians and cyclists
and persons with disabilities or reduced mobility and orien-
tation” [1]. According to the report on road safety provided
by the World Health Organization [2], half of the fatalities
due to traffic accidents concern VRUs. Cooperative Intelligent
Transportation Systems (C-ITS) are proposing solutions to
enhance road safety by sensors data processing, i.e. perception,
and by enabling information exchange, i.e. communication,
between vehicles (V2V), vehicles and infrastructure (V2I),
and, vehicles and pedestrians (V2P).

A cooperative system can benefit from the knowledge of
every individual user to detect potential collision on vehicles
and/or VRUs side, especially in urban environments as illus-
trated in Fig. 1.
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Fig. 1: Cooperative safety in urban environment.

Relying on embedded sensors data has been a first solution
at very close range and low speed [3] to ensure the safety
of VRUs who are visible from the vehicles, i.e., in Line-
of-Sight (LOS) w.r.t. the vehicle, as shown in situation 1)
of Fig. 1. However, more recent studies have demonstrated
the need for new methods in order to tackle more complex
cases such as pedestrians not visible from the vehicles [4] [5],
i.e., in Non LOS (NLOS) conditions as shown in situation
2) of Fig. 1. Vehicular communication is able to disseminate
information beyond the sensor’s field of view (FOV), hence, it
has a potential to improve road safety in both LOS and NLOS
conditions.

In this paper, we introduce a new cooperative system based
on both perception and V2P communication for protection
of VRUs. On vehicles’ side, perception relies on laser data
to detect, classify and locate road obstacles situated in the
sensors’ FOV [6], [7]. On VRUs’ side, user’s location is
estimated from GPS data and is transmitted to surrounding
vehicles [8]. Hence, fusing information from perception, i.e.
obstacles class and location, with the information from V2P
communication, i.e. GPS data and VRUs’ identifiers, is the
main challenge. The proposed system has to distinguish the
following cases:

• a perceived obstacle is also a communicating obstacle,
• a communicating obstacle is not detected by the percep-

tion system,
• a perceived obstacle is not communicating.

Here, fusion is tackled by a new probabilistic method
inspired from multi-target tracking and we demonstrate how
this approach handles both situations of Fig. 1.

The rest of the paper is organized as follows. Section II
highlights the related work. Section III introduces perception
and V2P communication systems for VRU protection and
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section IV details our probabilistic information fusion method.
Experimental evaluation of our proposal is conducted in Sec-
tion V. Finally, Section VI concludes our paper.

II. RELATED WORK

A. Perception based VRU protection

Detection of VRUs has been an active research topic since
the early 2000s. In 2007, Gandhi et al. [3] proposed a large
review of perception based systems for protection of VRUs.
On one hand, active sensors such as radars [9]–[11], ultrasonic
sensors [12], laser rangefinders [6], [7], [13]–[15] have been
shown to be efficient to detect and locate obstacles situated
in their FOV, but lack of precision to classify the detected
obstacles. On the other hand, video cameras are natural sensors
to recognize VRUs surrounding a vehicle both in illuminated
scenes [4], [16]–[18] and night conditions [19], [20], but are
weak to estimate precisely the relative position of a detected
obstacle. In 2010, Gerònimo et al. [4] highlight that the
number of false alarms is still too high in the current sensor
based pedestrian detection systems to allow their deployment
in commercial vehicles and propose to explore multi-class
classification, 3D sensing, multi-model training as well as
pedestrian tracking to improve their reliability.

In [5], Dollar et al. conducted an evaluation of 16 exist-
ing vision based pedestrian classifiers and showed that the
performances of all the classifiers degrade sharply when the
visibility condition (up to small scale and full occlusion)
becomes worse. In the cases of heavy occlusion, nearly all
pedestrians are missed.

In summary, despite large efforts, perception based VRU
protection systems are not able to work perfectly in all the
situations encountered in cities, especially when a VRU is
strongly occluded by another obstacle. In such condition,
only the occluding object can be detected using perception
and other approaches such as communication have to be
considered.

B. Communication based VRU protection

Communication systems have the potential to enhance road
safety by allowing road users to exchange content rich data
[21]–[23] and by activating environment based messages [24].

Standards are required to ensure a compatibility between
communication entities, called ITS stations, from different
manufacturers. Up to now, standardisation activities have put
a strong focus on V2V and V2I communications, especially
in Europe [25]–[27], and specified IEEE 802.11p [28] for
vehicular communication. V2P has recently appeared as a
specific communication mode due to the strong requirement
on communication delay and energy consumption at the VRUs
side [21], [23], [29], and, it is not yet standardized.

Limited battery life of VRU hand-held devices has to be
considered as a constraint in the design of V2P communication
protocols [8], [30], [31]. The common objective of these
approaches is to minimize messages emitted from the VRUs by
assessing the collision risk and by relying either on centralized
[31] or distributed [8], [30] communication technologies.

In our previous works [8], [23], we introduced a pedestrian
protection system based on distributed communication. Here,
pedestrians receiving a cooperative awareness message (CAM)
[22] from a vehicle evaluate whether they are in the near
future trajectory of this vehicle or in a geographical area that is
hidden w.r.t. the vehicle to trigger V2P communication. Vehi-
cles receiving messages from pedestrians store the information
content in their local dynamic map (LDM) [32].

To summarize, despite some efforts for establising V2P
communication, further work is needed to avoid packets loss
due to a high number of communication nodes (vehicles and
VRUs) and/or due to signal blockage in NLOS conditions
[8], [23]. Relying on geographical routing algorithms such as
GeoNetworking [33] could be a future approach to disseminate
V2P messages. In this paper, the data exchanged for VRU
protection by V2P communication are detailed.

C. Information fusion in C-ITS

With C-ITS, multi-source information is fused in order to
overcome the limitations of standalone systems. For example,
extending perception using cooperative methods has been the
main interest in many recent works [34]–[39].

Global Positioning System (GPS) [40] is installed in many
of current devices (vehicles, smartphones,...) to provide ab-
solute coordinates which can be converted to a local refer-
ence frame using Lambert conformal conic projection [39].
However, many perturbations on the GPS signals (imprecise
clock synchronisation, perturbation from the atmosphere, ur-
ban canyons,...) lead to errors of 5 to 10 m [41] which are too
large to fulfill the requirements of safety applications.

Cooperative sensors based on IEEE 802.15.4 technology
have been developed during the projects WATCH-OVER [42]
and Ko-TAG [43]. These sensors measure precisely the relative
positioning between vehicles and VRUs by calculating the
time of flight of the emitted signal. Despite low power con-
sumption, these devices require perfect clock synchronization.
Fusion of such cooperative localization with embedded sensors
data was also investigated during these projects [44], [45],
but the proposed approaches are still inefficient in NLOS
conditions due to the reduced precision of localization and
the inability of detecting hidden VRUs in sensors data.

Information fusion requires the management of data ob-
tained from ego vehicle perception and from vehicular commu-
nication. In multi-target tracking, solutions such as joint prob-
abilistic data association (JPDA) [46] and multi-hypothesis
tracking (MHT) [47] can manage tracks of obstacles observed
by multiple sensors. In C-ITS, such approaches have been
applied either in probabilistic [6] or evidential [37]–[39]
framework. Contrary to the work of Demmel [39] where
homogeneous sources are fused by means of MHT, our
system has to consider fusion between heterogeneous sources
since the embedded VRU perception and V2P communication
provide totally different information.

In summary, current approaches for cooperative VRU pro-
tection systems are still not able to handle LOS as well as
NLOS conditions. Thus, we introduce a new approach for
VRU protection which relies on the capacity of perception to
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detect, localize and classify obstacles located in the sensors’
FOV and the capacity of V2P communication to disseminate
information beyond the sensors’ FOV, i.e., to long range and
occluded zones. Our approach takes into account the advan-
tages of perception to estimate dynamic parameters such as
speed and velocity and the advantages of V2P communication
to transmit static parameters such as the user class.

III. PERCEPTION AND COMMUNICATION FOR VRU
PROTECTION

Improving VRU safety in urban environments requires a
protection system that works in different situations as illus-
trated in Fig. 1. In such cases, perception is used to detect,
localize and classify VRUs who are visible w.r.t the vehicle
and V2P communication brings data exchange (user position
and velocity, user class,...) and extends the FOV defined by
embedded sensors. Hence, we propose a cooperative approach
that can jointly alert vehicles and VRUs of potential colli-
sions. Fig. 2 illustrates the proposed system where vehicles
are equipped with perception (1), V2P communication (2),
fusion of perception and V2P communication data (4) and
collision risk evaluation (5), and VRUs are equipped with V2P
communication (3) and collision risk evaluation (5).

Fig. 2: Overall cooperative protection system description

In this section, we focus on perception and V2P com-
munication separately and evaluate their limitations before
introducing the fusion algorithm.

A. Perception system for VRU protection

1) Assumption: Vehicles are equipped with laser range
finders for perception. Such sensors describe the environment
in x-y coordinates by means of impact points.

2) Data processing: Obstacles position and velocity are
estimated by means of point cloud clustering and Kalman
filtering. Geometric features are used to classify the detected
obstacles [6], [7].

3) Output: This system output tracks of VRUs having a
unique identifier across time. Each track estimates the relative
position, velocity and class of a detected obstacle.

B. V2P Communication for VRU protection

1) Assumption: Vehicles and VRUs are equipped with
radio communication systems. As introduced in [23], V2P

communication requires low transmission delay by means of
distributed communication protocols such as ad hoc mode with
Wi-Fi protocols (IEEE 802.11) or Device-to-Device (D2D)
communications with LTE protocol. In this paper, Wi-Fi
protocol IEEE 802.11g was available on both vehicle side
and VRU hand-held device and was used during the tests, but
other distributed communication media could be used with the
proposed system.

2) Data processing: As described in [8], our V2P com-
munication protocol relies on CAM transmitted by vehicles
for informing VRUs and for triggering communication on the
VRUs side.

A vehicle has to send its position as its latitude (Lat.),
longitude (Long.) and orientation (θveh). The generation time
tveh of this data is also important. Finally, vehicle speed, vveh,
and yaw rate, ωveh, as well as the parameters of width, W ,
and length, L, are necessary to evaluate the collision risk [23].
Table I summarizes mandatory parameters that have to be
emitted by the vehicle.

TABLE I: Parameters emitted by the vehicle

Description Notation
Identifier ID

C
A

M
content

Latitude Lat.
Longitude Long.
Orientation θveh

Generation time tveh
Radial velocity vveh

Yaw rate ωveh

Vehicle length W
Vehicle width L

Once a VRU receives a CAM, it evaluates if the pedestrian
is in a geographical dissemination area for this message. If
positive, a P2V message, which has to contain the parameters
described in Table II, is emitted by the VRU.

TABLE II: Parameters emitted by the VRU

Description Notation
Identifier ID P2V

M
essage

Latitude Lat.
Longitude Long.

VRU orientation θvru
Generation time tvru

Velocity vvru
VRU Class Cvru

3) Output: The vehicle receiving such a P2V message
transforms latitude and longitude in its own local coordinate
system to estimate the relative position of the communicating
pedestrian [8], [39]. In addition, every communicating obstacle
has a unique identifier obtained from the installation of the
safety application [23]. Finally, the vehicle LDM is updated
with the received V2P data and can provide a list of the
VRUs which have communicated. Within the LDM, obstacles
location is predicted when the VRU protection system accesses
to the list of VRUs for collision risk evaluation.

C. Qualitative evaluation of Perception and V2P communica-
tion systems

In [8], we studied the capacity of perception and com-
munication systems for VRU protection. Let us consider the
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test scenario where a vehicle approaches a pedestrian on a
straight line to evaluate qualitatively the results obtained by
the perception system and by the V2P communication system.

Figure 3 displays two snapshots for two experiments of
perception and V2P communication systems 1) when the
pedestrian is visible from the vehicle (Fig. 3a) and 2) when
the pedestrian is occluded (Fig. 3b).

Here, the black rectangle illustrates the ego vehicle that
tries to detect the pedestrian. In addition, the environment is
expressed in the local coordinates of the ego vehicle, the x-
axis is along the longitudinal direction and the y-axis is along
the lateral direction. Laser data are plotted as black crosses
and provide a view of the current environment.

(a) LOS conditions. (b) NLOS conditions.

Laser impact Perception based VRU detection
Occluding obstacle Other obstacle with perception

Communication based VRU detection
Fig. 3: Obstacle detection in various conditions.

As can be seen in Fig. 3a, while the pedestrian is detected
in the front right side of the vehicle (red circle), the commu-
nication system announces his position as in front left of the
vehicle (blue triangle). Since positioning of the laser system
is reliable, this is the case where, the communication system
has an error due to the inaccuracy of the GPS data.

In Fig. 3b, the pedestrian is behind an obstacle (brown
square). Here, the communication system could ”detect” the
pedestrian but the perception system could not. Nevertheless,
the perception system could successfully detect the occluding
obstacle.

To summarize, the limitations of the individual systems are:
• the reliability of the V2P communication system is de-

graded due to the inaccuracy of the GPS data (Fig. 3a),
• the ability to detect pedestrians is limited by FOV of the

sensors for perception systems,
• the ability to detect pedestrians is limited for the percep-

tion system if an obstacle blocks the line-of-sight to the
pedestrian (Fig. 3b).

Consequently, information fusion between perception and
V2P communication is necessary to benefit from the advan-
tages of both systems, i.e., the ability of V2P communication

to inform of the presence of a VRU and the ability of
perception to precisely localize obstacles.

D. Fusion between Perception and V2P Communication

The objective of the fusion stage is to determine whether a
communicating VRU is visible or is hidden behind an obstacle.
In the former case, the relative location of the communicating
VRU can be improved by considering the ”perceived” VRU as,
in the latter case, the relative location of the communicating
VRU cannot be precisely estimated.

In Fig. 3, a communicating pedestrian (blue triangle) send its
GPS position by V2P communication. Due to the large impre-
cision of this sensor, the VRU can be located anywhere inside
the uncertainty circle calculated from the GPS measurement.
Such circle defines a gate where the different obstacles (red
circle, brown square and orange cross) given by the perception
module could have generate this V2P communication data.

Fig. 3a illustrates LOS conditions where the communicating
pedestrian (blue triangle) is also detected by the perception
system (red circle). In this case, the system may associate
the communicating pedestrian either with the correct one (red
circle) or with other obstacles (orange cross) that looks like
pedestrians.

Fig. 3b illustrates NLOS conditions where the communicat-
ing pedestrian stands behind a parked vehicle (brown square).
In this case, the pedestrian is not seen by the perception
system, and, the system should not associate him to any of
the two obstacles situated within the gate.

Finally, the main goal is to establish which perception data
has generated a communication data in LOS conditions and
to establish that the communicating pedestrian is hidden in
NLOS conditions. Consequently, the fusion stage has to be
able to handle both LOS and NLOS cases to take the correct
decision.

These cases can be seen as an association problem between
the tracked data obtained from perception and V2P commu-
nication and can be tackled by means of multi-hypothesis
tracker (MHT) [47]. Thus, we decided to apply MHT with
V2P communication and perception tracks where association
hypotheses are generated and describe the following situations:

• the possible associations of communication tracks with
perception tracks located inside the gate,

• the case of communication tracks not detected by the
perception system.

Figure 4 describes the fusion stage between perception and
V2P communication. In this algorithm, association hypotheses
are generated by a loop on the V2P communication tracks.
Indeed, for every V2P communication track, the list of as-
sociation hypotheses is updated with the perception obstacles
which are situated within the gate defined by the GPS data.

Then, a probability is calculated for every hypothesis based
of the likelihood of such association between perception and
V2P communication tracks.

After the fusion process, the state of VRUs is estimated by
selecting the hypothesis with the highest probability.
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Fig. 4: Flow chart of fusion between perception and V2P
communication

IV. MULTI HYPOTHESIS TRACKER APPLIED FOR VRU
PROTECTION

In this section, we provide the theoretical aspects of the
proposes fusion approach. First, we introduce a generic metric
to evaluate VRU protection systems. Then, perception and V2P
communication systems are modeled in terms of detection,
classification and relative positioning. These three criteria
are finally of importance for perception/V2P communication
fusion established by means of a MHT association.

A. Performance metric for VRU protection systems

In order to evaluate the performance of our fusion algorithm,
we defined in [8] a distance metric which has the capability to
jointly evaluate detection and positioning errors. Such metric
does not necessarily represent whether an accident is going to
happen or not, but it can establish the performance of a VRU
detection system that will be used for collision prevention.

Then, the fusion error Efus is defined as the mean of the
distance calculated over multiple trials for a given detection
system. Efus is expressed as two terms in eq. (1). The first
term represents the mean positioning error and the second term
is the probability of non detection weighted by a parameter c,
a cut-off distance representing a maximum error value.

Efus = Pd ×MPE + c× (1− Pd) (1)

where MPE is the mean distance error and Pd is the
probability of detection.

This fusion error can be independently applied to evaluate
the performances of a perception based protection system, a
V2P communication based protection system and a coopera-
tive protection system.

B. Modeling Perception and V2P communication

For simplicity, we introduce the three following criteria for
modeling perception and V2P communication systems:

• detection, i.e., the capacity to detect a given obstacle,
• classification, i.e., the capacity to assign the correct class

(pedestrian, vehicle,...) to a detected obstacle,
• relative positioning, i.e., the capacity to estimate the

relative position of a given obstacle w.r.t. the ego vehicle.
1) Detection probability: A perception system can detect

an obstacle (pedestrian in our case), if the obstacle is in
the sensor’s FOV. For laser-based perception systems, the
detection is possible if the distance to the obstacle, d, is less
than the sensor range, dm:

P per
d (d) =

{
1, if d ≤ dm
0, otherwise

(2)

In [8], we presented a more complex model that considers
the expected obstacle width, but it was shown this model is
approximately the sensor FOV for small obstacles such as
VRUs.

For the communication system, we can consider that a VRU
is ”detected” at his current state if the vehicle receives a packet
from this VRU. Therefore, the VRU detection capability of
the communication system is expressed by the successful
packet reception probability. Assuming that the bit error rate
(BER) for individual bits of a packet are equal, the pedestrian
detection probability for a given data packet is:

P com
d = (1−BER)Lp (3)

Here, Lp is the packet length and BER is a function of the
SNR (signal to noise ratio).

2) Classification: Classification with the perception system
is done by comparing models of road obstacles to features
extracted from the sensors data [3]. Using statistical machine
learning, a probability pj of being of a class Cj is assigned
to a detected obstacle [7] and classification with a perception
system is modelled as follows

P per
c (Cj) = pj (4)

With V2P communication, a VRU can explicitly indicate the
user class Cvru in the exchanged message. Assuming no one
is transmitting false information, the probability of assigning
a class Cj to the VRU is as follows

P com
c (Cj) =

{
1, if Cj = Cvru

0, otherwise
(5)

3) Relative positioning: Let us note Lr the true position of
an obstacle w.r.t. the vehicle.

The perception system calculates the relative location of the
pedestrian (w.r.t. the vehicle), Lper

r (x, y), with a covariance
Qper

r by the laser based detection system. The likelihood for
positioning with perception follows the Gaussian distribution
model p(Lper

r |Lr,Q
per
r ).

The global positioning system, e.g. GPS, provides the
absolute vehicle (resp. VRU) location, La(xveh, yveh) (resp.
La(xvru, yvru)), with a covariance Qa,veh (resp. Qa,vru). As
a result of the V2P communication, the relative location of
the pedestrian can be calculated, Lcom

r (xvru-xveh,yvru-yveh)
with covariance Qcom

r =Qa,veh+Qa,vru, and the likelihood
for positioning with communication follows the Gaussian
distribution model p(Lcom

r |Lr,Q
com
r ).
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C. MHT applied for VRU protection: preliminaries

A road obstacle is represented by its relative position Lr[k],
at a time step k, and its class, C ∈ C. C = {Cj , j = 1, ..., Nc}
is a set of Nc classes of road obstacles (e.g., pedestrian,
vehicle,...).

Let us define a track as a temporal series of consecutive
observations of a dynamic road obstacle in eq. (6).

Tk = (Lr[n], C)n=1,...,k (6)

The perception system provides a set of obstacles detected
around the vehicle, T per

k ={Tper
k,i , i = 1, ..., Nper

k }. The com-
munication system provides a set of communicating obstacles,
T com
k ={Tcom

k,i , i = 1, ..., N com
k }.

Inspired by multi-target tracking where association between
imprecise observations and tracks is central, we propose to
apply MHT [47] to tackle the issue of association between
perception and V2P communication tracks. This method rely
on a probabilistic framework to generate association hypothe-
ses between the two types of obstacles.

Given a cumulative set of input tracks Tk={Tk,i, i =
1, ..., Nk}, at time k, the MHT generates a set of hypotheses
Ωk={Ωj

k, j = 1, ..., Jk} which associates the cumulative set
of tracks with visible or hidden VRUs. As the set of input
tracks is updated, Ωk is generated by considering the possible
combinations between input and output tracks.

An hypothesis Ωj
k can be viewed as a joint hypothesis

formed from a prior hypothesis Ωg
k−1 and an association

hypothesis with the current data ψh. Hence, the probability
of Ωj

k given the measurements up to time k is given in eq. (7)
using the recursive Bayesian formulation.

p(Ωj
k|Tk) = p(Ωg

k−1, ψ
h|Tk)

= 1
np(T [k]|Ωg

k−1, ψ
h)

×p(ψh|Ωg
k−1)p(Ωg

k−1|Tk−1)

(7)

Here,
• p(T [k]|Ωg

k−1, ψ
h) is the likelihood of current tracks states

T [k] given the association hypothesis,
• p(ψh|Ωg

k−1) is the probability of current data association
hypothesis given the prior hypothesis,

• p(Ωg
k−1|Tk−1) is the probability of the prior hypothesis

given the past tracks states,
• n is a normalization term which ensures p(Ωj

k|Tk) sums
to 1.

Fig. 5 illustrates the hypotheses generated from the two
scenarios introduced by Fig 3. In LOS conditions (Fig. 5a),
hypotheses Ω1

k to Ω3
k describe the associations of the com-

municating pedestrian with the three detected obstacles and
hypothesis Ω4

k represents the possibility that the communicat-
ing pedestrian is not detected. With Ω4

k, Tnp
k,1 is called the ”not

perceived” track. In NLOS conditions, hypotheses Ω1
k to Ω3

k

describe the associations of the communicating pedestrian with
the three detected obstacles and hypothesis Ω4

k represents the
possibility that the communicating pedestrian is not detected.

In this work, we apply MHT for the fusion of perception and
V2P communication. More specifically, this paper focuses on
establishing the likelihood term p(T [k]|Ωg

k−1, ψ
h) when the

Tper
k,1423

Tper
k,1101

Tper
k,1344

Ω1
k, p(Ω

1
k|T com

k , T per
k )

Ω3
k, p(Ω

3
k|T com

k , T per
k )

Ω2
k, p(Ω

2
k|T com

k , T per
k )

Tnp
k,1 Ω4

k, p(Ω
4
k|T com

k , T per
k )

Tcom
k,1

(a) LOS condition.

Tper
k,938

Tnp
k,1

Tper
k,1366

Ω1
k, p(Ω

1
k|T com

k , T per
k )

Ω4
k, p(Ω

4
k|T com

k , T per
k )

Ω2
k, p(Ω

2
k|T com

k , T per
k )

Tcom
k,1

Tper
k,1476Ω3

k, p(Ω
3
k|T com

k , T per
k )

(b) NLOS condition.

Fig. 5: MHT example.

current tracks states T [k] are given by perception and V2P
communication systems. The reader interested in expressing
the likelihood term p(ψh|Ωg

k−1) should refer to [47].

D. MHT applied for fusing perception and V2P communica-
tion

1) Definition: The a posteriori distribution
p(Ωj

k|T com
k , T per

k ) of an hypothesis Ωj
k is calculated by

applying eq. (7) to the perception and communication
tracks. In this section, the measurement likelihood term
p(T com

k , T per
k |Ωg

k−1, ψ
h) is expressed as a function of

positioning, classification and possible occlusions.
2) Likelihood of perception to a communication tracks:

Given a combination ψh, Nass,h
k perception tracks are asso-

ciated with communication tracks and Nnp,h
k communicating

obstacles are not perceived.
Let us define Tass

k,i =(Tper
k,l ,T

com
k,m ), a track generated by

associating the perception track Tper
k,l with the communication

track Tcom
k,m , and Tnp

k,i a track, called a ”not perceived” track,
created by a communication track, Tcom

k,m , and no perception
track when the communicating VRU is located in NLOS
condition w.r.t. the vehicle.

Without much loss of generality, we can assume
that communicating VRUs are independent. Hence, the
likelihood of perception and communication tracks,
p(T com

k , T per
k |Ωg

k−1, ψ
h), is expressed as the product of

likelihoods for every association track, Tass
k,i , between

perception and communication, and likelihoods for every ”not
perceived” track, Tnp

k,i in eq. (8).

p(T com
k , T per

k |Ωg
k−1, ψ

h) =
Nass,h

k∏
i=1

p(Tass
k,i |Ω

g
k−1, ψ

h)

×
Nnp,h

k∏
i=1

p(Tnp
k,i|Ω

g
k−1, ψ

h)

(8)
The first term of eq. (8) considers the association of a

perception track Tper
k,l with a communication track Tcom

k,m . The
likelihood of such an association is ruled by the positioning of
the communication obstacle w.r.t. the perception obstacle and
the classification established by the perception system. This
promotes the association of a communicating pedestrian with
an obstacle which has a high chance of being a pedestrian.
Hence, eq. (9) expresses the likelihood term p(Tass

k,i |Ω
g
k−1, ψ

h)
as the probability of the relative positioning of the communi-
cating obstacle, Lcom

r,m [k], given the relative positioning of the
perception obstacle, Lper

r,l [k], and the covariance of positioning
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with communication, Qcom
r,m , weighted by the probability that

the class of the perception obstacle is the class, Ccom
m , of the

communication obstacle.

p(Tass
k,i |Ω

g
k−1, ψ

h) = p(Lcom
r,m [k]|Lper

r,l [k],Qcom
r,m )

×P per
c (Ccom

m )
(9)

The second term of eq. (8) considers the case of commu-
nicating obstacles which are ”not perceived”. The likelihood
of such hypothesis depends on the ratio of the area within the
statistical gate that is occluded as illustrated in Fig. 6.

Vehicle

Occluding obstacle

Communication obstacle

Statistical gate

Tcom
k,i

Zone occluded by
obstacles with an area Aocc

i

with an area Ai

Laser impact

Fig. 6: Likelihood of ”not perceived” track.

Let us define Ai the area of the statistical gate, i.e., the zone
where the VRU might be present, for the communication track
Tcom

k,i and Aocc
i the area of the occluded zone inside this gate.

Aocc
i can be calculated using the sensors data. Indeed, the

point cloud produced by a laser scanner describes the limit
of the vehicle FOV meaning that, for every laser point, the
space between the point and the vehicle is visible as the space
behind the point is occluded. Finally, eq. (10) formulates the
likelihood term p(Tnp

k,i|Ω
g
k−1, ψ

h) as the ratio between the area
of occlusion, Aocc

i , and the total area, Ai, inside the gate,
called ratio of occluded area.

p(Tnp
k,i|Ω

g
k−1, ψ

h) =
Aocc

i

Ai
(10)

3) A posteriori distribution formula: The a posteriori dis-
tribution p(Tass

k,i |Ω
g
k−1, ψ

h) is calculated using eq. (8) for
every hypothesis Ωj

k.
As the number of hypothesis is growing with the appearance

of new perception and communication tracks, it is necessary
to delete hypotheses with a probability below a given fixed
threshold γfus in a so called pruning method.

E. Estimation of VRUs state variables
At each time instant k, an estimation of the state variables

is taken from the hypothesis Ω̂k which has the highest a
posteriori distribution.

Ω̂k = arg max
j=1,...,Jk

(p(Ωj
k|T

com
k , T per

k )) (11)

The estimation of the state of VRUs is done differently
whether a track Tper

k,l is associated with a track Tcom
k,m or a

track Tcom
k,i is ”not perceived”.

Concerning associated obstacles, dynamic parameters, in
our case the relative position Lr, are estimated from percep-
tion, and static parameters, in our case the obstacle class C, are
estimated from V2P communication. Therefore, an associated
track Tass

k,i ∈ T ass
k is described in eq. (12) using parameters

from Tper
k,l and Tcom

k,m .

Tass
k,i = (Lper

r,l [n], Ccom
m )n=1,...,k (12)

Concerning ”not perceived” obstacles, only the parameters
of the V2P communication VRU can be accessed. Conse-
quently, a ”not perceived” track Tnp

k,i ∈ T
np
k is described in

eq. (13) using parameters of the corresponding V2P commu-
nication tracks, Tcom

k,i .

Tnp
k,i = (Lper

r,i [n], Ccom
i )n=1,...,k (13)

(a) LOS condition. (b) NLOS condition.

Communicating pedestrian
Associated track ”Not perceived” track

Fig. 7: Fusion between perception and V2P communication.

Fig. 7 illustrates the output of our fusion algorithm.
In LOS condition (Fig. 7a), an obstacle is classified as

pedestrian by the perception system which generates an hy-
pothesis with a high probability for associating the commu-
nicating pedestrian together with this obstacle. Therefore, the
fusion step outputs an associated track (green square) in this
situation.

In NLOS condition (Fig. 7b), no obstacle is classified as
pedestrian by the perception system and an obstacle classified
as vehicle generates many laser impacts inside the statistical
gate. Consequently, the fusion step outputs a ”not perceived”
track (magenta circle) meaning that the communicating pedes-
trian cannot be seen in the sensor data.

V. EVALUATION

A. Experiment set-up

We evaluate our system in real conditions on the Inria Paris-
Rocquencourt campus as illustrated in Fig. 8.
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Fig. 8: Experiment configuration

In the experiments, a vehicle approaches a pedestrian from
more than 150 m of distance with the speed of appx. 4 m/s in
the following two cases:

• no obstacle exists between the vehicle and the pedestrian
(LOS),

• pedestrian stands behind a parked vehicle, with height of
2 m (NLOS).

Table III lists the functionalities, which are implemented in
the vehicle and the pedestrian’s hand-held device.

TABLE III: Experiment configuration

Laser based obstacle detection [6]:
Vehicle - Angular resolution: 0.25◦

- Frequency: 10 Hz
- Range: 100 m

Pedestrian V2ProVu application for pedestrian protection [23]
Wi-Fi communication:
- Ad-hoc mode

Common - Standard IEEE 802.11g
Features - Transmission power: 24 dBm

- Data rate: 1 Mbps
GPS-based positioning:
- Frequency: 1 Hz

On the vehicle side, the local position of the vehicle is
estimated based on new laser measurement measurements [48]
and fused with the current GPS position to broadcast CAM
packets every 100 ms. On the pedestrian side, the procedures
described in Fig. 2 are made.

LOS results are made of six experiments as NLOS results
are composed of five experiments. Hence, our system has been
tested in total in eleven scenarios containing the two possible
conditions.

For performance investigation, the distance between the
vehicle and the pedestrian is split into distant bins and the
average performances are evaluated for the individual bins.

Detection probability for both perception and communica-
tion and positioning accuracy with V2P communication have
been investigated in [8]. In this paper, we focus on evaluating
perception and communication fusion.

B. Theoretical aspects of perception/communication fusion

The fusion error is calculated in every of the distance bins
defined for the evaluation. The true state of the pedestrian
is used as ground truth when it is available, otherwise, the
distance error is calculated by a penalty term obtained from
positioning error established in [8].

Fig. 9 shows the fusion error for the perception sys-
tem, the communication system, and the theoretical percep-
tion/communication fusion system for all experiments. As
stated in [8], communication system performs better for long
distances and perception system is preferred for low distances.

Distance [m]
0 30 60 90 120 150

E
fu

s [m
]

0

3

6

9

12

15 Perception
V2P Communication
Fusion

Fig. 9: Fusion error with individual systems

A perfect perception/communication fusion system should
benefit from both advantages to have an error equivalent to
the error with communication at large distances and decrease
this error at low distances.

Since the experimental scenarios are not all the same, the
detection and positioning may vary from one test to another
leading to a high confidence interval at medium range, i.e.
between 60 and 90 m. The cooperative system is particularly
interesting at this range because a correct combination of
perception and communication should reduce this confidence
interval and have a lower error than the standalone systems.

C. Detecting LOS and NLOS conditions

In these experiments, a safety system has to detect a
pedestrian who is either in LOS or NLOS conditions w.r.t. the
vehicle. The cooperative VRU protection system has the capa-
bility to deal with both situations by calculating the likelihood
of an association between a perception and a communication
track (eq. (9)) and the likelihood for a communication track
of being ”not perceived” (eq. (10)). Hence, when a single
pedestrian is present, the system can be seen as a detection
system between LOS and NLOS conditions. To evaluate the
impact of each likelihood function, we investigate the obstacle
classification performances which influences eq. (9) and the
occlusion area ratio within the statistical gate which rules
eq. (10).

1) Influence of obstacle classification: The perception sys-
tem classifies pedestrians and non pedestrians based on geo-
metric observations (width, length,...) and the communication
system relies on the received V2P data to classify these users.

A correct classification of the true pedestrian as a pedestrian
is called a true positive (TP), as a classification of another
obstacle as pedestrian is called a false positive (FP). True
Positive Rate (TPR) is determined by the number of correct
classifications over the number of detection of the pedestrian,
and, False Positive Rate (FPR) is defined as the number
of false positives over the total number of non pedestrian
obstacles.

Receiving Operator Characteristics (ROC) is a major metric
that displays TPR vs FPR and evaluates detection systems.
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Fig. 10: Receiving operator characteristics

Fig. 10 shows the ROC curves for the perception system only
and for V2P communication system only.

By varying the parameters, e.g., the expected width, length,
number of impacts of pedestrians in laser sensor data, the
number of TP and FP are modified with the perception system
and the ROC curve is calculated for the perception. The
perception system can almost perfectly classify the pedestrian
at the cost of a high FPR, TPR is greater than 93% for FPR
greater than 30%.

As VRUs are assumed to inform correctly their class with
the application installed in their hand-held device, the ROC
curve with the V2P communication system is ideal with 100%
of TPR at 0% of FPR.

Having too many FP may lead to incorrect associations with
MHT as some obstacles can be considered as the communi-
cating pedestrian. Having a lower number of TP may lead to
take the decision that a pedestrian is ”not visible” when it is
detected by the perception system but not classified correctly.
Finally, as the fusion relies on a classification score in eq. (9),
good performances of the perception system is required for
the fusion algorithm. Any classification error will degrade the
ideal fusion error introduced in this paper. It is worth noting
that our perception system is quite simple and computationally
not expensive. If we want to get better performances, using
vision techniques can be a complementary solution [5].

2) Influence of occlusion: The ratio of occluded area ap-
pears in eq. (10) as the parameter which controls the weight
of the hypothesis for a ”not perceived” pedestrian. With our
system, this ratio can be calculated from laser measurements
by counting the ratio of laser impacts which are in front of
the statistical gate over the maximum number of laser impacts
which could fall in this gate.
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Fig. 11: Ratio of Occluded Area

Fig. 11 shows the ratio of occluded area versus the vehicle-
pedestrian distance for LOS and NLOS scenarios. In every
condition, this value decreases as the vehicle-pedestrian dis-
tance reduces.

NLOS conditions do not have much influence on the oc-
cluded area ratio. Only 2% of difference is seen between LOS
and NLOS conditions at 75 m. This is because, our parked
vehicle has a width of 1.5 m which is small compared to the
gate of the communication track which has a diameter of 15 m.

In summary, in both LOS and NLOS conditions,
• when the distance is high, likelihood that the obstacle is

occluded is high, resulting in more chance to conclude
that the communicating obstacle is ”not perceived”,

• when the distance is low, likelihood that the obstacle is
occluded is low, resulting in more chance to associate the
communicating obstacle with a perception track.

D. Applicability of the cooperative protection system

In Fig. 9, we showed the theoretical application error with
a perception/communication fusion. In real conditions, this
application error can be greater than the theoretical one due
to an association between the communicating pedestrian and
an incorrect perception obstacle. Fig. 12 illustrates the exper-
imental application error for both LOS and NLOS scenarios.
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Fig. 12: Fusion error with the cooperative system

In LOS scenarios, experimental results show the applica-
tion error decreases down to 0.9 m with vehicle-pedestrian
distance. However, the existence of a large amount of obstacle
within the gate of the communicating pedestrian can lead to
incorrect associations during the fusion step. Particularly, at
distances above 40 m, the pedestrian is not always recognized.
Therefore, the communicating pedestrian may be associated
to resembling obstacles such as trees or posts as shown by
the higher value of the fusion error between 40 and 60 m.
Despite the imprecision of the cooperative system, it enhances
the fusion error of the perception system only for distances
above 70 m and it has the ability to detect pedestrians who
are not visible from the vehicle.

In NLOS scenarios, different weather conditions (less
clouds and no rain) during the experiments have conducted
to better performances at long range. In these cases, the
occlusion by the parked vehicle generates associations with
wrong obstacles, especially below 40 m, when the influence of
occlusion is low (see Fig. 11). Finally, the error is of 5 m at
30 m range. Improving the accuracy of the positioning system
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and the modeling of the occlusion term would allow to reduce
the fusion error in NLOS conditions.

E. Discussion

In this paper, we introduced an approach for fusing percep-
tion V2P communication data by weighting information from
these two systems and selecting the one with highest probabil-
ity. A more selective approach could have been to choose the
input information source based on the distance as it was shown
in Fig. 9 that V2P communication distance performs better for
distances above 70 m and perception system is better below
this distance. However, such approach would be efficient only
when the VRU is visible from the vehicle as the proposed
system can also handle the case where the VRU is hidden by
an obstacle.

In addition, the cooperative VRU protection system provide
redundant information to benefit from each individual system
in various conditions:

• compared to a system based only on perception, the
cooperative protection system is able to give an alert even
when a pedestrian is not visible w.r.t. the vehicle,

• compared to a system based only on communication, the
cooperative approach is able to overcome the limitations
of GPS localization system by having an error of less
than 3 m below 30 m of distance.

However, our approach still lacks of precision for correctly
identifying a communicating pedestrian due to imprecision of
the classification with perception and due to an imprecise GPS
localization with V2P communication.

Here, only the communicating pedestrian is assumed to
be present in the surrounding environment of the vehicle.
However, in real conditions, ”not communicating” VRU can
also be present and should be detected by a protection system.
Thus, more research is needed to distinguish different kind of
users and make the correct associations between perception
and communication data. Adding new features for describing
VRUs, using sensors such as cameras both on the vehicles and
in the road infrastructure could be of interest to improve the
performances of such cooperative approaches.

VI. CONCLUSION

This paper introduces a new cooperative system for VRU
protection that exploits the strengths of both the perception
and communication mechanisms. We present a method for in-
formation fusion between perception and V2P communication.
This study shows that an ideal fusion between perception and
V2P communication should benefit from both systems. We
showed accurate classification by the perception and precise
absolute positioning with the communication systems are the
main limitations of current approaches.

Our future work includes 1) an extension of our system to
more complex scenarios, i.e., with more VRUs and vehicles
2) development of fusion mechanisms which can deal with
information that may not be temporally synchronized due
to communication delays 3) investigation of the LDM for a
more efficient management of the information provided by
the internal vehicle system and by vehicular communications

and 4) benchmark of the proposed approach with commercial
pedestrian detection system.
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[4] D. Gerónimo, A. M. López, A. D. Sappa, and T. Graf, “Survey of
pedestrian detection for advanced driver assistance systems.” IEEE
transactions on pattern analysis and machine intelligence, vol. 32, no. 7,
pp. 1239–58, 2010.

[5] P. Dollar, C. Wojek, B. Schiele, and P. Perona, “Pedestrian Detection:
An Evaluation of the State of the Art,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 34, no. 4, pp. 743–761, 2012.

[6] G. Gate, A. Breheret, and F. Nashashibi, “Centralized fusion for fast
people detection in dense environment,” in IEEE International Confer-
ence on Robotics and Automation (ICRA), 2009.

[7] P. Merdrignac, E. Pollard, and F. Nashashibi, “2D Laser Based Road
Obstacle Classification For Road Safety Improvement,” in IEEE Interna-
tional Workshop on Advanced Robotics and its Social Impacts (ARSO),
2015.

[8] P. Merdrignac, O. Shagdar, I. Ben Jemaa, and F. Nashashibi, “Study
on Perception and Communication Systems for Safety of Vulnerable
Road Users,” in 18th IEEE International Conference on Intelligent
Transportation Systems (ITSC), 2015.

[9] M. Tons and R. Doerfler, “Radar sensors and sensor platform used
for pedestrian protection in the EC-funded project SAVE-U,” in IEEE
Intelligent Vehicles Symposium (IV), 2004.

[10] K. Manston, “The Challenges Of Using Radar For Pedestrian Detection,”
in The 16th JCT Traffic Signal Symposium, 2011.

[11] B. Clarke, S. Worrall, G. Brooker, and E. Nebot, “Towards mapping of
dynamic environments with FMCW radar,” in IEEE Intelligent Vehicles
Symposium (IV), 2013.

[12] F. Bu and C. Y. Chan, “Pedestrian Detection in Transit Bus Application:
Sensing Technologies and Safety Solutions,” in IEEE Intelligent Vehicles
Symposium (IV), 2005.

[13] A. Ewald and V. Willhoeft, “Laser scanners for obstacle detection in
automotive applications,” in IEEE Intelligent Vehicles Symposium (IV),
2000.

[14] K. C. Fuerstenberg, K. C. J. Dietmayer, and V. Willhoeft, “Pedestrian
recognition in urban traffic using a vehicle based multilayer laserscan-
ner,” in Proceedings of the IEEE Intelligent Vehicles Symposium, 2002,
2002.

[15] B. Schwarz, “LIDAR: Mapping the world in 3-D,” Nature Photonics,
vol. 4, no. 7, 2010.

[16] D. M. Gavrila, J. Giebel, and S. Munder, “Vision-based pedestrian detec-
tion: the PROTECTOR system,” in IEEE Intelligent Vehicles Symposium
(IV), 2004.

[17] I. P. Alonso, D. F. Llorca, M. A. Sotelo, L. M. Bergasa, P. Revenga De
Toro, J. Nuevo, M. Ocana, and M. A. Garcia Garrido, “Combination
of feature extraction methods for SVM pedestrian detection,” IEEE
Transactions on Intelligent Transportation Systems, vol. 8, no. 2, pp.
292–307, 2007.

[18] M. Enzweiler and D. M. Gavrila, “Monocular Pedestrian Detection:
Survey and Experiments,” IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 31, no. 12, pp. 2179–2195, 2009.

[19] M. Bertozzi, A. Broggi, and P. Grisleri, “Pedestrian detection in infrared
images,” in IEEE Intelligent Vehicles Symposium (IV), 2003.

[20] C. Bellotti, F. Bellotti, A. De Gloria, L. Andreone, and M. Mariani,
“Developing a near infrared based night vision system,” in IEEE
Intelligent Vehicles Symposium (IV), 2004.

[21] K. David and A. Flach, “Car-2-X and pedestrian safety,” IEEE Vehicular
Technology Magazine, vol. 5, no. 1, pp. 70–76, 2010.



IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS 11

[22] ETSI TS 102 637-2; Intelligent Transport Systems (ITS); Vehicular
communications; Basic set of Applications; Part 2: Specification of
Cooperative Awareness Basic Service, Std., Mar. 2011, v1.2.1.

[23] J. Anaya, P. Merdrignac, O. Shagdar, F. Nashashibi, and J. Naranjo,
“Vehicle to Pedestrian Communications for Protection of Vulnerable
Road Users,” in IEEE Intelligent Vehicle Symposium (IV), 2014.

[24] ETSI TS 102 637-3; Intelligent Transport Systems (ITS); Vehicular
communications; Basic set of Applications; Part 3: Specifications of
Decentralized Environmental Notification Basic Service, Std., Sept.
2010, v1.1.1.

[25] EU, Directive 2010/40/EU of the European Parliament and of the
Council, Std., July 2010, 2008/0263/COD.

[26] ISO 21217:2010; Intelligent transport systems - Communications access
for land mobiles (CALM) - Architecture, Std., Apr. 2010.

[27] ETSI TR 102 638; Intelligent Transport Systems (ITS); Vehicular com-
munications; Basic set of Applications, Std., Sept. 2010, v1.0.4.

[28] IEEE Standard for Information technology — Telecommunications and
information exchange between systems — Local and metropolitan area
networks — Specific requirement, Part 11: Wireless LAN Medium
Access Control (MAC) and Physical Layer (PHY) Specifications, IEEE
Computer Society Std., July 2010, iEEE Std 802.11p-2010.

[29] C. Sugimoto, Y. Nakamura, and T. Hashimoto, “Prototype of pedestrian-
to-vehicle communication system for the prevention of pedestrian ac-
cidents using both 3G wireless and WLAN communication,” in 3rd
International Symposium on Wireless Pervasive Computing, 2008.

[30] D. Ikeda, M. Horie, R. Yamaguchi, T. Wada, and H. Okada, “An Effec-
tive Detection Algorithm of the Relative Movement between Vehicles
and Pedestrians in VPEC,” in Second ACM international workshop on
Wireless network testbeds, experimental evaluation and characterization,
2007.

[31] M. Bagheri, M. Siekkinen, and J. K. Nurminen, “Cellular-based Vehicle
to Pedestrian ( V2P ) Adaptive Communication for Collision Avoid-
ance,” in 3rd International Conference on Connected Vehicles & Expo
(ICCVE), 2014.

[32] ETSI TS 102 863; Intelligent Transport Systems (ITS); Vehicular com-
munications; Basic set of Applications; Local Dynamic Map (LDM);
Rationale for and guidance on standardization, Std., June 2011, v1.1.1.

[33] ETSI TS 102 636-1; Intelligent Transport Systems (ITS); Vehicular
communications; GeoNetworking; Part 1: Requirements, Std., Mar.
2010, v1.1.1.

[34] H. Li, M. Tsukada, F. Nashashibi, and M. Parent, “Multivehicle Coop-
erative Local Mapping: A Methodology Based on Occupancy Grid Map
Merging,” IEEE Transactions on Intelligent Transportation Systems, pp.
1–12, 2014.

[35] G. Challita, S. Mousset, F. Nashashibi, and A. Bensrhair, “An application
of V2V communications : Cooperation of vehicles for a better car
tracking using GPS and vision systems,” in IEEE Vehicular Networking
Conference (VNC), 2009.

[36] E. Pollard and D. Gingras, “Improved Low Cost GPS Localization By
Using Communicative Vehicles,” in 12th International Conference on
Control, Automation, Robotics and Vision (ICARCV), 2012.

[37] M. Obst, L. Hobert, and P. Reisdorf, “Multi-Sensor Data Fusion
for Checking Plausibility of V2V Communications by Vision-based
Multiple-Object Tracking,” in IEEE Vehicular Networking Conference
(VNC), 2014.

[38] N. E. Zoghby, V. Cherfaoui, and T. Denoeux, “Evidential Distributed
Dynamic Map for Cooperative Perception in VANets,” in IEEE Intelli-
gent Vehicles Symposium (IV), 2014.

[39] S. Demmel, “Building an Augmented Map for Road Risk Assessment
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