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ABSTRACT
We introduce Approximate Unrolling, a loop optimiza-
tion that reduces execution time and energy consumption,
exploiting the existence of code regions that can endure some
degree of approximation while still producing acceptable re-
sults. This work focuses on a specific kind of forgiving re-
gion: counted loops that map a given functions over the
elements of an array. Approximate Unrolling transforms
loops in a similar way Loop Unrolling does. However, un-
like its exact counterpart, our optimization does not unroll
loops by adding exact copies of the loop’s body. Instead, it
adds interpolations.

We describe our experimental implementation of Approx-
imate Unrolling in the Server (C2) Compiler of the Open-
JDK Hotspot JVM. The choice to implement our technique
directly in the compiler reduced Phase Order problems and
transformation overhead. It also proved that our technique
could actually improve the performance of a production-
ready compiler. Using our modified version of the com-
piler, we perform several experiments showing that Ap-
proximate Unrolling is able reduce execution time and
energy consumption of the generated code by a factor of
50% with minimal accuracy losses.

Keywords
approximate computing; compiler optimizations; loop un-
rolling

1. INTRODUCTION
Approximate computing exploits the fact that some com-

putations can be made less precise and still produce good
results in order to reduce execution times and energy con-
sumption [25]. Previous works in the field have proven that
when small reductions in accuracy are acceptable, significant
improvements in execution times and energy consumption
can be achieved [41]. Opportunities for approximation arise
all along the stack and researchers have proposed techniques
to approximate in both hardware and software.
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Hardware-oriented approximation techniques have proposed
components with approximation capabilities, such as FPUs
[38], adders [16, 33] and memories [10, 20]. They also ex-
ploit the inherent non-determinism of existing hardware as
sensors [21] and wireless adapters [32] and some even ex-
pose it to developers [7, 36]. On the software-oriented side
of approximate computing, the proposed techniques mod-
ify existing algorithms automatically [34, 24, 28] or provides
support for programming with approximation via language
design [23, 30], frameworks [6, 7] and compilers [4].

In this work we describe a loop optimization, namely Ap-
proximate Unrolling, that uses the ideas of approximate
computing to reduce execution times and energy consump-
tion of loops mapping values to arrays. These loops are
commonly encountered in programs that process signals and
that exploit heuristics. In addition, these loops account for
a large part of the computation, e.g., the loops that we an-
alyze in our case study are executed millions of times in a
few seconds. Consequently, saving resources on these loops
can have a major impact on the program’s consumption, as
long as the results remain acceptable for the users.

The key insight of Approximate Unrolling relies on
the following observation: data such as time series, sound,
video and 3D Meshes are frequently represented as arrays
where contiguous slots contain similar values. As conse-
quence of this neighboring similarity, computations produc-
ing this data are usually locally smooth functions. In other
words, computations producing or modifying nearby array
values representing these kinds of data frequently yield sim-
ilar results.

Our technique exploits this observation by searching for
loops where computations results are assigned to contiguous
array slots in each iteration. Then, we substitute some of
these computations by inexpensive interpolations of the val-
ues assigned to nearby array values. In exchange for this loss
in accuracy, we obtain a faster and less energy consuming
loop.

To substitute iterations, Approximate Unrolling works
in a similar way as Loop Unrolling. Yet, instead of un-
rolling by adding exact copies of the loop’s body, it adds
code that interpolates the computations performed by the
original loop, creating approximate iterations that interpo-
late some mappings. The code of the approximate iteration
is minimal, thus reducing execution time and energy con-
sumption of the whole loop.

We have modified the OpenJDK Java Server (C2) com-
piler to include Approximate Unrolling as a machine-
independent optimization. All machine-independent opti-



mizations (and therefore ours as well) reshape the C2’s in-
ternal representation of a program to obtain an optimized
version of the same program. Approximate Unrolling
performs an static analysis over the C2’s Internal Represen-
tation (IR) to find loops matching certain pattern. Then,
those loops are transformed by reshaping the C2’s IR.

Our initial implementation of Approximate Unrolling
relied on source code and bytecode transformations. Unfor-
tunately this led to a phase ordering problem, breaking other
compiler optimizations and failing to gain the expected per-
formance. We then decided to implement the optimization
directly in the compiler, allowing us to respect the existing
phase order. This also reduced the overhead since we had a
direct access to the internal representations provided by the
compiler. In addition, this gives us garantees about the fact
that Approximate Unrolling can actually has an impact
on the performance of a highly optimized code created by
production-ready compiler.

Our experiments shows that Approximate Unrolling is
able to reduce the execution time and energy consumption
of the x86 code generated around 50% to 80% while reducing
the accuracy to acceptable levels.

The contributions of this work are:

• Approximate Unrolling, an approximate loop trans-
formation

• A formal specification of loops targeted by Approxi-
mate Unrolling and of the behavior of the transfor-
mation

• An efficient implementation of Approximate Un-
rolling inside the OpenJDK Hostpot VM.

• An empirical assessment of the effectiveness of Ap-
proximate Unrolling to trade accuracy for time and
energy savings.

The rest of the paper is organized as follows, in section 2
we describe our optimization and its scope. We then detail
our implementation in section 3 and our evaluation in sec-
tion 4. Section 6 describes how Approximate Unrolling
compares with other approximate computing techniques and
finally section 7 concludes.

2. APPROXIMATE UNROLLING
In this section we describe the main contribution of our

paper, which is the Approximate Unrolling approximate
loop optimization. We first introduce the intuition of the
optimization using the toy example of listing 1. Afterwards,
we formally characterize the loops that Approximate Un-
rolling can target. Finally, we introduce the formal seman-
tics governing the proposed optimization.

2.1 Illustrating Example
Approximate Unrolling creates an alternative version

of the loop by unrolling it with operations that interpolate
the computations performed in the loop’s original body. We
propose two variants: linear or nearest neighbor interpola-
tions. Both are supported by our implementation, which is
able to choose one single transformation for each loop.

The loop of listing 1 will serve to illustrate both trans-
formations. The loop maps a sine wave into an array and
belongs to a music synthesizer. Conceptually, the example

loop transformed by Approximate Unrolling using linear
interpolation looks like the one in listing 2, while the same
loop approximated with nearest neighbor looks like the one
in listing 3. The output of these loops is depicted in figure
1.

@Approximate double A[] = new double[N];
double stride = Math.PI * 2 / N;
for ( int i = 0; i < N; i++ )

A[i] = Math.sin(i * stride);

Listing 1: A loop mapping a sine wave into an array

double A[] = new double[N];
double stride = Math.PI * 2 / N;
A[0] = Math.sin(0);
for ( int i = 2; i < N; i += 2 ) {

A[i] = Math.sin(i * stride);
A[i - 1] = (A[i] + A[i-2]) * 0.5f; }

i f (i == N)A[i-1] = Math.sin((i - 1) *
stride);

Listing 2: The loop of listing 1, transformed by
Approximate Unrolling using linear interpolation

double A[] = new double[N];
double stride = Math.PI * 2 / N;
for ( int i = 0; i < N; i += 2 ) {

A[i] = Math.sin(i * stride);
A[i + 1] = A[i]; }

Listing 3: The loop of listing 1, transformed using
nearest neighborg interpolation

Figure 1: Sine waves generated by the motivation
examples. The upper wave is generated by the loop
of listing 1, while the middle and lower ones are
generated by loops of listing 2 and 3, respectively.

As the modified loop of listing 2 shows, when using linear
interpolation, Approximate Unrolling adds code to the
loop’s body that interpolates the computations of the odd
iterations as the mean of the even ones(the computations of
iteration one are interpolated using the results of iterations
zero and two, computations of iteration three are interpo-
lated using the results of two and four and so on). Initially,
Approximate Unrolling peels iteration zero of the loop.
Then, it modifies the initialization and updates the state-
ments to double the increment of the loop’s counter variable.
As result of this, if the original loop performed an even num-
ber of iterations, the last iteration would not be performed.
To cover for this case, Approximate Unrolling also peels
the last iteration.

The procedure with nearest neighbor is quite similar, Ap-
proximate Unrolling only modifies the update statement
to double the increment of the loop’s counter variable. It
also adds code with the nearest neighbor interpolation at
the end of the loop’s body.



i, n ∈ Z B ∈ {expression} [[B]] ∈ {true, false} t body = C I0, C ⊂ {statement} ξ = 〈B, i := i+ n,C〉

Figure 2: Common definitions and rules used by both linear and nearest neighbor transformations

ForL
(ForL(I0, B, i := i+ n) C, σ)→ (I0; if (B)Pre(ξ) else SKIP, σ)

ExL
(ExL(ξ), σ)→ (i := i+ 2 ∗ n; if (B)C;AprxL(ξ) else Post(ξ), C, σ)

AprxL
(AprxL(ξ), σ)→ (a[i− n] := (a[i] + a[i− 2 ∗ n]) ∗ 0.5;ExL(ξ), σ)

Pre
(Pre(ξ), σ)→ (C;ExtL(ξ), σ)

Post
(Post(ξ), σ)→ (i := i− n; if (B)C; i := i+ n; else SKIP, σ)

Figure 3: Small step SOS of Approximate Unrolling using linear interpolation

ForN
(ForN (I0, B, i := i+ n) C, σ)→ (I0;ExN (ξ), σ)

ExN
(ExN (ξ), σ)→ (if (B)C;AprxN (ξ), else SKIP, σ)

AprxN
(AprxN (ξ), C, σ)→ (i := i+ n; if (B)a[i] := a[i− 1]; i := i+ n;ExN (ξ) else SKIP, σ)

Figure 4: Small step SOS of Approximate Unrolling using nearest neighbor

〈target for〉 ::= ‘for’ ‘(’ 〈expression〉 ‘;’ 〈expression〉 ‘;’
〈update expression〉 ‘)’ 〈t body〉

〈update expr〉 ::= 〈identifier〉 ‘+=’ 〈integer〉

〈t body〉 ::= ‘{’ 〈statement〉 〈array assign〉 〈statement〉 ‘}’

〈array assign〉 ::= 〈expression〉 ‘[’ 〈index expr〉 ‘]’ ‘=’
〈expression〉

〈index expr〉 := 〈expression〉

Grammar 1: Grammar of for loops targeted by Ap-
proximate Unrolling

2.2 Target Loops
Our optimization targets the subset of Java for loops that

(i) have an update expression that increments or decrements
a variable by a constant value (ii) contain an array assign-
ment inside its body (iii) the indexing expression of the array
assignment is value-dependent on the loop’s update expres-
sion.

We now use Backus-Naur form to formalize the syntax
of the loops abiding to (i) and (ii), while (iii) is formalized
using data flow equations. For the sake of simplicity, we only
show the case in which the variable is being incremented. It
should not be difficult for the reader to derivate these rules
for the case in which the variable is being decremented.

Grammar 1 shows the BNF rules defining the kind of loops
Approximate Unrolling can target. In the grammar, the
non-terminal rules 〈expression〉, 〈identifier〉, 〈integer〉 and
〈statement〉, define the Java expressions, identifiers, inte-

ger literals and statements respectively. Rule 〈target for〉
describes the loops targeted by Approximate Unrolling.
The rule introduces two other non-terminals. The first non-
terminal: 〈update expr〉 describes the expected update ex-
pression or the loop, consisting in a variable being incre-
mented by a literal value, while 〈t body〉 describes a list of
statements containing at least one array assignment, which
are described using the 〈array assign〉 non-terminal.

The 〈index expr〉 rule reduces to a Java expression and
facilitates the formalization of condition (iii), which we do
as follow: let L be a loop conforming to Grammar 1, let AL

be the set of expressions inside the body of L conforming to
〈index expr〉 and let UL represent the update expressions
conforming to 〈update expr〉 for the same loop L. Also, let
REACH(X) be the reaching definitions set [13] data-flow
equation for a given expression. We say (iii) holds if:

∃ ai ∈ AL : UL ∈ REACH(ai) (1)

To recapitulate, loops targeted by Approximate Un-
rolling are those loops conforming to grammar 1 for which
equation (1) holds.

As example, the loop of listing 1, conforms to grammar 1.
The rule 〈update expr〉 reduces to ‘i++’, while rule 〈t body〉
reduces to a single 〈array assign〉 statement: ‘A[i] =...’.
Finally, 〈index expr〉 reduces to ‘i’. Is also true that equa-
tion (1) holds for the loop. There, AL ={‘i’}, UL =‘i++’
and REACH(i) = UL.

2.3 Transformation’s Operational Semantics
Figures 3 and 4 show the operational semantics for Ap-

proximate Unrolling in small step operational style. The
rules in figure 3 specify the transformations for the linear
interpolation, while the rules in 4 the transformations for
the nearest neighbor. Finally, figure 2 provides a group of



rules and definitions used to define the semantics of both
transformations. As with the syntactic part, to keep the
rules simple, we only describe the case in which the variable
is incremented.

As defined in Figure 2, B is a boolean Java expression and
I0, C are sets of Java statements. I0 represents the initial-
ization statements, while C the loop’s body. The tuple ξ is
a syntactical sugar to make the rules more compact. We use
the common definitions for rules SKIP, ASSIGNMENT,
SEQUENCE and IF.

2.3.1 Rules For the Linear Transformation
In this subsection we describe the semantic rules of the

linear transformation as follows:
ForL. The ForL rule interpret a loop using linear inter-

polation. The rule reduces to the interpretation of the loop’s
initialization statement I0 and if predicate B holds, rule Pre
is interpreted.

Pre. As shown in listing 1 the loops approximated us-
ing linear interpolation have iteration zero peeled. This rule
represents such initial peeled iteration. It reduces to the
interpretation of the loop’s body once, without any modifi-
cations. Then, the exact part of the loop (described by rule
ExtL) is called.

ExtL. This rule represents one loop’s exact iteration. The
odd iteration is skipped by doubling the incrementing of the
counter variable (i := i+2n), then if predicate B still holds,
an exact iteration of the loop is executed. Next, the code
approximating intermediate values is called in rule AprxL.

AprxL. Approximate the value of odd arrays slots. The
approximation is found as the mean of the previous and
following values of the approximate slot, the value of the
even iteration array slot is calculated as:
a[i− n] := (a[i] + a[i− 2n]) ∗ 0.5.
Notice that the counter’s variable i was incremented twice

to skip the approximate iteration in the exact one, therefore
the odd slot must be accessed now using index i−n and the
previous even slot using index i− 2n.

Post As the initial iteration is peeled and the counter’s
variable value is doubled to unroll the loop, when the amount
of iterations in the original loop is an even number, the last
iteration of the loop is not executed. To solve this, one last
iteration is peeled and appended after the loop.

2.3.2 Rules For the Nearest Neighbor
Similarly to what we did for the linear transformation, in

this section we describe the semantic rules for the nearest
neighbor transformation.

ForL. The ForL rule transforms a loop using nearest
neighbor interpolation. The rule can be reduced to the ex-
ecution of the initialization statements I0, followed by the
execution of ExN .

ExN This rule executes an exact iteration of the loop if
the predicate B holds, then it calls AprxN .

AprxN The rule increment the counter variable, approx-
imates one array slot by setting its value equal to the one
calculated before and then it increments the variable again.
Finally ExN is called. Unlike linear interpolation, the rule
is supposed to approximate the value of the array assigned
in the even iteration.

3. IMPLEMENTATION
This section describes our experimental implementation of

Approximate Unrolling in the C2 compiler of Hostpot.
The Hostpot V.M. is used by billions of devices today.

It come packed with two compilers: C1 (or Client) and C2
(or Server). When a program starts to run, the bytecode
is interpreted. The segments of code executed frequently
(hot), are compiled using C1 or C2, depending on how ’hot’
the code is. C2 is slower, but creates faster code.

We choose to implement Approximate Unrolling di-
rectly in the C2 because our initial source code manipula-
tion techniques failed to improve performance as they forbid
other optimizations. The fact that the optimization order
influences the quality of the code (a. k. a Phase Ordering
problem) is a well known issue[17] in compiler design. Imple-
menting Approximate Unrolling in the compiler also re-
duced the implementation’s overhead as otherwise we would
have need to create data structures such as the value depen-
dency graph already provided by the compiler. Also, imple-
menting the optimization in the C2, we provide support for
other JVM languages such as Scala. Finally, this implemen-
tation showed that we could improve the performance of a
production-ready compiler.

3.1 Approach overview
Approximate Unrolling is a machine independent op-

timization. This kind of optimization operates by reshaping
the Ideal Graph, which is the internal representation (IR) of
the C2 compiler.

In a nutshell, our implementation for nearest neighbor
works as follows: the Ideal Graph contains nodes represent-
ing operations very close to assembler instructions. Nodes
are linked by edges representing data dependencies . In the
graph, there is a node type called Store that represents a
storage to memory. Our transformation is performed after
the compiler performs the ‘regular’ Loop Unrolling. During
the unrolling, each node in the loop’s body gets duplicated,
resulting in one extra node for each unrolled iteration. Let
us consider StoreA, a node representing a value storage into
memory owned by an array. Before the unrolling there is
only one node, StoreA, after the unrolling there are node,
StoreA and StoreB. If we find nodes like StoreA and StoreB

in a loop body, we disconnect one of the Store nodes (say
StoreA) of all its value-dependencies and connect to the
value-dependencies of the other (say StoreB), resulting in
both Store storing the same value in two different array
slots. Then, we delete of all nodes on which StoreA was
originally value-dependent, removing most computations of
one iteration. For linear interpolation the process is very
similar, the only difference is that some nodes are added
and connected to StoreA to perform the mean calculation.

During the rest of the section we expand on this process,
we first describe the internal representation of the Compiler,
the Ideal Graph, then we go in details of our implementation
and exemplify it using a toy loop. Our modified version of
the Hostpot JVM is available on the webpage of the Ap-
proximate Unrolling project 1

3.2 The Ideal Graph
The C2’s internal representation is called the Ideal Graph

(IG) [12]. It is a Program Dependency Graph [14]. All C2’s

1https://github.com/approxunrollteam

https://github.com/approxunrollteam


machine independent optimizations work by reshaping this
graph.

In the Ideal Graph (IG), nodes are objects and hold meta-
data used by the compiler to perform optimizations. Nodes
in this graph represent instructions as close as possible to
assembler language (i.e. AddI for integer addition and MulF

for float multiplication). The IG metamodel has nearly 380
types of nodes. We deal with five of them: Store, Counted-
Loop, Phi, Add and Mul.
Store nodes represent storages into memory. They con-

tain metadata indicating the type of variable holding the
memory being written, making it easy to identify Store

nodes writing to arrays. The Ideal Graph is in Static Sin-
gle Assignment (SSA) form and the Phi nodes represent the
φ functions of the SSA. CountedLoop represents the first
node of all the loops that Approximate Unrolling can
target. The CountedLoop type contains two important meta-
data for our implementation: a list of all nodes representing
the loop’s body instructions and a list with all nodes of the
update expression. Finally Add and Mul nodes represents the
addition and multiplication operations.

Nodes in the IG are connected by control edges and data
edges. Yet, data edges are the most important ones for our
implementation, and we will refer to this kind of node ex-
clusively, unless noted otherwise. Data edges describe value
dependencies, therefore the IG is also a directed Value De-
pendency Graph [3]. If a node B receives a data edge from a
node A, it depends on the value produced by A. Edges are
pointers to other nodes and contain no information. Edges
are stored in nodes as a list of pointers. The edge’s position
in the list usually matters. For example, in Div (division)
nodes the edge in slot 1 points to the dividend and the edge
in slot 2 points to the divisor.

The Store requires a memory address and a value to be
stored in the address. The memory edge eM is stored at
index 2 and the value edge eV at index 3. Edge eM links the
Store with the node computing the memory address where
the value is being written, while eV links the Store with the
node producing the value to write.

Let us consider the very simple example of listing 4,. The
resulting IG for this loop is shown in figure 5. In the figure,
the StoreI represents the assignment to A[i], the MulI node
represents the i*i expression. The address is resolved by the
nodes in the Cluster A (containing the LShift node).

for ( int i = 0; i < N; i++ )
A[i] = i * i;

Listing 4: Example loop for the implementation

3.3 Detecting Target Loops
Section 2.2 formally described the shape of loops targeted

by the proposed optimization. This section describes how
our implementation detects them in the IG.

Section 2.2 defined the loops Approximate Unrolling
can target. Fortunately, Java for loops having a constant-
increment update expression are also the target of other
well known optimizations such as Range Check Elimination
and Loop Unrolling. Therefore, the C2 recognizes them and
marks their start using CountedLoop nodes. When our opti-
mization kicks in, the compiler has already marked the loops
with CountedLoop nodes, recognized the nodes belonging to
the update expression and the ones belonging to the loop’s
body. The compiler does this using the works of Click[11],

Figure 5: The ideal graph of the example loop of
listing 4. Dashed arrows represent control edges and
solid arrows represents data edges.

Vick, [40] and Tarjan [37]. Figure 5 shows the CountedLoop

recognized by the C2 for the loop in listing 4. The nodes
in the graph are those listed in the CountedLoop metadata.
This metadata also indicates that the update expression con-
tains solely the AddI node (in gray).

Once the loops with constant-increment update expression
are detected, the next step consists in determining if there is
an array who’s index expression value depends on the loop’s
update expression. As we mentioned, the CountedLoop node
maintains a list of all the nodes in its body. To determine
if there is an array assignment within the loop, we look for
a Store writing to memory occupied by an array. In the
example of figure 5 we find the StoreI node (in gray).

Finally, we check if the array index expression value de-
pends on the loop’s update expression. As the IG is a Value
Dependency Graph, we look for a path of data edges be-
tween the Store node representing the array assignment
and any node belonging to the loop’s update expression. In
the example of figure 5 this path is highlighted using bold
gray edges. Thanks to the metadata stored in CountedLoop,
we know that the update expression only contains the AddI

node. Therefore, in the example, the path is composed of
the following nodes: AddI → Phi → CastII → ConvI2L

→ LShiftL → AddP → AddP → StoreI.

3.4 Unrolling
Our implementation piggybacks in two optimizations al-

ready present in the C2 compiler: Loop Unrolling and Range
Check Removal. At the point Approximate Unrolling
kicks in, the compiler has already unrolled the loop and per-
formed Range Check Removal.



Figure 6: The ideal graph for the unrolled loop of listing 4 before approximating. Solid arrows represent
data edges.

1 B8: #
2 movl [RCX + #16 + R9 << #2], R8 # int
3 movl R9, R10 # spill
4 addl R9, #3 # int
5 imull R9, R9 # int
6 movl R8, R10 # spill
7 incl R8 # int
8 imull R8, R8 # int
9 movl [RCX + #20 + R10 << #2], R8 # int

10 movl RDI, R10 # spill
11 addl RDI, #2 # int
12 imull RDI, RDI # int
13 movl [RCX + #24 + R10 << #2], RDI # int
14 movl [RCX + #28 + R10 << #2], R9 # int
15 addl R10, #4 # int
16 movl R8, R10 # spill
17 imull R8, R10 # int
18 cmpl R10, R11
19 jl,s 7

Listing 5: Assembler code generated for the example
loop without using Approximate Unrolling

1 B7: # B8 <- B8 top-of-loop Freq: 986889
2 movl RBX, R8 # spill
3 B8: #
4 movl [R11 + #16 + RBX << #2], RCX # int
5 movl [R11 + #20 + R8 << #2], RCX # int
6 movl RBX, R8 # spill
7 addl RBX, #2 # int
8 imull RBX, RBX # int
9 movl [R11 + #24 + R8 << #2], RBX # int

10 movl [R11 + #28 + R8 << #2], RBX # int
11 addl R8, #4 # int
12 movl RCX, R8 # spill
13 imull RCX, R8 # int
14 cmpl R8, R9
15 jl,s B7

Listing 6: Assembler code for the example loop
using Approximate Unrolling

While unrolling, the compiler clones all the instructions
of the loop’s body. Figure 6 shows the IG once the loop of
listing 4 has been unrolled. The cloning process introduces
two Store nodes: StoreI and StoreI-Cloned. Due to C2’s
design, the cloned nodes belong to the even iteration of the
loop. Once the loop is unrolled, Approximate Unrolling
reshapes the graph to achieve the interpolated step by mod-
ifying one of the two resulting iterations. Nearest Neighbor
modifies the even iteration, while Linear interpolation re-
shapes the odd iteration.

3.4.1 Nearest Neighbor Interpolation
As mentioned in section 3.2, a Store node takes two in-

put data edges eM and eV . Edge eM links with the node
computing the memory address, while eV links with node
producing the value to write.

Approximate Unrolling performs nearest neighborhood
interpolation by disconnecting the cloned Store node from
the node producing the value being written (i.e. it deletes
eV ). In figure 6 this means to disconnect node MulI-Clone

(in gray) from node StoreI-Clone by removing edge eV .
This operation causes the node producing the value (in

the example MulI-Clone) to have one less value dependency
and potentially become dead if it has no other dependencies.
A node without value dependencies means that its compu-
tations are not being consumed and therefore is useless dead
code. In this case, the node is removed from the graph. We
recursively delete all nodes that do not have dependencies
anymore, until no new dead nodes appear. In figure 6, we
delete MulI-Cloned and then AddI-Cloned. This simplifica-
tion of the IG translates into less instructions when the IG
is transformed in assembler code.

After the removal, Approximate Unrolling connects
the node producing the value for the original Store into the
cloned Store. Figure 7 shows the shape of the IG after Ap-
proximate Unrolling has approximated the graph using
nearest neighbor. Note that MulI-Clone and AddI-Clone



Figure 7: The ideal graph for the unrolled loop of listing 4 after Approximate Unrolling have modified the
graph using nearest neighbor interpolation.

are deleted and that Store-Clone is connected by ev to the
same node as StoreI. The nodes producing the address re-
main different.

Listing 5 shows the code generated by C2, without per-
forming Approximate Unrolling: the compiler has un-
rolled the loop twice, generating four storages to memory
(lines 2, 3, 9, 10) and four multiplication instructions (imull,
lines 5, 8, 12, 17). Listing 6 shows the code generated for the
same loop using our transformation: there are still four stor-
ages (lines 4, 5, 9, 10), but only two multiplications (Lines
8, 13).

3.4.2 Linear Interpolation
To unroll using linear interpolation, Approximate Un-

rolling needs the first and last iteration of the loop peeled.
Fortunately, this is also a requirement of other optimizations
such Range Check Removal and we exploit this feature to
peel the first and last iterations of the loop. The current im-
plementation of the Range Check Removal creates two guard
loops, one before the main loop and other after. These guard
loops ensure that the main loop will not go off bounds of the
array being assigned. We exploit these two guard loops for
the linear interpolation.

Approximate Unrolling performs linear interpolation
following a process similar to nearest interpolation. The dif-
ferences are that it disconnects the value data edge ev from
the original Store, rather than the cloned Store. This is
because C2’s design implies that the cloned nodes belong
to the even iteration, but linear interpolation approximates
odd iterations. After the value data edge is disconnected,
some nodes become dead. Here we use the same process
to remove unused nodes. Finally, the interpolation is per-
formed in the following way: (i) a Add node is created that
receives as input the output of the cloned Store and a Phi

node representing merge between the previous odd iteration
of the loop and the current one (ii) a Mul node is created to
multiply the result of this addition by 0.5 and this node is

connected to the the original Store effectively interpolating
the loop’s even iteration.

4. EVALUATION
To evaluate our approach, we build a version of the software-

based musical synthesizer Osc3x 2. Using this synthesizer
as case study, we run a series of experiments. The objective
of our evaluation is twofold. First, we want to understand
whether the accuracy loss caused by each optimized loop is
significant or not. Second, we want to assess the benefits
in performance and energy consumption of each optimized
loop. We evaluate these concerns through the following re-
search questions:

RQ1: Is the accuracy loss caused by the optimiza-
tion to each loop acceptable?

If the accuracy loss goes to a point where the results are
unacceptable there is no point in making the calculations
faster. Therefore, we must carefully verify that our opti-
mization reduces the accuracy only to acceptable levels. We
introduce a metric in section 4.2, which is tailored to evalu-
ate the accuracy of our case study.

RQ2: How big is the execution times reduction
per loop?

On the other hand, without a significant increment in per-
formance, reducing accuracy may not pay-off. Therefore, we
must carefully assess these reductions to determine the ac-
tual gains in performance. In section 4.3, we implement we
use microbenchmarks to estimate the computation time of
each loop.

RQ3: How big are the energy savings per loop?
Just like with execution times, we expect to have energy

savings in exchange of accuracy loss. We use JRALP to
determine the energy consumption of each loop under study.

2https://www.image-line.com/support/FLHelp/html/
plugins/3x%20OSC.htm

https://www.image-line.com/support/FLHelp/html/plugins/3x%20OSC.htm
https://www.image-line.com/support/FLHelp/html/plugins/3x%20OSC.htm


Table 1: Loops targeted by Approximate Unrolling in our case study.
Loop Function Executions in 20s (Min, Max)
A. Sine LFO Generates a sine wave. Between 441K - 1.2M depending on preset
B. Triangle LFO Generates a triangular impulse Between 441K - 1.2M depending on preset
C. Square LFO Generates an square impulse Between 441K - 1.2M depending on preset
D. Sawtooth LFO Generates a sawtooth impulse Between 441K - 1.2M depending on preset
E. Mixer Mix the LFO’s output in one signal Mono: 441K - Stereo: 882 K
F. Low Pass Filters out higher frequencies Mono: 441K - Stereo: 882 K
G. High Pass Filters out lower frequencies Mono: 441K - Stereo: 882 K
H. Band Pass Attenuates higher and lower frequencies around a range Mono: 441K - Stereo: 882 K
I. Delay Creates a delay effect Mono: 441K - Stereo: 882 K
J. Phaser Creates a phaser effect Mono: 441K - Stereo: 882 K
K. Output Copies the signal to the sound card’s buffer Mono: 441K - Stereo: 882 K

4.1 Evaluation Program & Dataset
Our version of Osc3x is based on JSyn [8], a software-

based musical synthesizer framework. We choose JSyn to
evaluate our approach because the framework works by con-
necting sound units that generate or manipulate signal us-
ing loops that are good candidates for Approximate Un-
rolling. The loops are usually a central piece of the Jsyn
units.

As shown in figure 8, Osc3x works by mixing together the
signal produced by three low frequency oscillators (LFO).
The mixer’s output is then filtered using a digital biquad
filter. We also added two sound effect (FX) units. The
synthesizer can be configured by setting each oscillator type
(Sine, Square, Triangle, Sawtooth), FX units effects (Delay,
Phase), the filter type (LowPass, HiPass, BandPass) and
the mixer’s LFO level. This is called a preset. The oscil-
lators, mixers, FXs and filters are built-in with Jsyn, our
implementation only connect them together.

For our experiments, we run Osc3x with 10 musical scores.
The scores are well known tunes such as Star Wars and Su-
per Mario Bros themes. Each score is played with 10 dif-
ferent presets, which are designed to test all the synthesizer
features.

The case study music synthesizer contains 11 loops that
Approximate Unrolling can target. In all cases each loop
was the central piece of code for each Jsyn unit conforming
the synthesizer. Their function is described in table 1 and a
letter from A to K to better represent them in figures 9, 10
and 11. The target loop are computational intensive, table
1 also shows the number of times each loop was executed to
produce an arbitrary amount of 20 seconds of sound. Each
loop execution counted for 10 iterations. The number of
iteration is set by the JSyn engine to meet its real time
requirements.

The code for our synthesizer, as well as all the microbench-
marks, resulting data and rendered sound files can be found
on the webpage of the Approximate Unrolling project 3.

4.2 RQ1: Accuracy Loss Assessment
To answer RQ1 we render each score using all the presets

without approximating any loop. This results in 100 sound
files that we use as baseline. Then, we play the same scores
with the synthesizer in which we approximate one loop at
a time. This produces 11 sets of 100 sound files. We then
perform a pairwise comparison to assess the accuracy loss
created by approximating each loop. This experiment was

3https://github.com/approxunrollteam

Figure 8: Diagram showing how the JSyn units are
connected to build our Osc3x synthesizer.

repeated twice for each loop in the synthesizer: once using
the nearest neighbor and once with linear interpolation.

Notice that it is possible that a given preset causes the
execution of the synthesizer not to cover the approximate
loop, in such case, the resulting file is not taken into account.

To compare two audio files we use the Perceptual Evalu-
ation of Audio Quality (PEAQ) [42] metric. This is a stan-
dard metric designed to objectively measure the audio qual-
ity as perceived by the human ear. The metric was designed
to compare sounds simulating the psychoacoustic of the hu-
man ear, which is not equally sensible to all frequencies.
PEAQ takes one reference and one test file and compares
them. It assigns a scale of contiguous value to the to the
test audio, depending on how well it matches the reference:
0 (non audible degradation), -1 (audible but not annoying),
-2 (audible slightly annoying), -3 (annoying) -4 (completely
degraded).

Results.
Figure 9 is a box plot showing the distribution of PEAQ

measurements for each loop presented in Table 1 (we use
the letters A to K to identify each loop). The gray boxes
correspond to losses when using nearest neighbor transfor-
mation while white boxes correspond to losses when using
linear interpolation. Boxes corresponding to linear interpo-
lation can be also identified because the letter assigned to
the loop is followed by an ‘L’. This way, ‘AL’ means ‘Sine
LFO interpolated with linear interpolation’.

Globally, the accuracy loss is very much acceptable and
stable for each loop. The accuracy reduction for loops A,
B, C, D (Sine, Sawtooth, Square and Triangle LFOs) is al-
ways above the -1.5 line and in many cases over the -1 line,

https://github.com/approxunrollteam


Figure 9: PEAQ metric results for each approximate loop (0 to 1 - Not audible degradation; 1 to 2 - audible
not annoying; 2 to 3 - slightly annoying; 3 to 4 - annoying; 4 & below - useless). Gray boxes represents loops
approximated with nearest neighbor, while white boxes with linear interpolation.

Figure 10: Performance improvement for each approximate loop. Like before, gray boxes nearest neighbor
approximation and while white boxes linear interpolation.

Figure 11: Energy consumption behavior for each approximate loop. Once again, gray boxes nearest neighbor
approximation and while white boxes linear interpolation.



meaning that this reduction is not significant and in many
cases undetectable by the human listener. We believe there
are three reasons for this good performance (i) the produced
signal’s nature is benign for interpolation as indeed these are
locally smooth functions (ii) there were no accumulation in
the error (i.e. the results mapped to y[i] are independent of
those mapped to y[i + 1]) (iii) the accuracy loss produced
a harmonic distortion that was attenuated later by the syn-
thesizer’s filters.

Loops F, G, H and I (representing the integrated LowPass,
HighPass, BandPass filters and the Delay FX unit) appear
as outliers in this experiment. The distortion was always
audible and in some cases slightly annoying. We believe the
main reason for this is the recursive nature of the functions
governing both the filters and the delay. This accumulates
error over time and eventually the resulting signal is more
heavily distorted than in the case when non-recursive sig-
nals are approximate using Approximate Unrolling. For
example, the recursive equation (2) governs the biquad fil-
ters units. Note that the resulting value y[n] depends on
y[n − 1] and y[n − 2], which we believe is the cause for the
bigger looses in accuracy of loops F,G and H as the error
accumulates.

y[n] = b0x[v]+b1x[n−1]+b2x[n−2]−a1y[n−1]−a2y[n−2]
(2)

In general, loops interpolated with the linear interpolation
degrade accuracy less than those approximated using nearest
neighbor with exception of the loop implementing the Square
LFO. This occurs because the governing equation for this
unit (y[t] = sgn(sin(t))) had the property that in most cases
y[t] = y[t+1]. Therefore, the nearest neighbor approximated
loop version output is frequently the same that the original
one.

Loops E, J and K, representing the LFO Mixer, the Phaser
FX unit and the Output also yield good results ranging from
non-audible to non-annoying. The computations in these
loops did not accumulate error either.

4.3 RQ2: Execution Times Reduction
To evaluate the execution times of the optimized versions

of the loops, we generate one microbenchmark per loop.We
run the same microbenchmark with Approximate Un-
rolling turned on and off in the Virtual Machine and com-
pared the execution times.

Determining whether there is an effective gain in terms
of performance is a challenging task in Java [2]. We run
our microbenchmarks using the statistical methodology in-
troduced by George [15] to ensure that the measurements of
each run were consistent. All runs where performed in an
Intel i7 i7-6600U CPU, 2.60GHz with 16GB RAM running
Linux Ubuntu 16.04.

Results.
Figure 10 shows the results obtained by running our mi-

crobenchmark set. In all cases, the performance boost using
linear interpolation was slightly smaller. This is because of
the mean calculation performed in this variant of Approxi-
mate Unrolling. However, compared to the computations
skipped, the median computation is not so expensive and
there not much difference in the performance of both opti-
mizations.

All loops, except the D and K loops, run between 140%

and 180%. These is a remarkable benefit of our transforma-
tion: we can succesfully increase the performance with little
impact (or in some cases none) on the quality of the signal.

Loop D runs 200% faster than the original version. This
is because its body is mainly composed of arithmetical op-
erations only, which our implementation is very efficient re-
moving.

It is interesting to notice that the optimized loop K (Out-
put) actually runs slower. The accurate loop K simply copies
the value of an array to another array. Therefore, the oper-
ations removed from the body are not more time consuming
than the operations added by the nearest neighbor transfor-
mation and are even less time consuming than all computa-
tions added in the case of the linear interpolation.

4.4 RQ3: Energy savings
We evaluate our energy savings by estimating the total

energy consumption of our microbenchmarks using JRALP
[19], a Java library that exposes to Java programs the the In-
tel’s Running Average Power Limit (RAPL) Technoolgy [1].
We first run the microbenchmark set and estimate energy
consumption without optimizing any loop with Approxi-
mate Unrolling. In a second step, we repeated the exper-
iment, this time turning the proposed optimization on and
compared the energy consumption estimates of both runs.

Results.
The results displayed in figure 11 indicate a clear reduc-

tion in energy consumption for most loops. In general, most
loops are able to reduce their consumption within 50% - 70
% range. Also, the transformation based on linear inter-
polation is less energy effective than nearest neighbor as it
introduces a few more computations. Again, loop K was
the counter example, as the optimization introduced more
operations that the one it was able to remove.

5. DISCUSSION
Section 4 shows promising results as they indicate that

Approximate Unrolling can actually reduce the execu-
tion times and energy consumption of optimized loops with-
out a significant impact in the signal’s quality.

We choose to keep the data set small (11 loops), enabling
us to provide a per-case analysis on the impact of the trans-
formation on each loop and to understand the reasons be-
hind the improvement (or not) in each case. The lessons
learned on this case study drive the future work, as we now
have a better understanding of which loops should gain more
of the optimization. Loop K got its performance reduced
because Approximate Unrolling interpolations were ac-
tually more expensive than the original loop. On the other
hand, the LFO loops ran significantly faster and with less
energy, without significant impact on the signal’s quality.
We learned that this was due to the non-recursiveness and
smoothness of the function being mapped to the array, as
well as the capacity of the system being approximate (the
Osc3x synthesizer) to absorb the accuracy loss.

As with other approximate computing techniques, Ap-
proximate Unrolling is effective in domains where some
degree of inexactitude can be allowed, e.g. as video and
sound, numerical simulations and games. We have evalu-
ated Approximate Unrolling using a single domain of
application. This certainly raises the question of the ap-
plicability of Approximate Unrolling outside the field of



sound. However, sound signals share many properties with
other time series data such as sensor readings, stock share
values and even video. Therefore, we believe Approximate
Unrolling could be exploited in other domains as well.

Our results suggest that the situations in which Approx-
imate Unrolling will work best are those in which the data
stored close to each other in memory are also logically re-
lated to each other in the application’s data model. This is
the case in numerous data representations, like sound, trian-
gle strips, sensor data, market trends, etc. For example, in
sensor data (such as sound recoding and weather) two con-
secutive array elements will represent two readings close to
each other in time; in 3D visualizations, triangles topologi-
cally close to each other will be stored in contiguous array
slots.

Threads to validity.
We did extensive testing of our code and reviewed our mi-

crobenchmarks using best practices for microbenchmarking
[15, 2]. However, Java microbenchmarking is a very diffi-
cult craft [2] and is possible to overlook a details skeweding
the measurement. Also, the Hotspot’s C2 is a very complex
piece of code. We introduced a modification to this software
and there may be bugs. We hope that if such is the case, they
have only a marginal quantitative impact, and not distort
the qualitative essence of our findings. Our infrastructure is
publicly available on Github.

6. RELATED WORK
The quest for energy savings and performance has made

Approximate Computing an attractive research direction in
the last few years[25], [41], [29]. The approaches are numer-
ous and diverse, as they use hardware, software or a mixture
of both.

Hardware-oriented approximation techniques have proposed
hardware components with approximation capabilities, such
as FPUs that dynamically adapts the mantissa width [38],
approximate adders [16, 33], memory designs that exploit
voltage scaling [10, 18] or that allow bit flipping [20]. Also,
general circuit design techniques has been proposed to ex-
ploit the accuracy-performance trade-off [5, 27, 39]. Another
trend is to take advantage of an existing non-determinism
of the hardware [21, 32, 35] or expose it to the developers
to let them exploit it [7, 36].

On the other hand, software-oriented techniques proposes
ways to approximate existing algorithms automatically [34,
24, 22, 28, 31] or provides support for programming using
approximation [4, 6, 23, 30, 9].

Closest to our technique is Loop Perforation[34], which
skip some iteration of the loop or terminate it early. Loop
Perforation and Approximate Unrolling differs in the
scope where they can best applied, as well in the trans-
formation made to the code. Loop Perforation works better
in patterns that can completely skip some task, like Monte-
Carlo simulations, computations iteratively improving an al-
ready obtained result or explorations to filter or select ele-
ments in a given search space. Approximate Unrolling
do not skips any iteration of the loop, instead, it replaces
the computations of some iterations by approximate ones.
Approximate Unrolling best results are obtained when
applied in loops mapping values to arrays and works good
even if no previous value was mapped before. By construc-
tion, it behaves better than Loop Perforation in situations

when no value of the array can be left undefined.
Another related technique to Approximate Unrolling

is the Paraprox framework [28]. Paraprox works by detect-
ing and proposing approximate alternative to patterns in
parallel applications. One of the detected patters (stencil)
also works on the assumption that nearby array elements
are similar in image and video applications. Paraprox ex-
ploits this to skip memory accesses. Approximate Un-
rolling and Paraprox diverge in the sense that Paraprox
uses the neighbor similarity to avoid memory accesses, while
Approximate Unrolling uses it to avoid computations.
The stencil pattern in Paraprox is also fine-tuned for Ma-
trix arrays (images, videos), which is not the representation
of sound or times series. This set apart both approaches
w.r.t. the type of data each one is better suited for.

There are a number of approaches allowing the program-
mer to provide multiples alternatives to the same algorithm
[6, 4]. In this context, Approximate Unrolling can be
used as a way to provide one of such alternatives where ac-
curacy can be exchanged for performance or energy savings.
Similarly, several languages have been designed to indicate
the parts of a program that can be approximate. Examples
of this are EnerJ[30], FlexJava[26] and Rely[9]. Separat-
ing the parts of a program that can be approximate is an
orthogonal concern to Approximate Unrolling. In our
experiments we used EnerJ annotations to select one loop
to approximate out of all the loops our optimization could
target in the entire program, allowing us to assess the impact
of a single loop each time and showing that our technique is
indeed complementary with these approximate languages.

7. CONCLUSIONS & FUTURE WORK
In this paper we have described Approximate Unrolling,

an a transformation that approximates the computation in-
side certain loops. We formally described the shape of the
loops selected for Approximate Unrolling, as well as the
transformations it performs to reduce execution times and
energy consumption at the expenses of accuracy loss. We
have also proposed an implementation of this transforma-
tion inside the OpenJDK Hotspot C2 Server compiler.

The empirical assessment of this transformation on the
loops of the JSyn sound library demonstrated the ability
of Approximate Unrolling to effectively trade accuracy
for resource gains. We learned that not all loops respond
equally well to the approximation and we gained some in-
sights on the causes for this. Hence, our future work will
consist in including these findings into the optimization, im-
proving the detection process using a cost function that fa-
vors loops whose bodies (i) contains more instructions than
the ones introduced by Approximate Unrolling (ii) have
a minimal number of instructions depending on a value cal-
culated in a previous iteration (iii) represents an smooth
function. Then, the selection will filter out those loops be-
low a given threshold of the cost function.

Another direction in the future is to assess the applicabil-
ity of Approximate Unrolling in other domains. We fo-
cused this work on a single case study to gain precise insights
about the nature of loops that can benefit from Approxi-
mate Unrolling. Yet, in future work we will evaluate the
impact of approximating more loops and more iterations in
each loop.
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[42] M. Åăalovarda, I. Bolkovac, and H. DomitroviÄĞ.
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