
HAL Id: hal-01417164
https://inria.hal.science/hal-01417164

Submitted on 15 Dec 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A static analysis for the minimization of voters in
fault-tolerant circuits

Dmitry Burlyaev, Pascal Fradet, Alain Girault

To cite this version:
Dmitry Burlyaev, Pascal Fradet, Alain Girault. A static analysis for the minimization of voters in
fault-tolerant circuits. [Research Report] RR-9004, Inria - Research Centre Grenoble – Rhône-Alpes.
2016, pp.1-27. �hal-01417164�

https://inria.hal.science/hal-01417164
https://hal.archives-ouvertes.fr

IS
S

N
02

49
-6

39
9

IS
R

N
IN

R
IA

/R
R

--
90

04
--

FR
+E

N
G

RESEARCH
REPORT
N° 9004
December 2016

Project-Team Spades

A static analysis for the
minimization of voters in
fault-tolerant circuits
Dmitry Burlyaev, Pascal Fradet, Alain Girault

RESEARCH CENTRE
GRENOBLE – RHÔNE-ALPES

Inovallée
655 avenue de l’Europe Montbonnot
38334 Saint Ismier Cedex

A static analysis for the minimization of voters

in fault-tolerant circuits

Dmitry Burlyaev, Pascal Fradet, Alain Girault

Project-Team Spades

Research Report n° 9004 � December 2016 � 27 pages

Abstract: We present a formal approach to minimize the number of voters in triple-modular
redundant (TMR) sequential circuits. Our technique actually works on a single copy of the TMR
circuit and considers a large class of fault models of the form �at most 1 Single-Event Upset
(SEU) or Single-Event Transient (SET) every k clock cycles�. Veri�cation-based voter minimization
guarantees that the resulting TMR circuit (i) is fault tolerant to the soft-errors de�ned by the fault
model and (ii) is functionally equivalent to the initial TMR circuit. Our approach operates at the
logic level and takes into account the input and output interface speci�cations of the circuit. Its
implementation makes use of graph traversal algorithms, �xed-point iterations, and binary decision
diagrams (BDD). Experimental results on the ITC'99 benchmark suite indicate that our method
signi�cantly decreases the number of inserted voters, yielding a hardware reduction of up to 55%
and a clock frequency increase of up to 35% compared to full TMR.

Key-words: digital circuits, static analysis, fault-tolerance, triple modular redundancy, opti-
mizations

Analyse statique pour la minimisation de voteurs dans les

circuits tolérants aux fautes

Résumé : Nous présentons une approche formelle pour minimiser le nombre de voteurs dans les
circuits utilisant la redondance modulaire triple (TMR). Notre technique opère sur une seule copie
du circuit TMR et considère une large classe de modèles de fautes de type �au plus 1 perturbation
isolée (SEU) ou transitoire (SET) tous les k cycles �. Notre minimisation du nombre de voteurs
garantit que le circuit TMR résultant (i) reste tolérant aux fautes dé�nies par le modèle de fautes
considéré et (ii) est fonctionnellement équivalent au circuit initial. Notre approche consiste
en une analyse statique du circuit logique et peut prendre en compte des contraintes et/ou
informations sur les entrées/sorties. Son implémentation repose sur des algorithmes de parcours
de graphes, des itérations de point �xe et des diagrammes de décision binaire. Les résultats
expérimentaux sur les jeux d'essai ITC'99 indiquent que notre méthode réduit signi�cativement
le nombre nécessaire de voteurs: elle permet une réduction (jusqu'à 55%) du nombre global de
portes et une augmentation (jusqu'à 35%) de la fréquence d'horloge.

Mots-clés : circuits numériques, analyse statique, tolérance aux fautes, redondance modulaire
triple, optimisations

Minimization of voters in fault-tolerant circuits 3

1 Introduction

Circuit tolerance towards soft (non-destructive, non-permanent) errors is an important research
topic. As technology shrinks, the risk of system failures due to soft errors increases, which is
especially dangerous in safety-critical industries (e.g., space, transport, nuclear, etc.). Natural
radiation, such as neutrons of cosmic rays and alpha particles of packing or solder materials, is
a common source of soft errors [44, 5, 47, 26]. There are two main types of soft errors: Single-
Event Upsets (SEUs) (i.e., bit-�ips in Flip-Flops (FFs)) and Single-Event Transients (SETs) (i.e.
glitches propagating in the combinational circuit). Since an SET may potentially lead to several
bit-�ips, SETs are more general than SEUs.

Triple-Modular Redundancy (TMR) proposed by von Neumann [46] remains the most popular
fault tolerance technique in Field-Programmable Gate Arrays (FPGAs) to mask both types of
soft-errors. Yet, manual introduction of TMR [29] into a circuit design is often a tedious and
error-prone process. Hence, several CAD tools automatically implement TMR for fault tolerant
FPGA designs[11, 22, 39, 45, 25].

In a triplicated sequential circuit, adding voters at the primary outputs is not su�cient in
general. Indeed, an error may remain in a memory cell long enough until another error corrupts
a di�erent redundant copy of the circuit. In that case, the �nal vote may produce an incorrect
output. Voter insertion after each memory cell is su�cient to prevent errors from remaining in
cells. However, it greatly increases both hardware overhead and the critical path, which directly
in�uences the circuit performance. Thus, the overall TMR throughpout is degrading whereas it
should be the main advantage of TMR over time-redundant fault-tolerance techniques.

From the functional point of view, introducing a voter per cell is excessive in most cases.
Intuitively, this is because some voters are useless, either because faults at this stage will be
captured by another voter �later� in the circuit, or because some faults are naturally masked by
the logic. But, to the best of our knowledge, there is no tool dedicated to voter minimization in
TMR that guarantees fault-tolerance according to a user-de�ned fault model. The main existing
research trends in TMR have been providing probabilistic solutions and not absolute ones (see
Section 9).

Our objective is to propose an automatic, optimized, and certi�ed transformation process for
TMR on digital circuits. In this paper, we focus on the optimization aspect of the automatic
transformation: it should insert as few voters as possible, while guaranteeing to mask all errors
of the considered fault-model.

We consider circuits described at the gate level (i.e., netlists of AND, OR, NOT gates plus
FFs � also called memory cells). This level has two main advantages:

� gate level netlists can be described by an elementary language, which simpli�es correctness
proofs;

� it is easier to prevent synthesis tools from optimizing (undoing) our transformation at this
late design stage.

Since the main contributors to Soft-Error Rate (SER) at frequencies below 1 GHz are the FFs [32],
we focus �rst on errors caused by SEUs (i.e., bit-�ips in FFs). We consider fault models of the
form �at most one bit-�ip within K cycles� denoted by SEU (1,K). However, SETs in high-speed
Integrated Circuits (ICs) have become a growing concern [30, 13, 37]. In response, we expend
our approach to SET fault-model in the form �at most one transient fault within K clock cycles�
denoted by SET (1,K).

The proposed voter-minimization methodology is based on a static analysis that checks
whether an error in a single copy of the TMR circuit may remain after K cycles. If not, protect-
ing the primary outputs with voters is su�cient to mask the error. If, for instance, the circuit is

RR n° 9004

4 Burlyaev & Fradet & Girault

a pipeline without feedback loops, then any bit-�ip will propagate to the outputs and will thus
disappear before K cycles, where K is the length of the longest path. But if the state of the
circuit is still erroneous after K cycles (in the form of an incorrect value stored in one of its mem-
ory cells), then there is a potential error accumulation since, according to the SEU /SET (1,K)
models, another soft-error may occur in another copy of the circuit. It may lead to two incorrect
redundant modules of the TMR circuit and the loss of its fault-tolerance properties. In this case,
additional voters are needed to prevent an error accumulation and mask all errors circulating
inside one redundant module before the next soft-error may occur.

Our static analysis consists of four steps. The �rst step, described in Section 2, is purely
syntactic and �nds all loops in the circuit. Error accumulation can be prevented by keeping
enough voters to cut all loops.

In many cases, a digital circuit resets (or overwrites) some memory cells, which may mask
errors. Detecting such cases allows further useless voters to be removed. This second step is
performed by a semantic analysis (Section 3) taking into account the logic of the circuit.

Circuits are also often supposed to be used in a speci�c context. For instance, a circuit
speci�cation may assume that a start signal occurs every x cycles and outputs are only read
y cycles after each start. When such assumptions exist, taking them into account makes the
semantic analysis more e�ective. Section 4 and Section 5 explain how to integrate such input
and output speci�cations respectively.

Our analysis has been implemented based on graph algorithms and �xed point iterations using
Binary Decision Diagrams (BDDs). We have tested several safe approximations and trade-o�s
between cost and precision. The implementation and experiments are presented in Section 7.
Related work on TMR and voter insertion strategies are reviewed in Section 9. We summarize
our contributions and sketch a few extensions in Section 10.

This article extends and revises the work presented in DATE'14 [15]. Section 6, presenting
the extension of the approach to SET, is new. Sections 3 and 7 present and assess respectively
a new abstract domain; explanations and examples have been added throughout.

2 Syntactic Analysis

We consider triplicated circuits with voters but we actually work on a single copy of the circuits.
The e�ect of insertion or removal of voters can be represented and analyzed on a single copy of
the TMR circuit. We model a sequential circuit C as a directed graph GC where each vertex
represents a FF (memory cell or latch) and an edge x→ y exists whenever there is at least one
combinational path between the two FFs x and y in C. An error in a cell x may propagate, in
the next clock cycle, to all cells connected to x by an edge in this graph. Note that this is an
over-approximation since the error may actually be masked by some logical operation.

Under the fault model SEU (1,K), error accumulation is the situation where an error remains
in the circuit K clock cycles after the SEU that caused it. Any circuit C without feedback loop
will return, after an SEU, to a correct state before K clock cycles, provided that K is larger than
the maximal length of the paths in GC . In environments with high levels of ionizing radiations
(e.g., space, particle accelerators), K is bigger than 1010 [10]. For comparison, Soft-Error Rate
(SER) can be as small as 10−10 bit-upset/day for Virtex FPGAs in terrestrial conditions [12]. So,
even if our approach can deal with any K, we can assume that K is larger than the max length
of all paths in GC . It follows that error accumulation can only be caused by cycles in GC , which
must therefore be cut by removing vertices. Removing a vertex in GC amounts to protecting the
corresponding memory cells with a voter in the triplicated circuit.

The best solution to cut all cycles in GC is to �nd the Minimum Vertex Feedback Set (MVFS),

Inria

Minimization of voters in fault-tolerant circuits 5

Table 1: Voter Minimization, Syntactic Analysis Step

Circuit FFs Syn.

D
a
t
a

F
l
o
w

I
. Pipe.FP.Mult.8x8[1] 121 0

Pipe.log.unit[1] 41 0

Sh./A.Mult.8x8[36] 28 28

ITC'99[21](subset)
C
o
n
t
r
o
l

F
l
o
w b01 Flows Compar. 5 3

I
n
t
e
n
s
i
v
e b02 BCD recogn. 4 3

b03 Resourc.arbiter 30 29

b06 Interrupt Hand. 9 3

b08 Inclus.detect. 21 21

b09 Serial Convert. 28 21

i.e., the smallest set of vertices whose removal leaves GC without cycles. This standard graph
problem is NP-hard [35]. While there exist good polynomial time approximations [27], the exact
algorithm was e�cient enough to be used in all our experiments with relatively small circuits
(< 200 FFs).

Having a voter after each cell belonging to the MVFS prevents error accumulation. This
simple graph-based analysis is very e�ective with some classes of circuits. In particular, it is
su�cient to remove all internal voters in pipelined architectures such as logarithm units and
�oating-point multipliers (see Table 1).

However, this approach is not e�ective for many circuits due to the extensive use of loops in
circuit synthesis from Mealy machine representation. In such circuits, most cells are in self-loops
(e.g., D-type �ip-�ops with Enable input). This entails many voters if the syntactic analysis is
used alone. However, if the circuit functionality is taken into account, we can discover that such
memory cells may not lead to erroneous outputs. Detecting such cases requires to analyze the
logic (semantics) of the circuit. We address this issue in the following section.

3 Semantic Analysis

The semantic analysis �rst computes the Reachable State Set (RSS) of the circuit with a voter
inserted after each memory cell in the MVFS. Then, for each cell m ∈ MVFS, it checks whether
its voter is necessary: (i) First, the voter is removed and all possible errors (modeled by the
chosen fault-model in each state of RSS) are considered; (ii) If such an error leads to error
accumulation, then the voter is needed and kept.

3.1 The precise logic domain D1

Correct and erroneous values are represented by the four-value logic domain D1:

D1 = {0, 1, 0, 1}

where 0 and 1 represent erroneous 0 and 1, respectively. The truth tables of standard operations
in this four-value logic are given in Table 2. Note that AND and OR gates can mask errors:

RR n° 9004

6 Burlyaev & Fradet & Girault

x ∨ 1 = 1, x ∧ 0 = 0 , 0 ∧ 1 = 0, 1 ∨ 0 = 1. The err function models bit-�ips: i.e., err(0)=1
and err(1)=0. The vot function models the e�ect of a voter on a single copy of the circuit and
corrects an error: i.e., vot(1)=0 and vot(0)=1. Finally, for any x ∈ {0, 1}, vot(err(x))=x.

Table 2: Operators for 4-value logic domain D1

0 1
0 0 1

1 1 1 1 1
1 1
1 1

0 1
0 0 0 0 0
1 0 1

0 0
0 0

NOT err vot
0 1 0

1 0

1 1

𝟏 𝟎
1 0

𝟏 1 1
𝟎 0 0

𝟏 𝟎

1 0
𝟏 1 1
𝟎 0 0

1
0 1

𝟏 0 0 0
𝟎 1

OR AND

3.2 Semantic analysis with D1

A sequential synchronous circuit with M memory cells and I primary inputs is formalized as a
discrete-time transition system with the transition relation δ : {0, 1}M × {0, 1}I 7−→ {0, 1}M .
We abuse the notation and use M (resp. I) to denote both the number and the set of memory
cells (resp. inputs) of the circuit. The state of a circuit is the values of its cells and the initial
state s0 is obtained after the circuit reset. ∆(S) denotes the function returning the set of states
obtained from the set S after one clock cycle. Formally

∆(S) = {s′ | ∃i. ∃s ∈ S. δ(s, i) = s′}

∆ applies the transition function δ to all states of its argument set and all possible inputs. The
set of reachable states RSS is de�ned by the following iteration:

S0 = {s0} Si+1 = Si ∪∆(Si) (1)

Starting from the initial state, we compute the set of reachable states by accumulating states
obtained by applying iteratively ∆. The set of possible states being �nite, the iteration reaches
a �xed point equal to the RSS and denoted1 by {s0}∗∆.

The second phase is to check whether the suppression of voters may lead to an error accumu-
lation under the chosen fault-model. Let δV be the transition relation of a circuit equipped with
a voter after each cell in a given set V , and let ∆V be its extension to sets. δV is de�ned as:

δV ((m1, . . . ,mM
), i) = δ((m′1, . . . ,m

′
M

), i)

where ∀ 1 ≤ j ≤M, m′j =

{
vot(mj) if mj ∈ V
mj otherwise

This checking process is described by Algorithm 1:
We start with the circuit equipped with a voter after each cell in the MVFS (line 1). For

each such cell m, we check whether its voter suppression entails error accumulation. Bit-�ips are

1We will use this notation with other initial states and transition functions.

Inria

Minimization of voters in fault-tolerant circuits 7

Algorithm 1 Semantic Analysis � Main Loop

Input : MVFS ; // The minimum vertex feedback set;
∆; // The circuit transition function;
s0; // The initial state;

Output : V ; // The subset of vertices (i.e., memory
cells) after which a voter is needed

1: V := MVFS ;
2: RSS := {s0}∗∆;
3: forall m ∈ MVFS
4: V := V \{m};
5: S := ∆K

V (
⋃

mi∈M RSS [mi ← err(mi)]);
6: if ErrAcc(S) then
7: V := V ∪ {m};
8: return V

introduced in all possible cells and states of RSS according to the fault-model (line 5):⋃
mi∈M

RSS [mi ← err(mi)]

The transition function corresponding to the circuit with the current set of voters (V) is
applied K times (∆K

V), where K is the number of clock cycles in the fault model (SEU(1,K)).
The resulting set of states shows error accumulation if there exists an erroneous cell in at least
one state of this set, which we capture with the predicate ErrAcc in line 6. ErrAcc is de�ned as:

ErrAcc(S)⇔ ∃s ∈ S. ∃m ∈ s. m = 0 ∨m = 1

If the set S does not show error accumulation, the voter is useless and can indeed be suppressed.
Otherwise the voter is re-introduced (line 7).

In practice, ∆ is applied a small number of times dictated by the circuit functionality and
available analysis time. It is always safe to stop the iterative computation before reaching K;
the only drawback would be to infer an error accumulation when there is none. The number
of ∆ applications can be also adjusted to the available analysis time. In our experiments, the
analysis time limit was set to 20 minutes and K to 50. Furthermore, the iteration is stopped:

� if the current set of states is errorless, then there cannot be error accumulation (no error
can reappear);

� or, if the erroneous current set is the same as the previous one, a �xed point is reached and
there is an error accumulation.

The order in which the cells in the MVFS are analyzed (line 2, in Algorithm 1) may in�uence
the number of removed voters. We use the following heuristic to chose the ordering of voter
selection: starting from the MVFS of memory cells with voters, we sort it �rst according to
the number of successive memory cells that each cell has in the circuit netlist (the number of
successors in GC). Then, we consider primarily the removal of voters that lead to the corruption
of the smallest number of cells in the next clock cycle. The voters whose removal may lead to a
large number of corrupted cells are considered last. We found out that following this ordering,
we are able to suppress more voters than with a random ordering or the ordering relying on the
number of preceding memory cells in the netlist.

RR n° 9004

8 Burlyaev & Fradet & Girault

3.3 More Abstract Logic Domains

The aforementioned method is precise but costly since it considers all possible inputs. In general,
keeping track of the relations between indeterminate inputs is not very useful. Fortunately, our
technique can be used as it is with other, more abstract, logic domains. There are several domains
that retain enough precision and allow larger circuits to be analyzed.

The 4-value logic domain D2 decreases the state space explosion that occurs with D1:

D2 = {0, 1,U,U}

The abstract value U represents a correct value (either 0 or 1) and U represents any (possibly
erroneous) value (i.e., 0, 1, 0 or 1). A vector of n inputs is represented as a unique vector
(U, . . . ,U) with D2 whereas 2n vectors had to be considered with D1. The truth tables of
standard operations in D2 are given in Table 3.

Table 3: Operators for 4-value logic domain D2

NOT err(x) vot(x)
0 1 U 0

1 0 U 1

U U U U

𝐔 U U U

0 1 U 𝐔
0 0 1 U

1 1 1 1
U U 1 U U

𝐔 U 1 U U

1
U

𝐔0 1 U
0 0 0 0 0
1 0 1 U U
U 0 U U

𝐔 U U0
U

U

x

OR AND

In contrast with D1, a gate with two erroneous values cannot produce a correct one. Logical
masking of errors can only occur with two operations: 0∧U and 1∨U. This is su�cient to take
into account the masking performed by explicit signals (e.g., resets).

Typical examples where the semantic analysis with D2 is more e�ective are circuits that
use D-type FFs with an enable input driven by a Finite State Machine (FSM) encoded in the
circuit. The syntactic approach would keep a voter for each such cell (they are in self-loops).
The semantic analysis can detect that such cells are regularly overwritten by fresh inputs. For
example, the resource arbiter b03 in Section 7 is such a circuit. After initialization, its �nite
state machine forces 12 cells (fu1-fu4, ru1-ru4, grant_o[3:0]) to be overwritten with fresh
values every other cycle. The semantic analysis (using D1 or D2) is able to show that those cells,
although in self loops, do not need to be protected by voters.

Another approximate logic domain is the 16-values logic domain D3, where a memory cell is
encoded as a subset of its four possible values. It is de�ned as the powerset of D1:

D3 = P({0, 1, 0, 1})

A value A in D3 is the set of all possible values that its memory cell can take at this stage of
the analysis. For example, a fully determinate value is represented by a singleton (e.g., {0} for
a correct 0 or {0} for a bit-�ipped 1), an unknown but uncorrupted value by the set {0, 1}, and
a completely unknown value by the set {0, 1, 0, 1}.

Inria

Minimization of voters in fault-tolerant circuits 9

The operators of D3 are the power set extensions of the operators of D1.

A ∧3 B = {x | x = a ∧1 b, a ∈ A, b ∈ B}
A ∨3 B = {x | x = a ∨1 b, a ∈ A, b ∈ B}
¬3A = {x | x = ¬1a, a ∈ A}
err3(A) = {x | x = err1(a), a ∈ A}
vot3(A) = {x | x = vot1(a), a ∈ A}

where ∧1 ∨1, ¬1, err1, and vot1 denote the and, or, not, err, and vot operators of D1 as de�ned
in Table 2.

That domain is a trade-o� in terms of precision between D1 and D2. The main advantage of
D3 over D1 is the prevention of state explosion, since a vector of n unknown and uncorrupted
inputs is represented as a unique vector ({0, 1}, . . . , {0, 1}). Contrary to D2, D3 remains able to
represent logical masking such as {0} ∧3 {0, 1} = {0} or {1} ∨3 {1, 0} = {1}. Domain D3 can
be seen as retaining precise information about the possible values and corruptions but ignoring
the relationships between di�erent inputs.

4 Inputs Speci�cation

Circuits are often designed to be used in a speci�c context where some input signals must occur
at de�nite timings. Taking into account assumptions about the context may make the semantical
analysis much more precise, in particular, when the logical masking of corrupted cells depends
on speci�c inputs (e.g., a start control signal). Our approach is to translate these speci�cations
into an interface circuit feeding the original circuit with the speci�ed inputs. The analysis of
the previous section can be applied to the resulting combined circuit. As a consequence, error
accumulation is checked with the method described in Section 3.2, but under the constraints
speci�ed by the interface. The only small adjustment needed in Algorithm 1 is to make sure that
errors are introduced only in the cells of the original circuit and not in the cells of the interface
circuit.

We use ω-regular expressions to specify circuit interfaces. An ω-regular expression speci�es
constraints using vectors of {0, 1, ?}, which replace primary inputs by 0, 1, or leave them un-
changed (? being the wild card). Consider, for instance, a circuit with two primary inputs [i1, i2],
then the expression ([1, 0] + [0, 1]).[?, ?]ω speci�es that the circuit �rst reads either i1 = 0 and
i2 = 1, or i1 = 0 and i2 = 1, and then proceeds with no further constraints.

In general, speci�cations need non-determinism to describe a partially speci�ed or a non-
deterministic context. Hence, the aforementioned ω-regular expression can also be seen as a
Non-deterministic Büchi Automaton (NBA) that reads inputs and replaces them by 0, 1, or
leaves them unchanged (?).

For instance, the expression ([1, 0] + [0, 1]).[?, ?]ω can be represented as the two-state NBA
of Figure 1 (a): in the �rst state, it reads inputs and returns either the outputs [1, 0] or [0, 1]
(regardless of the inputs). Then, the automaton goes (and stays) in the second state where
inputs are read and produced as outputs. The indices in ?1 and ?2 allow to identify the inputs
according to their position.

To generate a circuit from an ω-regular expression, we �rst convert the corresponding NBA
into a deterministic automaton as follows. Each nondeterministic edge is made deterministic
using new inputs (sometimes referred to as oracles). If a vertex has n nondeterministic outgoing
edges, adding log2(n) new inputs is su�cient. For example, the speci�cation ([1, 0]+[0, 1]).[?, ?]ω

can be made deterministic by adding a single additional input i. The automaton (see Figure 1 (b))
now reads three inputs: if i is 0 (resp. 1) it produces [1, 0] (resp. [0, 1]). The resulting deter-
ministic automaton is then translated into an interface circuit using standard logic synthesis

RR n° 9004

10 Burlyaev & Fradet & Girault

(a)

1 2

[?
1
, ?

2
]/[1, 0]

[?
1
, ?

2
]/[0, 1]

[?
1
, ?

2
]/[?

1
, ?

2
]

(b)

1 2

[0, ?
1
, ?

2
]/[1, 0]

[1, ?
1
, ?

2
]/[0, 1]

[?
0
, ?

1
, ?

2
]/[?

1
, ?

2
]

Figure 1: Input interface as a NBA (a) and its deterministic version (b)

techniques [23, p.118]. If the original circuit has I inputs, the resulting interface circuit will
have I + a (a new inputs to make it deterministic) inputs and I outputs. It is then plugged by
connecting its outputs to the inputs of the circuit to be analyzed.

A typical example where an input speci�cation is useful is the circuit b08 of Section 7. Such
a circuit has a start input signal and 8-bit data input. Its input interface speci�cation can be
expressed as the following ω-regular expression:

([1, ?, ?, ?, ?, ?, ?, ?, ?].[0, ?, ?, ?, ?, ?, ?, ?, ?]17)ω (2)

A start signal is �rst raised and the input data is read. For the next 17 cycles, data is processed
and start is kept to 0. This process is repeated over and over. Since start is raised every 18
clock cycles, the internal data registers are rewritten periodically with new data, as they can keep
erroneous data only until the next start signal. The circuit also has an internal FSM which can
be corrupted but the periodic start ensures that it returns to its initial state every 18 cycles.
Consequently, error accumulation is impossible for any K > 18, and no voters (except implicit
voters at primary outputs) need to be inserted.

5 Outputs Speci�cation

Consider another example, similar to the previous one, with 2 inputs, 1 output, and where some
waiting can occur before raising the start signal. Formally, the input interface would be:

([0, ?]∗.[1, ?].[0, ?]17)ω (3)

This interface does not guarantee that start will be raised before K clock cycles. Since the
analysis must consider the case where start is not raised, it may detect error accumulation even
though start would ensure logical masking. However, if it is known that the primary outputs
are not read before some useful computation triggered by the start signal completes, a better
analysis can be performed.

We specify the output interface by adding to each vector of the input interface a vector of
{0, 1} indicating whether the corresponding outputs are read (1) or not read (0). For instance,
the output interface of the previous example, where the single bit output is read only after start

Inria

Minimization of voters in fault-tolerant circuits 11

is raised, can be speci�ed as

(([0, ?] : [0])∗.([1, ?] : [0]).([0, ?] : [1])17)ω (4)

It states that the output is not read ([0]) until the start signal is raised. Then, the output is
read ([1]) during 17 cycles.

The extended ω-regular expression is translated into an NBA as in Section 4, then made
deterministic, and �nally translated into a sequential circuit. The corresponding interface circuit
will additionally produce 0 or 1 signals to �lter the useless and needed outputs respectively. Each
such signal is connected using an AND gate to the corresponding primary output of the original
circuit. The �nal con�guration with the surrounding interface circuit is shown in Figure 2.

In
pu

t i
nt

er
fa

ce
ci

rc
ui

t

or
ac

le
s

&
fr

ee
 in

pu
ts

Interface circuit

O
ut

pu
t i

nt
er

fa
ce

ci
rc

ui
tOriginal circuit

Figure 2: Original circuit with the surrounding interface circuit.

The property to check must now be re�ned to allow error accumulation as long as no error
propagates to the �ltered primary outputs. Recall that when an error occurs, it is allowed to
propagate to outputs (or �nal voters) within the next K clock cycles since no additional soft-
error can occur during that time. If there is an error accumulation, the analysis must further
ensure that no error can propagate to outputs after the K cycles i.e., when additional errors
occur which could not be masked by �nal voters.

This is performed by lines 6-15 of Algorithm 2. If an error accumulation is detected in the
reached state set S, K cycles after a fault occurrence (line 6), then we calculate all states S∗∆V

that can be reached after these K cycles (line 7). Then, we iteratively simulate the occurrences
of additional errors (line 9-12) separated by at least K steps. E0 (line 7) represents the circuit
reachable state space with only one fault. Ei represents the reachable state space after at most
i+ 1 errors separated from one another by at least K clock cycles. The global �xpoint Ei (line
13) represents the set of all possible states that can be reached after all possible sequence of
errors allowed by the fault model. It can now be checked that none of these states leads to the
propagation of an error to the (�ltered) primary outputs (line 13).

Since this computation is done assuming that voters operate correctly, we must ensure that
no error accumulate in a cell followed by a voter. Indeed, in that case, if a similar error occurs
in a second copy of the circuit, the voter would fail to mask it. The function ErrProp (line 13)
detects if there is a reachable state where a memory cell with a voter or a primary output is
corrupted and prevents the voter under consideration (m) to be removed. We assume that each
primary output is represented by a new memory cell. Let out , vot and cor be predicates denoting
whether a cell represents an output, a cell protected by a voter or is corrupted respectively, then
ErrProp is de�ned as:

ErrProp(Ei) ⇔ ∃s ∈ Ei. ∃m ∈ s. (out(m) ∨ vot(m))
∧ (cor(m))

These criteria are safe but sometimes too strict. Consider, for instance, a circuit with a
sequence of two enabled �ip-�ops (i.e., with self loops) that produce signi�cant output only two

RR n° 9004

12 Burlyaev & Fradet & Girault

cycles after the enable signal is set. Both cells may be protected by voters to break self loops and
prevent error accumulation. However, no voter is necessary since error accumulation can occur
only when no signi�cant output is produced. Indeed, when the enable signal is set, new input
and intermediate results will overwrite the (possibly corrupted) cells and a correct output will
be produced. If we �rst try to remove the �rst voter, our algorithm will detect that an error can
remain in the �rst cell after K steps. That cell will in turn corrupt the second one still protected
by a voter. Hence, the condition ErrProp will prevent removing the �rst voter whereas starting
with the second or removing both voters would have been possible. Therefore, a useful re�nement
of Algorithm 2 is, whenever ErrProp is true only because of error accumulation before some
voters (and no error propagates to the output), to iterate and check whether all these voters can
be removed.

Algorithm 2 Semantic Analysis with Output Speci�cation

Input : MVFS ; // The minimum vertex feedback set;
∆; // The circuit transition function;
s0; // The initial state;

Output : V ; // The subset of vertices (i.e., memory
cells) after which a voter is needed

1: V := MVFS ;
2: RSS := {s0}∗∆;
3: forall m ∈ MVFS
4: V := V \{m};
5: S := ∆K

V (
⋃

mi∈M RSS [mi ← err(mi)]);
6: if ErrAcc(S) then
7: E0 := {S}∗∆V

;
8: i := 0;
9: repeat

10: i+ +;
11: Ei := Ei−1∪

(∆K(
⋃

mi∈M Ei−1 [mi ← err(mi)]))
∗
∆V

;
12: until Ei = Ei−1

13: if ErrProp(Ei) then
14: V := V ∪ {m};
15: return V

Output interfaces are especially useful for circuits whose outputs are not read before some
input signal is raised and some computation is completed. For instance, the shift/add multiplier
(see Sec 7) waits for a start signal. During that time, errors may accumulate in internal registers
and propagate to the outputs, which are not read. When start occurs, fresh input data is read
and written to internal registers (which are thus reset). The outputs are read only after the
multiplication is completed and a done signal is raised.

Note that output interfaces can model Transient Error Tolerance (TET) where all errors
at outputs are not necessarily critical. For instance, if erroneous outputs are considered non-
critical within a speci�ed number of cycles, output interfaces may express it and allow further
optimizations. In this case, the optimized TMR con�guration is tuned to particular system
requirements. Such quality-guided optimizations are investigated on MPEG decoding in [31, 38]
to select gates whose hardening maximize fault-tolerance.

Inria

Minimization of voters in fault-tolerant circuits 13

6 Extension to Single-Event Transients

In the previous sections, we considered single event upsets and the corresponding fault-models
SEU(1,K), corresponding to �at most one bit-�ip every K cycles�. Hereafter, we extend our
approach to single event transients, in particular, the fault model SET (1,K) which can be read
as �at most one SET within K clock cycles�.

An SET occurs when an energetic subatomic particle strikes a combinational logic element
[30]. Such particle causes a transient voltage disturbance, which can propagate on wires and
possibly be latched by several memory cells. Consequently, an SET can potentially lead to
several bit-�ips (i.e., several SEUs). In this section, we present the extension of our previous
analysis to SET.

6.1 Precise modeling of SETs

As opposed to an SEU, the e�ect of an SET depends on the logical propagation (and possible
logical masking) of the signal perturbation through the combinational part. Such signal per-
turbation or glitch is latched in a non-deterministic manner. From now on, a signal can take 3
values: a logical one, a logical zero, or a glitch written �.

Signal := 0 | 1 | �

A glitch can be masked in a combinatorial circuit by or(�, 1) = 1 or and(�, 0) = 0. The
precise modelling of a glitched signal in a TMR circuit requires the knowledge of its correct value
(present in the corresponding signals of the two other redundant modules). Consequently, the
precise domain D1 is extended as Dt to model a glitch propagation in a combinatorial circuit of
one redundant module:

Dt = {0, 1, 0, 1, 0�, 1�}
where 0� and 1� represent respectively a glitched 0 and 1. That is, 0� represents a glitch at one
point of the circuit such that the value in the two other redundant copies is 0. A glitch on an
incorrect signal with the value 0 (resp. 1) will be represented by the signal value 1� (resp. 0�).
One example that illustrates the di�erence between a glitch and a corrupted value is:

D1 : 0 ∨1 1 = 1 Dt : 0� ∨t 1� = 1�

While in the �rst case, an or gate with corrupted but stable signals returns a correct value,
in the second case, the glitch propagates.

While the precise domain D1 requires the aforementioned extension to Dt, the domains D2

and D3 can overapproximate such glitch behavior with no extension. In particular, a glitched
signal, as well as any possibly wrong stable signal, takes the value U in D2. A glitched 1 (resp.
0) can be represented as {1, 0} (resp. {0, 1}) in D3.

A glitch propagated to a memory cell is non-deterministically latched as true or false. It
follows that the precise glitch modelling in Dt implies that any glitched signal 0� (resp. 1�) is
non-deterministically latched as a correct 0 or as an incorrect 1 (resp. as a correct 1 or as an
incorrect 0). This non determinism may lead to a signi�cant state space growth in D1. The
domains D2 and D3 avoid this inconvenience since glitched signals are expressed in the same
logic as the latched values.

To take into consideration all possible e�ects of an SET, it is necessary to calculate the set
of reachable states for all cases of SET injections. These cases include a fault injection either at
the output of a logical gate/a memory cell or the mutually exclusive corruption of branches of a
wire split. The union of the state spaces that can be reached in each of these corruption cases
forms the reachable state set.

RR n° 9004

14 Burlyaev & Fradet & Girault

The precise SET modeling in Dt imposes signi�cant computational overhead. Its two impor-
tant bottlenecks are the need to consider all possible SET injection points and all possible non
deterministic choices when a glitch is latched. Both points can been taken into account by a
transition function that expresses a circuit state change during a clock cycle with an SET and
returns a set of possibly corrupted states. In the next Section, we propose a safe approximation
of the precise SET modeling in domains D1, D2, and D3.

6.2 Safe SET over-approximation

If a memory cell is connected by a combinational path to a component (wire or gate) where an
SET occurs, this cell may be corrupted. We should �nd all sets of cells that can be corrupted
at the same clock cycle to �nd the worst case. Each of these sets has a common combinational
sub-circuit, in other words, a common combinational cone. The apex of such a cone is either the
output of a memory cell or a primary input. A cone apex fully identi�es a cone and the memory
cells belonging to this cone.

D Q

D Q

primary
input

D Q

logic

logic

logic

c1

f1

f2

f3

c2

c3

p1

Figure 3: Combinational cones for SET modeling.

In Figure 3, the cone with apex at c1 includes both cells c2 and c3. The cone with apex at
p1 also includes {c1, c2}. The cones with apexes at c3 and c2 contain {c1} and {c2} respectively.

As a result, the worst case scenario of any SET that happens inside a cone j is the union
of all possible simultaneous corruptions of the memory cells ms(j) in this cone. The power set
P (ms(j)) is the set of all possible memory cell corruption con�gurations.

As soon as all corruption con�gurations are found, a new error injection procedure can be
de�ned and used in both Algorithms 1 and 2. In particular, instead of mutually exclusive bit-�ips
injection to a state space S, expressed for SEU as (

⋃
mi∈M S [mi ← err(mi)]), the corruption

of the RSS by an SET is computed as the disjunction of possible simultaneous memory cells
corruptions of the sets included in the cones after memory cells M or primary inputs I:

⋃
j∈(M∪I)

 ⋃
p∈P (ms(j))

S

[⋂
mi∈p

mi ← err(mi)

]
where ms(j) is the subset of memory cells located in the cone with an apex at a memory cell

or a primary input j.

Such corruption procedure is a safe over-approximation in the precise (Dt) and approximate
(D2, D3) domains. The complexity bottleneck of the approach is the power-set computation with
a large number of memory cells in a single cone. However, in the case of the approximate logic
domains D2 and D3, we can consider only the worst case scenario: the simultaneous corruption

Inria

Minimization of voters in fault-tolerant circuits 15

of all memory cells in a cone (without calculation of its powerset), computed as:

⋃
j∈(M∪I)

S

 ⋂
mi∈ms(j)

mi ← err(mi)


It may happen that the result of such SET insertion includes corrupted states that are not
reachable because it does not take into consideration the internal error-masking capabilities of
the combinational circuit. Nevertheless, we will see in the experiments that, for the analysis
presented in this paper, such over-approximation is an appropriate choice.

7 Experimental results

The presented voter minimization technique has been implemented in Ocaml using the BDD
library CUDD [2] and the Ocaml interface MLCuddIDL [3]. Transition systems and set of states
are expressed as BDD formulae [20].

The introduced logic domains (D1, D2, D3) are encoded with multiple bits (two for D1

and D2; four for D3) and the associated operators (e.g., Tables 2 and 3) are expressed as logic
formulae over those bits. For instance, the values of D1 can be encoded with two bits (a, b) as:

1 as (1, 1)
0 as (1, 0)
0 as (0, 0)
1 as (0, 1)

In this encoding, the �rst bit a is the correctness bit, and the second one b is the value bit.
The NOT operator of D1 can be represented by the function:

¬1(a, b) = (a, ¬b)

We used the Quine-McCluskey algorithm to simplify the boolean functions corresponding to the
AND and OR operators of D1. The AND operator is encoded as:

∧1((a1, b1), (a2, b2)) = (a3, b3)

where a3 = ((a1 ∧ a2) ∨ (a1 ∧ ¬b1) ∨ (a2 ∧ ¬b2)∨
(¬a2 ∧ (¬b1 ∧ b2)) ∨ (¬a1 ∧ (¬b2 ∧ b1))

b3 = b1 ∧ b2
And the OR operator is encoded as:

∨1((a1, b1), (a2, b2)) = (a3, b3)

where a3 = ((a1 ∧ a2) ∨ (a1 ∧ b1) ∨ (a2 ∧ b2)∨
(¬a1 ∧ (¬b1 ∧ b2)) ∨ (¬a2 ∧ (¬b2 ∧ b1))

b3 = b1 ∨ b2
BDDs proved to be quite e�cient to express the data structures and the processing required

by our technique. We made use of Rudell's sifting reordering [41] while building and applying
the transition function. It allowed the semantic analysis of circuits up to 100 memory cells
on a standard PC (Intel Core i5-2430M/2Gb-DDR3). For comparison, without reordering, the
negative impact of big BDD structures on the algorithm performance was observed already for

RR n° 9004

16 Burlyaev & Fradet & Girault

Table 4: Voter Minimization, SEU model, Boolean domains D1 | D2 | D3.

Circuit FFs Syn. Semantic Sem.Inp. Sem.Out.

D
a
t
a

F
l
o
w

I
n
t
.

D1 D2 D3 D1 D2 D3 D1 D2 D3

FP Multiplier 8x8[1] 121 0 0 0 0 0 0 0 0 0 0

log.unit[1] 41 0 0 0 0 0 0 0 0 0 0

Multiplier 8x8[36] 28 28 19 19 19 19 19 19 8 8 8

ITC'99[21](subset)

C
o
n
t
r
o
l

F
l
o
w b01 Cmp. serial �ows 5 3 3 3 3 3 3 3 3 3 3

I
n
t
e
n
s
i
v
e b02 BCD recognizer 4 3 2 3 3 2 3 3 2 3 3

b03 Resource arbiter 30 29 17 29 17 17 29 17 17 29 17

b06 Interrupt handler 9 3 3 3 3 3 3 3 3 3 3

b08 Inclusion detector 21 21 21 21 21 0 21 0 0 21 0

b09 Serial converter 28 21 20 20 � 20 20 � 20 20 �

A '�' denotes an out of time termination of the analysis (>20 mins).

circuits with 20-30 memory cells. We did not put much e�orts in the optimization but we believe
that there remain much opportunities for improvement.

We used both fault-models SEU(1,K) and SET (1,K) with K = 50, which allows K cy-
cles/transitions to be computed e�ectively (∆K). The obtained results are a fortiori valid for
any K ≥ 50. However, for non-restrictive trivial input/output speci�cation and small circuits, it
is not worth to choose higher K values since all reachable states might be visited within a small
number of execution steps K, and no further optimization will be achieved even if we continue
the execution. When all reachable states are visited the execution can be stopped even if K steps
have not been fully performed. Thanks to the encoding of input/output speci�cation into the
circuit structure (Section 5), the reachable states also contain the information about the values
of input signals and the relevance of primary outputs (for the error-propagation analysis). The
number of steps K needed to explore the whole state space varies depending on the speci�cation
and circuit complexity. For small circuit (e.g., b02, b01) with simple input/output speci�cation
(e.g., only the reset at the very beginning), we visit all reachable states in K < 10 steps. On
the other hand, for larger circuits (shift/add multipliers or the circuit b08) with explicit complex
input/output interface speci�cations (FSMs with 10 and more states), a higher value of K is
rewarding and allows us to catch error masking behaviors that happen regularly (e.g., circuit
restarts or returns to the initial state in cyclic FSMs within every 30-40 cycles).

Our analysis has been applied to common arithmetic units taken from theOpenCores project [1]
and from the ITC'99 benchmark suite [21]. For each circuit, we de�ned non-restrictive input-
output speci�cation for the sake of generality. For the majority of the circuits, the input pattern
speci�es only synchronous reset at its initialization phase and no further reset (b01, b02, b03,
b04, b06, b09). Such non-restrictive patterns may reduce achievable optimizations, which could
be signi�cantly increased if more details about the behavior of the surrounding circuit were pro-
vided. However, for the shift/add multiplier [36] the input-output speci�cation is dictated by its
functionality. The produced output is relevant only two cycle after the start signal has been
raised (one cycle to fetch new data plus at least one cycle to process it). Since we should not

Inria

Minimization of voters in fault-tolerant circuits 17

assume when the output is read out, we suppose that the data output may be read at any time
two cycles after the last start and until the next start. As a result, our semantic analysis with
this output speci�cation shows that only the 8 product bits should be protected by voters.

Circuit b08 represents a group of self-stabilizing circuits that return to their initial state
(and wait for the next start) within a bounded number of cycles (for b08, this period is 8
cycles). Additionally, by functionality, the circuit is supposed to be restarted periodically. The
corresponding input and output speci�cation allowed us to suppress all voters. We would like to
highlight that any circuit with internal counters has a similar behavior of self-stabilization (the
shift/add multiplier is another example).

Table 4 summarizes the results of the analysis on those circuits in D1, D2, and D3, with the
fault-model SEU(1,K). The column FFs shows the total number of memory cells in the original
circuit, while the other columns show the number of remaining voters in the TMR circuit after
the syntactic and semantic steps (without, with input, with input and output interfaces). In
each case, we give the results obtained with the three logic domains.

The syntactic step eliminates all voters in circuits with a pipelined architecture such as
adders, multipliers, or logarithmic units. With rolling pipelined architectures, a control part
and a looped data�ow circuit may require voter protection (e.g., none of the 28 voters of the
shift/add multiplier are removed with only the syntactic analysis).

In general, control intensive circuits require a protection of their FSMs. Almost all memory
cells of the serial �ow comparator (b01) or the serial-to-serial converter (b09) have to be protected.
Nevertheless, our analysis is capable of suppressing a signi�cant amount of voters in many control
intensive circuits. A circuit is usually composed of data and control �ow parts and we can expect
that most voters in the data �ow part can be suppressed.

The logic domain D2 is, most of the time, precise enough. However, correcting a bit-�ip in
D2 (e.g., 0→ U→ U) looses information. In some circuits, like b03 and b08, substantial logical
error masking is performed by an FSM and the analysis fails to detect it.

The precision of the domain D3 allows us to achieve better optimizations than the domain
D2 in circuits b03 and b08 (see Table 4). With D3, the corrupted FSM will recover to a precise
state, while with D2 its cells will recover to the correct unknown value U. This precise state
plays a crucial role to show that the rest of the circuit, that depends on this FSM, will be cleaned
up too.

The results for SET (1,K) are shown in Table 5. The number of suppressed voters did not
change with D2. However, even the proposed approximations in Section 6.2 does not help to
resolve the complexity problem for some circuits when analyzed with D1 and D3. The bottleneck
results from the large number of corruption combinations if a single combinatorial cone includes
many memory cells. For example, in the circuit b03, there is an FSM of 2 cells where each cell
is connected through a combinatorial circuit to 26 memory cells (mainly controlling their enable
signals). As a result, to approximate the impact of an SET in this FSM, we have to calculate all
possible corruption combinations of 26 cells, which is 226 con�gurations. The circuits that could
not be analysed are marked by ∗ in Table 5.

The scalability of logic domains D1, D2, and D3 has also been compared. Figure 4 presents
the growth of the RSS Si after i iterations (see Section 3) for the b03 and b06 circuits. The �xed
point is reached with less iterations in D2, and the number of states grows exponentially for D1

versus linearly for D2. The same behavior is observed in all considered circuits.

The logic domain D3 reaches the �xed-point as fast as D1 while keeping the same precision.
This fact is demonstrated in Table 6 where we measured the number of cycles to calculate the
RSS for each domain (the column �# iterations�). The column �seconds� gives the execution
time spent to calculate the RSS, and the last column ,�# BDD nodes�, gives the complexity of
the RSS BDD representation in terms of allocated BDD nodes. On the one hand, the number of

RR n° 9004

18 Burlyaev & Fradet & Girault

Table 5: Voter Minimization, SET model, Boolean domains D1 | D2 | D3.

Circuit FFs Syn. Semantic Sem.Inp. Sem.Out.

D
a
t
a

F
l
o
w

I
n
t
.

D1 D2 D3 D1 D2 D3 D1 D2 D3

FP Multiplier 8x8[1] 121 0 0 0 0 0 0 0 0 0 0

Log.unit[1] 41 0 0 0 0 0 0 0 0 0 0

Multiplier 8x8[36] 28 28 � 19 � � 19 � � 8 �

ITC'99[21](subset)

C
o
n
t
r
o
l

F
l
o
w b01 Cmp. serial �ows 5 3 3 3 3 3 3 3 3 3 3

I
n
t
e
n
s
i
v
e b02 BCD recognizer 4 3 2 3 3 2 3 3 2 3 3

b03 Resource arbiter 30 29 � 29 � � 29 � � 29 �

b06 Interrupt handler 9 3 3 3 3 3 3 3 3 3 3

b08 Inclusion detector 21 21 � 21 21 � 21 0 � 21 0

b09 Serial converter 28 21 � 20 � � 20 � � 20 �

A '�' denotes an out of time termination of the analysis (>20 mins)

1 2 3 4 5 6 7 8 9 1011121314151617

b03-D2
b03-D1

b06-D2
b06-D1

10

1

10
2

10
3

10
4

b03-D2
b03-D1

b06-D2
b06-D1

10

1

10
2

10
3

10
4

b03-D2
b03-D1

b06-D2
b06-D1

i (iterations)

10

1

10
2

10
3

10
4

S
i c

ar
di

na
li

ty
 |S

i|

Figure 4: Logic Domain Comparison: Reachable State Space Size.

BDD nodes allocated to represent the RSS in larger circuits (b03, b08, b09) is much smaller with
D3 than with D1. On the other hand, the BDD structures in D3 require more variables and are
more time consuming to manipulate. The domain D3 overapproximates the RSS (see Section 3.3)
which leads to less allocated nodes in the larger circuits. While it allows us to keep the necessary
precision for optimizations comparable to the ones allowed by D1, our existing implementation
of D3 would require further optimizations to be considered as an interesting compromise.

The bar graph of Figure 5 shows the ratio of the size of the RSS in D1 to the corresponding
size inD2. The RSSs inD1 are several orders larger than the corresponding ones inD2. The most
computation demanding step of the whole analysis is checking error propagation (see Section 5).
A prohibiting growth of BDD structures representing the set of states Ei was observed with D1

Inria

Minimization of voters in fault-tolerant circuits 19

4 5 9 21 28 30 49 66

CardinalityuRatiouofuReachableuStateuSets
inudomainsuD1uanduD2u

NumberuofuMemoryuCellsuinuCircuitsu/ITC|99)

1

10

10
2

10
3

10
4

10
5

|RRSD1u|/|RRSD2|

4 5 9 21 28 30 49 66

CardinalityuRatiouofuReachableuStateuSets
inudomainsuD1uanduD2u

NumberuofuMemoryuCellsuinuCircuitsu/ITC|99)

1

10

10
2

10
3

10
4

10
5

|RRSD1u|/|RRSD2|

4 5 9 21 28 30 49 66

CardinalityuRatiouofuReachableuStateuSets
inudomainsuD1uanduD2u

NumberuofuMemoryuCellsuinuCircuitsu/ITC|99)

1

10

10
2

10
3

10
4

10
5

|RSSD1u|/|RSSD2|
|R

S
S

D
1u

|/|
R

S
S

D
2|

Figure 5: Logic Domain Comparison: Size Ratio of RSS.

Table 6: Time and memory resources to calculate the RSS.

δ, sec # iterations seconds # BDD nodes

b
0
1

D1 0.037 9 0.01 156

D2 0.037 6 0.01 78

D3 0.060 6 0.01 151

b
0
2

D1 0.020 9 0.005 81

D2 0.020 9 0.04 66

D3 0.024 9 0.01 127

b
0
3

D1 0.42 17 2.53 1506

D2 0.44 7 0.28 311

D3 875.670 7 235.13 668

b
0
6

D1 0.044 8 0.024 473

D2 0.052 6 0.018 130

D3 0.056 6 0.02 256

b
0
8

D1 0.364 40 3.14 27813

D2 0.356 5 0.02 324

D3 41.49 5 48.08 1222

b
0
9

D1 31.332 32 27.57 2919

D2 0.852 20 1.04 446

D3 >1000 - - -

for circuits of around 30 memory cells. The logic domain D2 allows the analysis (with input and
output interfaces) of much larger circuits, up to 100 cells.

In order to evaluate the bene�ts of our analysis, TMR has been applied to the benchmarks
with the minimized set of voters. The inserted voters are triplicated following the practice in
the existing industrial tools to avoid a single-point of failure and to protect against SETs. The

RR n° 9004

20 Burlyaev & Fradet & Girault

Table 7: Frequency and area gain of optimized vs full TMR.

TMR circuit voters MHz gain hw gain

D
a
t
a

F
l
o
w

I
.

Pipel.FP.Mult.8x8 121 60.5 2338

Optimized 0 71.0 17.4% 1831 21.7%

Pipel.log.un. 41 128.3 693

Optimized 0 184.1 43.5% 447 35.5%

Shift/Add.Mult.8x8 28 106.0 537

Optimized 8 108.0 1.9% 408 24.0%

b01 Flows Compar. 5 162.6 126

Optimized 3 162.6 0% 114 9.5%

C
o
n
t
r
o
l

F
l
o
w

I
n
t
e
n
s
i
v
e

b02 BCD recogn. 4 181.9 69

Optimized 2 206.6 13.6% 60 13.1%

b03 Resourc.arbiter 30 81.6 594

Optimized 17 109.0 33.6% 576 3.0%

b06 Interrupt Hand. 9 144.8 168

Optimized 3 144.8 0% 134 20.2%

b08 Inclus.detect. 21 115.4 484

Optimized 0 142.4 23.4% 216 55.4%

b09 Serial Convert. 28 89.4 584

Optimized 20 95.0 6.3% 565 3.3%

�nal circuits have been synthesized with Synplify Pro with no optimization applied (Resource
Sharing, FSM Optimization, etc.). As a case study, we have chosen Flash-based ProASIC3 FPGA
as a synthesis target. Its con�guration memory is immune to soft-errors[5] and data memory is
protected with voters. Table 7 compares the size and maximum frequency of the circuit with full
TMR (i.e., voters after each FF) versus TMR with the optimized number of voters. The gains
are presented in terms of the required FPGA hardware Core Cells (hw column) and maximum
synthesizable frequency (MHz column). The gain in the maximum frequency depends on the
location of the removed voters (in the circuit critical path or not). The reduction in area directly
depends on the number of suppressed voters (up to 55%).

8 Application to time-redundancy

In this article, we have only considered hardware redundancy (TMR) but our approach also
applies to time redundancy. Time-redundant schemes mask errors by voting on re-computed
data. Such schemes reuse the combinational part of the circuit and have a much lower hardware
overhead. We present one of our time redundant techniques [14] and sketch how our minimization
analysis can be used in that context.

The Triple-Time Redundant Transformation (TTR) [14] takes a sequential circuit and returns
a triple time-redundant version fault-tolerant to SETs. The transformed circuit is obtained by
substituting each original memory cell with a sub-circuit, called a voting memory block (Figure 6).

Inria

Minimization of voters in fault-tolerant circuits 21

These blocks introduce �ve cells (d, d′, d′′d, kA, kB) and two voters (votA, votB) to record and
vote on the recomputed bits. Two new control wires fA and fB are used to organize voting;
they are set by a small centralized FSM (the control block not shown here). The former input
and output of the replaced memory cell are denoted by si and so. The input stream must
be upsampled (x3) (e.g., from i1i2... to i1i1i1i2i2i2...) and the transformed circuit produces an
upsampled (x3) output stream (e.g., from o1o2... to o1o1o1o2o2o2...).

Q
d

D Q Q
d'

D Q Q
d''

D Q

V
1

0

C

1

0

C

Q
kA
D Q

Q
kB
D Q

so

fA

fB

si

V

muxA

muxB

votA

votB

Voting
Mechanism

Figure 6: TTR voting memory block.

Consider a memory block reading three redundant copies of some bit b1 re-computed by the
combinational circuit. During the �rst cycle, b1 is saved in d whereas, in the second cycle, it
propagates to d′ and the second copy of b1 is saved in d. After three cycles, the cells d, d′, d′′

contain the three copies of b1. During the fourth cycle, the following bit (e.g., b2) is computed
and saved in d while the control block sets fA = fB = 1 to make the three b1's propagate
through the voters votA and votB for error masking and to the output so. To support triple-
time redundancy, the vote on the three redundant b1's must be performed two more times. Since
the next redundant bit b2 is �lling d, d′, d′′, the kA and kB cells fetch the result of the �rst
vote on b1 (from d, d′, d′′). The vote in the next two cycles are performed on the values of cells
d′′, kA and kB by setting the control wires fA = fB = 0. When d, d′, d′′ are �lled by the three
copies of the next redundant bit b2 the procedure repeats: they are voted (cycle 1: fA = fB = 1)
and fetched by kA and kB to allow voting during the next two cycles (cycles 2-3: fA = fB = 0).

The advantage of TTR is to trade-o� throughput for a low hardware overhead. For the bench-
marks used in Section 7, TTR circuits are 1.6 to 2.1 times smaller than their TMR alternatives;
they are also three times slower. The TTR scheme can be re�ned to allow dynamically changes
of the level of time redundancy [17] (e.g., to use redundancy only in critical situations). Further,
combining dynamic redundancy with micro-checkpointing it is possible to mask faults with only
double-time redundancy [16].

As in full TMR, voters are introduced for each original cell to prevent error accumulation and
some of them may be useless. The same criteria apply in this context: if our voter minimization
analysis suppresses the voters after memory cells {M} in a TMR circuit and guarantees its
tolerance w.r.t. SET (1,K), the same analysis can also suppress the voting mechanisms in the
TTR memory blocks that correspond to cells {M} in the TTR circuit. The resulting optimized
TTR circuit is guaranteed to be tolerant w.r.t. SET (1, 3K + 1). Only the voting mechanism
(the lower right part in Figure 6) is suppressed. The d,d′,d′′ chain remains to record the three
recomputed bits and to propagate them to so but without error-masking.

Again, the simplest example is a pipelined architecture where all voters (except at the primary

RR n° 9004

22 Burlyaev & Fradet & Girault

outputs) are suppressed by our analysis. If a pipeline has n stages and each original memory
cell is replaced by a memory block without voting, the number of stages becomes 3n. With
an upsampled input (x3) such circuit is tolerant w.r.t. SET (1, 3n + 1) because any erroneous
bit reaches the primary outputs within at most 3n + 1 cycles where they are masked. For the
4-stage 32-bits �oating-point multiplier [1], the tolerable fault-model is weakened from SET (1, 4)
to SET (1, 13) but the overall TTR circuit size is reduced by 37%.

Our voter minimization approach might also be used to optimize the re�ned time-redundant
schemes [16] and [17] but this application needs further investigation.

9 Related work

Existing industrial tools for applying TMR into FPGA protect against both kinds of soft error,
SEUs and SETs. They include the Xilinx XTMR tool [11, 22], BYU/Los Alamos National
Laboratory B-TMR [39], Synopsys's Synplify Premier [45], and Mentor Graphics Precision Hi-
Rel [25]. In these tools, TMR is applied to circuit parts chosen by the user and, thus, the resulting
circuits might not be fault-tolerant unless voters are inserted after each memory cell and primary
circuit outputs. [25] proposes a protection technique against SEUs that requires only memory
cells triplication with a majority voter insertion. But this approach relies on the assumption
that only memory cells are in�uenced by radiation particles and that no signal perturbations in
a combinatorial circuit occur. Thus, unlike our technique, the technique of [25] protects only
against SEUs and not against SETs.

While our static analysis uses exclusively logical masking to tolerate transient errors, many
other works rely on electrical and latching-window properties of hardware to estimate the chance
that errors will not manifest in failures. This is the primary reason why a good part of research
on voter insertion, Selective Triple-Modular Redundancy (STMR), and partial hardware redun-
dancy mainly focus on probabilistic approaches [4, 34, 7, 42]. Contrary to our approach, they
are not interested in formal guarantees that the �nal circuit tolerates a fault-model. [34] shows
how selective voter insertion minimizes the negative timing impact of TMR. In [40], probabilities
are used to apply TMR on selected portions of the circuit (STMR). In [42], STMR of combi-
national circuits speci�es input interfaces using input signal probabilities. The main advantage
of STMR over TMR is that the area of the STMR circuit is roughly two-thirds of the area of
the TMR circuit. An original probabilistic-based idea is given in [33] that allows a certain level
of degradation in output correctness in order to optimize TMR at a Data Flow Graph (DFG)
abstraction level. While this technique is originally dedicated to heterogenous systems, it could
be applied to Digital Signal Processing (DSP) hardware as well. Since the proposed methods
are probabilistic, some errors may propagate to primary outputs. In our approach, the circuit is
guaranteed to mask all possible errors of the considered fault model.

Other works use model-checking to guarantee user-de�ned fault-tolerance properties [43, 8].
[43] investigates which memory cells in SpaceWire node have to be protected so that even under
an SEU occurrence the circuit keeps its functional properties, expressed as 39 assertions in linear
temporal logic. If a cell is protected (fabricated with a special technology), an SEU cannot
corrupt it. On the other hand, a protected cell consumes more power than a non-protected
memory cell. As a result of veri�cation-guided replacement of protected cells by their non-
protected alternatives, a 4.45X reduction in power has been achieved. The work [8] formally
proves that some system properties of ATM controller are kept if an SEU happens. The authors
evaluate the probability to obtain the expected property under faults.

Another group of formal studies investigates sequential circuit robustness symbolically [9, 28]
or by interpolation [18]. Since robustness is introduced probabilistically these work combine both

Inria

Minimization of voters in fault-tolerant circuits 23

formal and probabilistic worlds.
While the aforementioned formal studies do not address voter minimization, their approaches

to fault-tolerance and robustness are related to our work.
It is worth to notice that the introduced reachability analysis with multi-value encoding

can be also interpreted within the well-known tainting data�ow-based analysis [24] and path
sensitisation theories [19]. The former assigns a security-related mark to each information bit
and tracks its propagation, just like we tag some bits as erroneous. The later approaches check if
there is a path so that a signal change along that path alters the output. In our case, the signal
change corresponds to an error injection, e.g., a bit-�ip, and we check whether this change can
propagate to corrupt the output.

10 Conclusion

We proposed a logic-level veri�cation-guided approach to minimize the number of voters in
TMR circuits that guarantees a user-de�ned fault-model to be masked. Our approach is based
on reachable state set computations and input/output interface speci�cations. In order to avoid
analyzing the triplicated circuit, we introduced three logic domains, which allowed us to perform
the analysis on a single copy of the circuit. Our analysis shows that some voters are useless
and can be safely removed from the TMR application. We have used as case studies several
arithmetic circuits as well as the benchmark suite ITC'99. They show that our technique allows
not only a signi�cant reduction in the amount of hardware resources (up to 35% for data �ow
intensive circuits and up to 55% for control �ow intensive ones), but also a signi�cant increase
in the clock rate, compared to the full TMR method that inserts a voter after each memory cell.

We demonstrated that the choice of the logic domain in�uences the scalability of the analysis
and its precision. We considered both SEU and SET fault-models and explained the modeling
methodogy. As the experimental results show, the same level of optimization can be reached
for both fault-models, but the SET model implies a potentially large number of corruption
combinations to be examined, which can cause an analysis bottleneck.

Further research directions include the application of our approach to other fault-tolerance
techniques, taking into account other optimization criteria like frequency and making the ap-
proach modular. We review these three topics in turn.

Frequency maximization

Voters ordering, discussed in Section 3.2, could also take into account other optimization criteria
than voter minimization. For instance, we may increase the maximum synthesizable frequency
by removing �rst the voters on the critical path. However, removing a voter from the critical
path may make another path critical. Thus, the choice of the next voter to remove depends not
only on the existing ordering but also on the current critical path. However, the critical path
strategy may not result in the minimal number of voters. In this sense, the two criteria �number
of voters� and �synthesizable frequency� are orthogonal, and bi-criteria optimization must be
studied.

Modularity

Applying our analysis in a modular manner can increase its scalability and, consequently, the
applicability of the proposed technique to larger circuits. The hierarchical compositional design of
today's circuits makes it natural to decompose a circuit to the IPs of its block-by-block structure.
Such structural partitioning requires the deep design understanding and has already been used

RR n° 9004

24 Burlyaev & Fradet & Girault

in the model checking of Intel CPUs [6]. In our case, the presented analysis can be applied
to circuit sub-components after the decomposition. After the minimization of internal voters
in each sub-circuit, the components should be interconnected again to rebuild the whole design.
However, the interconnection wires should include voters to guaranty the fault-tolerance property
of the �nal optimized circuit. Such an approach is not optimal even if the local input/output
speci�cations are precise, because some of the interconnection voters may be redundant. Only a
global analysis on the blocks containing such wire with a voter (as an input or output wire) can
safely remove interconnection voters.

If a decomposition in sub-circuits is not known, the circuit netlist has to be automatically
divided and the input-output speci�cations of its parts have to be found. These steps by them-
selves present complex tasks and require deep investigation. Here, we sketch some preliminary
ideas about how these problems can be solved. First, a circuit netlist can be separated according
to some syntactic criteria, e.g., the circuit cuts should be performed at wires that are included in
the biggest number of sequential loops. Such an approach eliminates as many sequential loops as
possible by reducing the number of sequential loops in each sub-component. It limits the number
of potential points where the voters have to be inserted.

After the circuit decomposition, our semantic analysis can be applied to each of its sub-parts.
The main di�culty lies in the identi�cation of input/output speci�cation of each sub-circuit to
perform the local semantic analyses. Figure 7 presents three cases of the circuit separation: a)
sequential, b) parallel, and c) feedback decomposition.

c1 c2 c1
c2

a) b)

c)

i2

c1
i1 o1 o2

c2

Figure 7: a) sequential, b) parallel, and c) feedback circuit decomposition.

While the input/output speci�cation for c1 and c2 sub-circuits can be extracted from the
global speci�cation in the parallel decomposition (case b, Figure 7), the sequential and feedback
decompositions (cases a and c) create unknown internal speci�cations (marked in red). They
have to be found for each sub-part. Consider, for instance, the unknown input speci�cation i2
for the sequential decomposition (case a). The signals in i2 are the outputs o1. Since the netlist
c1 and its input speci�cation i1 fully describe the behavior of c1, o1 and i2 can be described
by the same NBA. In the worst case, such NBA could be as big as c1 multiplied by the size of
i1, which can be prohibitive for the following semantic analysis of c2 sub-circuit. Consequently,
the extracted NBA should be over-approximated to lower the complexity. Naturally, the over-
approximation may in�uence the precision of the further semantic voter minimization in c2.
The feedback decomposition is even more complex because of the mutual dependency between
sub-components c1 and c2.

These modularity issues are complex but important and valuable since many other static
analyses of circuits could bene�t from them.

Inria

Minimization of voters in fault-tolerant circuits 25

References

[1] Open Source Hardware IPs: OpenCores project, Michael Dunn- Logarithm Unit; Launchbird
Design Systems, Inc.-Floating Point multiplier.

[2] CUDD: CU Decision Diagram Package, release 2.5.0. http://vlsi.colorado.edu/~fabio/
CUDD/. Accessed: 2014-09-01.

[3] MLCUDDIDL: An OCaml interface for the CUDD BDD library. http://pop-art.

inrialpes.fr/~bjeannet/mlxxxidl-forge/mlcuddidl/index.html. Accessed: 2014-09-
01.

[4] Proceedings 2003 International Test Conference (ITC 2003), Breaking Test Interface Bot-
tlenecks, 28 September - 3 October 2003, Charlotte, NC, USA. IEEE Computer Society,
2003.

[5] Neutron-induced single event upset SEU. Microsemi Corporation, (55800021-0/8.11), Au-
gust 2011.

[6] M. Aagaard, R. Jones, and C.-J. Seger. Formal veri�cation using parametric representations
of boolean constraints. In Design Automation Conference (DAC), pages 402�407, 1999.

[7] B. B. Alagoz. Fault masking by probabilistic voting. OncuBilim Algorithm And Systems
Labs, 9(1), 2009.

[8] S. Baarir, C. Braunstein, et al. Complementary formal approaches for dependability analysis.
In IEEE Int.Symp. on Defect and Fault Tolerance in VLSI Systems, pages 331�339, 2009.

[9] S. Baarir et al. Feasibility analysis for MEU robustness quanti�cation by symbolic model
checking. In Proceedings in Formal Methods of Software Design, 2011.

[10] A. Bogorad et al. On-orbit error rates of RHBD SRAMs: Comparison of calculation tech-
niques and space environmental models with observed performance. IEEE Trans. on Nuclear
Science, pages 2804�2806, 2011.

[11] B. Bridgford, C. Carmichael, and C. W. Tseng. Single-event upset mitigation selection
guide. Xilinx Application Note XAPP987, 1, 2008.

[12] P. Brinkley, P. Avnet, and C. Carmichael. SEU mitigation design techniques for the
XQR4000XL. 2000.

[13] S. P. Buchner and M. P. Baze. Single-event transients in fast electronic circuits. IEEE
NSREC Short Course, pages 1�105, 2001.

[14] D. Burlyaev. Design, optimization, and formal veri�cation of circuit fault-tolerance tech-
niques. PhD thesis Joseph Fourier University/INRIA, November 2015.

[15] D. Burlyaev, P. Fradet, and A. Girault. Veri�cation-guided voter minimization in triple-
modular redundant circuits. In Design, Automation & Test in Europe Conference & Exhi-
bition, DATE 2014, Dresden, Germany, March 24-28, 2014, pages 1�6, 2014.

[16] D. Burlyaev, P. Fradet, and A. Girault. Automatic time-redundancy transformation for
fault-tolerant circuits. International Symposium on Field-Programmable Gate Arrays, pages
218�227, February 2015.

RR n° 9004

26 Burlyaev & Fradet & Girault

[17] D. Burlyaev, P. Fradet, and A. Girault. Time-redundancy transformations for adaptive fault-
tolerant circuits. In NASA/ESA Conference on Adaptive Hardware and Systems (AHS),
pages 1�8, 2015.

[18] G. Cabodi and S. Singh, editors. Complete and E�ective Robustness Checking by Means of
Interpolation. Formal Methods in Computer-Aided Design (FMCAD), 2012.

[19] A. C. L. Chiang, I. S. Reed, and A. V. Banes. Path sensitization, partial boolean di�erence,
and automated fault diagnosis. IEEE Trans. Computers, 21(2):189�195, 1972.

[20] E. M. Clarke, J. R. Burch, O. Grumberg, D. E. Long, and K. L. McMillan. Mechanized rea-
soning and hardware design. chapter Automatic Veri�cation of Sequential Circuit Designs,
pages 105�120. 1992.

[21] F. Corno, M. Reorda, and G. Squillero. RT-level ITC'99 benchmarks and �rst ATPG results.
Design Test of Computers, pages 44�53, 2000.

[22] X. Corporation. Xilinx TMRTool. Product brief. 2006.

[23] G. De Micheli. Synthesis and Optimization of Digital Circuits. McGraw-Hill Higher Educa-
tion, 1st edition, 1994.

[24] D. E. Denning and P. J. Denning. Certi�cation of programs for secure information �ow.
Commun. ACM, 20(7):504�513, 1977.

[25] R. D. Do. New tool for FPGA designers mitigates soft errors within synthesis. December
2011.

[26] P. Dodd, M. Shaneyfelt, J. Schwank, and G. Hash. Neutron-induced soft errors, latchup,
and comparison of SER test methods for SRAM technologies. International Electron Devices
Meeting, pages 333�336, 2002.

[27] G. Even, J. S. Naor, B. Schieber, and M. Sudan. Approximating minimum feedback sets
and multi-cuts in directed graphs. In Proc. 4th Int. Conf. on Int. Prog. and Combinatorial
Opt., pages 14�28, 1995.

[28] G. Fey, A. Sül�ow, and R. Drechsler. Computing bounds for fault tolerance using formal
techniques. In Proceedings of the 46th Design Automation Conference, DAC, pages 190�195,
2009.

[29] S. Habinc. Functional triple modular redundancy FTMR. European Space Agency Contract
Report, (FPGA-003-01), December 2002.

[30] K. Hass and J. Ambles. Single event transients in deep submicron CMOS. In 42nd Midwest
Symposium on Circuits and Systems, pages 122�125 vol. 1, 1999.

[31] J. P. Hayes, I. Polian, and B. Becker. An analysis framework for transient-error tolerance.
In 25th IEEE VLSI Test Symposium (VTS 2007), 6-10 May 2007, Berkeley, California,
USA, pages 249�255, 2007.

[32] T. Heijmen. Soft-error vulnerability of sub-100-nm �ip-�ops. 14th IEEE Int.On-Line Testing
Symposium, pages 247�252, 2008.

Inria

Minimization of voters in fault-tolerant circuits 27

[33] T. Imagawa, H. Tsutsui, H. Ochi, and T. Sato. A cost-e�ective selective tmr for heteroge-
neous coarse-grained recon�gurable architectures based on dfg-level vulnerability analysis.
In 2013 Design, Automation Test in Europe Conference Exhibition (DATE), pages 701�706,
March 2013.

[34] J. M. Johnson and M. J. Wirthlin. Voter insertion algorithms for FPGA designs using triple
modular redundancy. In FPGA, pages 249�258, 2010.

[35] R. Karp. Reducibility among combinatorial problems. Complexity of Computer Computa-
tions, 43:85�103, 1972.

[36] S. Kilts. Advanced FPGA Design: Architecture, Implementation, and Optimization. Wiley-
IEEE Press, 2007.

[37] H. T. Nguyen and Y. Yagil. A systematic approach to SER estimation and solutions. Proc.
Int. Reliability Physics Symp., pages 60�70, April 2003.

[38] I. Polian, B. Becker, M. Nakasato, S. Ohtake, and H. Fujiwara. Low-cost hardening of
image processing applications against soft errors. In 21th IEEE International Symposium
on Defect and Fault-Tolerance in VLSI Systems (DFT 2006), 4-6 October 2006, Arlington,
Virginia, USA, pages 274�279, 2006.

[39] B. Pratt, M. Ca�rey, P. Graham, K. Morgan, and M. Wirthlin. Improving FPGA design
robustness with partial TMR. IEEE International Reliability Physics Symposium, pages
226�232, 2006.

[40] O. Ruano, P. Reviriego, and J. Maestro. Automatic insertion of selective TMR for SEU
mitigation. European Conference on Radiation and its E�ects on Components and Systems,
pages 284 � 287, 2008.

[41] R. Rudell. Dynamic variable ordering for ordered binary decision diagrams. In Proc. of
CAD-93, pages 42�47, 1993.

[42] P. Samudrala et al. Selective triple modular redundancy based single-event upset tolerant
synthesis for FPGAs. IEEE Transactions on Nuclear Science, pages 284 � 287, October
2004.

[43] S. Seshia, W. Li, and S. Mitra. Veri�cation-guided soft error resilience. In DATE '07, pages
1�6, 2007.

[44] P. Shivakumar, M. Kistler, S. Keckler, D. Burger, and L. Alvisi. Modeling the e�ect of
technology trends on the soft error rate of combinational logic. In Dependable Systems and
Networks, 2002. DSN 2002. Proceedings. International Conference on, pages 389�398, 2002.

[45] A. Sutton. Creating highly reliable FPGA designs. Military&Aerospace Technical Bullentin,
Issue 1:5�7, 2013.

[46] J. von Neumann. Probabilistic logic and the synthesis of reliable organisms from unreliable
components. Automata Studies, Princeton Univ. Press, pages 43�98, 1956.

[47] J. Ziegler et al. IBM experiments in soft fails in computer electronics (1978-1994). IBM
Journal of Research and Development, 40(1):3�18, 1996.

RR n° 9004

RESEARCH CENTRE
GRENOBLE – RHÔNE-ALPES

Inovallée
655 avenue de l’Europe Montbonnot
38334 Saint Ismier Cedex

Publisher
Inria
Domaine de Voluceau - Rocquencourt
BP 105 - 78153 Le Chesnay Cedex
inria.fr

ISSN 0249-6399

