
HAL Id: hal-01471905
https://inria.hal.science/hal-01471905

Submitted on 20 Feb 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Identifying Classes in Legacy JavaScript Code
Leonardo Humberto Silva, Marco Tulio Valente, Alexandre Bergel, Nicolas

Anquetil, Anne Etien

To cite this version:
Leonardo Humberto Silva, Marco Tulio Valente, Alexandre Bergel, Nicolas Anquetil, Anne Etien.
Identifying Classes in Legacy JavaScript Code. Journal of Software: Evolution and Process, 2017,
�10.1002/smr.1864�. �hal-01471905�

https://inria.hal.science/hal-01471905
https://hal.archives-ouvertes.fr

For Peer Review
Identifying Classes in Legacy JavaScript Code

Leonardo Humberto Silva1, Marco Tulio Valente1, Alexandre Bergel2,

Nicolas Anquetil3, Anne Etien3

1Department of Computer Science, UFMG, Brazil
2Department of Computer Science, DCC - Pleiad Lab, University of Chile

3RMod Project Team, INRIA Lille Nord Europe, France

{leonardosilva,mtov}@dcc.ufmg.br, abergel@dcc.uchile.cl, {nicolas.anquetil,anne.etien}@inria.fr

Abstract

JavaScript is the most popular programming language for the Web. Although the language

is prototype-based, developers can emulate class-based abstractions in JavaScript to master

the increasing complexity of their applications. Identifying classes in legacy JavaScript code

can support these developers at least in the following activities: (i) program comprehension;

(ii) migration to the new JavaScript syntax that supports classes; and (iii) implementation of

supporting tools, including IDEs with class-based views and reverse engineering tools. In this

paper, we propose a strategy to detect class-based abstractions in the source code of legacy

JavaScript systems. We report on a large and in-depth study to understand how class emulation

is employed, using a dataset of 918 JavaScript applications available on GitHub. We found that

almost 70% of the JavaScript systems we study make some usage of classes. We also performed

a field study with the main developers of 60 popular JavaScript systems in order to validate our

findings. The overall results range from 97% to 100% for precision, from 70% to 89% for recall,

and from 82% to 94% for F-score.

1 Introduction

JavaScript is the most popular programming language for the Web. The language was initially

designed in the mid-1990s to extend web pages with small executable code. Since then, its popularity

and relevance only grew [1, 2, 3]. JavaScript is now the most popular language on GitHub, including

newly created repositories. Richards et al. [4] also reported that the language is used by 97 out

of the web’s 100 most popular sites. Concomitantly with its increasing popularity, the size and

complexity of JavaScript software is in steady growth. The language is now used to implement mail

clients, office applications, and IDEs, which can reach hundreds of thousands of lines of code.1

1http://sohommajumder.wordpress.com/2013/06/05/gmail-has-biggest-collection-of-javascript-code-lines-in-the-
world

1

Page 3 of 39

http://mc.manuscriptcentral.com/jsme

Journal of Software: Evolution and Process

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

JavaScript is an imperative and object-oriented language centered on prototypes, rather than

a class-based language [5, 6, 7]. Recently, the new standard version of the language, named

ECMAScript 6 (ES6), included syntactical support for classes [8]. In this new version, it is pos-

sible to implement classes using a syntax very similar to the one provided by mainstream class-

based object-oriented languages, like Java and C++. However, there is a large codebase of legacy

JavaScript source code, i.e., code implemented in versions prior to the ECMAScript 6 standard.

To mention an example, GitHub has currently over three million active repositories whose main

language is JavaScript2, most of them implemented in ECMAScript 5 (ES5). In this legacy code,

developers can emulate class-based abstractions, i.e., data structures including attributes, methods,

constructors, inheritance, etc, using the prototype-based object system of the language, which is

part of JavaScript since its first version.

In a previous paper, we presented a set of heuristics followed by an empirical study to analyze

the prevalence of class-based structures in legacy JavaScript code [9]. This empirical study was con-

ducted on 50 popular JavaScript systems, all implemented according to ES5. The results indicated

that: (i) class-based constructs are present in 74% of the studied systems; (ii) there is no correlation

between code size and the number of class-like structures; and (iii) emulating inheritance through

prototype chaining is not common. In this paper, we extend this previous work as follows:

• We conduct a new study and increase our dataset from 50 to 918 systems. We use an external

library called Linguist to allow the extraction of a large dataset from GitHub, ignoring binary

or third-party files, and suppressing files generated automatically.

• We perform a field study with 60 professional JavaScript developers to evaluate the accuracy

of the proposed strategy to detect class-like structures in legacy JavaScript code.

• We measure precision, recall, and F-score for the identification of classes, methods, and at-

tributes. The overall results range from 97% to 100% for precision, from 70% to 89% for

recall, and from 82% to 94% for F-score.

• We investigate if JavaScript developers intend to use the new support for classes that comes

with ES6.

The main objective of this work is to propose, implement, and evaluate a set of heuristics to iden-

tify class-based structures, and their dependencies, in legacy JavaScript code. Identifying classes

in legacy JavaScript code is important for two major reasons. Firstly, it can support developers

to migrate their legacy code to ES6, manually or by using tools that rely on the heuristics pro-

posed in this paper. Secondly, it opens the possibility to implement a variety of analysis tools for

legacy JavaScript code, including IDEs with class-based views, bad smells detection tools, reverse

engineering tools, and techniques to detect violations and deviations in class-based architectures.

The main contributions of our work are as follows:
2http://githut.info/

2

Page 4 of 39

http://mc.manuscriptcentral.com/jsme

Journal of Software: Evolution and Process

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

• We document how prototypes are used in JavaScript to support the implementation of struc-

tures including both data and code and that are further used as a template for the creation

of objects (Section 2). We use the term classes to refer to such structures, since they have a

very similar purpose as the native classes from mainstream object-oriented languages.

• We propose a strategy to statically identify classes in JavaScript code (Section 3). We also

propose an open source supporting tool, called JSClassFinder, that practitioners can use

to detect and inspect classes in legacy JavaScript software.

• We provide a thorough study on the usage of classes in a dataset of 918 JavaScript systems

available on GitHub (Section 4). This study aims to answer the following research questions:

(RQ #1) Do developers emulate classes in legacy JavaScript applications? (RQ #2) Do

developers emulate subclasses in legacy JavaScript applications? (RQ #3) Is there a relation

between the size of a JavaScript application and the number of class-like structures? (RQ #4)

What is the shape of the classes emulated in legacy JavaScript code? By “shape of a class”

we mean how it is organized in terms of the number of attributes and methods.

• We report the results of a field study with 60 professional JavaScript developers (Section 5).

We rely on these developers to validate our findings and our strategy to detect classes. This

study aims to answer the following research questions: (RQ #5) How accurate is our strategy

to detect classes? (RQ #6) Do developers intend to use the new support for classes that

comes with ECMAScript 6?

The remainder of this paper is organized as follows. Section 2 provides a background on how

classes are emulated in legacy JavaScript code using functions and prototypes. Section 3 introduces

our strategy and tool to identify classes in JavaScript. Section 4 describes the research questions

that guide this work, along with the dataset, metrics, and methodology used in our studies. We show

and discuss answers to the proposed research questions in Section 5. We discuss the implications

of our results and future research opportunities in Section 6. Threats to validity are exposed in

Section 7 and related work is discussed in Section 8. We conclude by summarizing our findings in

Section 9.

2 Classes in JavaScript

In this section, we discuss how classes can be emulated in legacy JavaScript code (Subsection 2.1).

We also describe the syntax proposed in ECMAScript 6 to support classes (Subsection 2.2).

2.1 Class Emulation in Legacy JavaScript Code

This section describes the different mechanisms to emulate classes in legacy JavaScript. To identify

these mechanisms we conducted an informal survey on documents available on the web, including

3

Page 5 of 39

http://mc.manuscriptcentral.com/jsme

Journal of Software: Evolution and Process

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

tutorials3, blogs4, and StackOverflow discussions5. We surveyed a catalogue of five encapsulation

styles for JavaScript proposed by Gama et al. [10] and JavaScript books targeting language prac-

titioners [11, 12]. We also interviewed the developer of a real JavaScript project to tune our tool

and strategy. This developer is the leader of the open source project select26 (a customizable

replacement for select boxes).

An object in JavaScript is a set of name-value pairs. Methods and variables are called properties,

and their values can be any objects, including immediate values (e.g., numbers, boolean) and

functions. To implement classes in JavaScript, prior to ECMAScript 6 standard, the most common

strategy is to use functions. Particularly, any function can be used as a template for the creation

of objects. When a function is used as a class constructor, its this is bound to the new object

being constructed. Variables linked to this are used to define properties that emulate attributes

and methods. If a property is an inner function, then it represents a method, otherwise, it is an

attribute. The operator new and the method Object.create(...) are usually used to instantiate

classes.

To illustrate the definition of classes in legacy JavaScript code, we use a simple Circle class.

Listing 1 presents the function that defines this class (lines 1-8), which includes two attributes

(radius and color) and two methods (getArea and setColor). Functions used to define methods

can be implemented inside the body of the class constructor, like getArea (lines 4-6), or outside,

like setColor (lines 9-11). An instance of the class Circle is created with the keyword new (line

13).

1 function Circle (radius , color) { // function -> class

2 this. radius = radius ; // property -> attribute

3 this.color = color; // property -> attribute

4 this. getArea = function () { // function -> method

5 return (3.14 * this. radius * this. radius);

6 }

7 this. setColor = setColor ; // function -> method

8 }

9 function setColor (c) {// function

10 this.color = c; // property -> attribute

11 }

12 // Circle instance -> object

13 var myCircle = new Circle (10, 0 x0000FF); // 0 x0000FF = Blue

Listing 1: Class declaration and object instantiation

Each object in JavaScript has an implicit prototype property that refers to another object. The

instance link between an object and its class in mainstream object-oriented languages is assimilated

to the prototype link between an object and its prototype in JavaScript. To evaluate an expression

3https://developer.mozilla.org/en-US/docs/Web/JavaScript/Introduction_to_Object-Oriented_

JavaScript
4http://javascript.crockford.com/prototypal.html
5http://stackoverflow.com/questions/387707/whats-the-best-way-to-define-a-class-in-javascript
6https://select2.github.io/

4

Page 6 of 39

http://mc.manuscriptcentral.com/jsme

Journal of Software: Evolution and Process

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

like obj.p, the runtime system starts searching for property p in obj, then in obj.prototype, then

in obj.prototype.prototype, and so on until it finds the desired property or the search fails. When

an object is created using new C its prototype is set to the prototype of the function C, which by

default is defined as pointing to Object (the global base object in JavaScript). Therefore, a chain

of prototype links usually ends at Object.

By manipulating the prototype property, we can define methods whose implementations are

shared by all object instances. It is also possible to define attributes shared by all objects of a

given class, akin to static attributes in class-based languages. In Listing 2, Circle includes a

pi static attribute (line 2) and a getCircumference method (lines 5-7). It is worth noting that

getCircumference is not attached to the class (as a static method in Java). It has for example

access to the object this, whose value is not determined using lexical scoping rules, but instead

using the caller object.

1 // prototype property -> static attribute

2 Circle . prototype .pi = 3.14;

3

4 // function -> method

5 Circle . prototype . getCircumference = function () {

6 return (2 * this.pi * this. radius);

7 }

Listing 2: Using prototype to define methods and static attributes

Prototypes are also used to introduce inheritance hierarchies [13, 14]. In JavaScript, we can

consider that a class C2 is a subclass of C1 if C2’s prototype refers to C1’s prototype or to an instance

of C1. For example, Listing 3 shows a class Circle2D that extends Circle with its position in a

Cartesian plane.

1 function Circle2D (x, y) { // class Circle2D

2 this.x = x;

3 this.y = y;

4 }

5

6 // Circle2D is a subclass of Circle

7 Circle2D . prototype = new Circle (10, 0 x0000FF);

8

9 // Circle2D extends Circle with new methods

10 Circle2D . prototype .getX = function () {

11 return (this.x);

12 }

13 Circle2D . prototype .getY = function () {

14 return (this.y);

15 }

Listing 3: Implementing subclasses

5

Page 7 of 39

http://mc.manuscriptcentral.com/jsme

Journal of Software: Evolution and Process

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

Alternatively, the subclass may refer directly to the prototype of the superclass, which is possible

using the Object.create() method. This method creates a new object with the specified prototype

object, as illustrated by the following code:

1 Circle2D . prototype = Object . create (Circle . prototype)

Table 1 summarizes the mechanisms presented in this section to map class-based object-oriented

abstractions to JavaScript abstractions.

Table 1: Class-based languages vs JavaScript

Class-based languages JavaScript

Class Function
Attribute Field property
Method Inner function property
Static attribute Prototype property
Inheritance Prototype chaining

2.2 ECMAScript 6 Classes

ECMAScript is the standard definition of JavaScript [5]. ECMAScript 6 (ES6) [8] is the latest

version of this standard, which was released in 20157. Interestingly, a syntactical support to classes

is included in this last release. For example, ES6 supports the following class definition:

1 class Circle {

2 constructor (radius) {

3 this. radius = x;

4 }

5 getArea () {

6 return (3.14 * this. radius * this. radius);

7 }

8 }

However, this support to classes does not impact the semantics of the language, which remains

prototype-based. For example, the previous class is equivalent to the following code:

1 function Circle (radius) {

2 this. radius = radius ;

3 }

4 Circle . prototype . getArea = function () {

5 return (3.14 * this. radius * this. radius);

6 }

The emulation strategies discussed in the previous section straightforwardly detects this code

as a Circle class, with a radius attribute and a getArea method. Therefore, identifying class-

7https://developer.mozilla.org/en-US/docs/Web/JavaScript/New_in_JavaScript/ECMAScript_6_support_in
_Mozilla

6

Page 8 of 39

http://mc.manuscriptcentral.com/jsme

Journal of Software: Evolution and Process

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

like structures in legacy JavaScript code can, for example, motivate developers to migrate such

structures to syntax-based classes, according to the ES6 standard.

3 Detecting Classes in Legacy JavaScript

In this section, we describe our strategy to statically detect classes in legacy JavaScript source code

(Subsection 3.1). Subsection 3.2 describes the tool we implemented for this purpose. We also report

limitations of this strategy, mainly due to the dynamic nature of JavaScript (Subsection 3.3).

3.1 Strategy to Detect Classes

To detect classes, we reuse with minimal adaptations a simple grammar, originally proposed by

Anderson et al. [15] to represent how objects are created in JavaScript and how objects acquire

fields and methods. This grammar is as follows:

Program ::= FuncDecl*

FunDecl ::= function Id() { Exp }

Exp ::= new Id(); |

Object.create(Id.prototype); |

this.Id = Exp; |

this.Id = function { Exp } |

Id.prototype.Id = Exp; |

Id.prototype.Id = function { Exp } |

Id.prototype = new Id(); |

Id.prototype = Object.create(Id.prototype);

This grammar assumes that a program is composed of functions, and that a function’s body is

an expression. The expressions of interest are the ones that create objects and add properties to

functions via this or prototype.

Definition #1: A class is a tuple (C, A, M), where C is the class name, A = {a1, a2, . . . , ap} are

the attributes defined by the class, and M = {m1, m2, . . . , mq} are the methods. Moreover, a class

(C, A, M), defined in a JavaScript program P , must respect the following conditions:

• P must have a function with name C.

• For each attribute a ∈ A, the class constructor or one of its methods must include an assign-

ment this.a = Exp or P must include an assignment C.prototype.a = Exp.

• For each method m ∈ M, function C must include an assignment this.m = function {Exp}

or P must include an assignment C.prototype.m = function {Exp}.

7

Page 9 of 39

http://mc.manuscriptcentral.com/jsme

Journal of Software: Evolution and Process

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

However, when functions matching Definition #1 are implemented in the same lexical scope, as

functions Circle and setColor in Listing 1, we must distinguish those that are class constructors

from those that are methods. To achieve that, we do not consider as a class constructor a function

that: (i) has no inner functions bound to this, (ii) does not participate in inheritance relationships

defined using prototypes, and (iii) is never instantiated with neither new nor Object.create.

In Listing 1, function setColor does not have inner functions bound to this nor inheritance

relationships and it is never instantiated. Therefore, it is not considered a function constructor,

but a method of class Circle.

Definition #2: Assuming that (C1, A1, M1) and (C2, A2, M2) are classes in a program P , we

define that C2 is a subclass of C1 if one of the following conditions holds:

• P includes an assignment C2.prototype = new C1().

• P includes an assignment C2.prototype = Object.create(C1.prototype).

3.2 Tool Support

We implemented a tool, called JSClassFinder [16], for identifying classes in legacy JavaScript

programs. As illustrated in Figure 1, this tool works in two steps. In the first step, Esprima8—a

widely used JavaScript Parser—is used to generate a full abstract syntax tree (AST), in JSON

format. In the second step, the “Class Detector” module is responsible for identifying classes in the

JavaScript AST and producing an object-oriented model of the source code.

Figure 1: JSClassFinder’s architecture

The models generated by JSClassFinder are integrated with Moose9, which is a platform

for software and data analysis [17]. This platform provides visualizations to interact with the tool

and to “navigate” the application’s model. All information about classes, methods, attributes,

and inheritance relationships is available. Users can interact with a Moose model to access all

visualization features and metric values. This model also allows the use of drill-down and drill-up

operations when an entity is selected. The visualization options include UML class diagrams [18],

distribution maps [19], and tree views.

8http://esprima.org
9http://www.moosetechnology.org/

8

Page 10 of 39

http://mc.manuscriptcentral.com/jsme

Journal of Software: Evolution and Process

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

Page 11 of 39

http://mc.manuscriptcentral.com/jsme

Journal of Software: Evolution and Process

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

In addition, there are various JavaScript frameworks, like Prototype10 and ClazzJS11, that

support their own style for implementing class-like abstractions. For this reason, we do not struggle

to cover the whole spectrum of alternatives to implement classes. Instead, we consider only the

strategy closest to the syntax and semantics of class-based languages and that ES6 code can be

directly translated to (as discussed in Subsection 2.2).

Moreover, there are object-oriented abstractions that are more difficult to emulate in JavaScript,

like abstract classes and interfaces. Encapsulation is another concept that does not have a straight-

forward mapping to JavaScript. A common workaround to simulate private members in JavaScript

is by using local variables and closures. As shown in Listing 5, an inner function f2 in JavaScript

has access to the variables of its outer function f1, even after f1 returns. Therefore, local variables

declared in f1 can be viewed as private, because they can only be accessed by the “private function”

f2. However, we do not classify f2 as a private method, mainly because it cannot be accessed from

the object this, nor can it be directly called from the public methods associated to the prototype

of f1.

1 function f1 () { // outer function

2 var x; // local variable

3 function f2 () { // inner function

4 // can access "x"

5 // cannot be called outside "f1"

6 }

7 }

Listing 5: Using closures to implement “private” inner functions

In JavaScript, it is possible to remove properties from objects dynamically, e.g., by calling

delete myCircle.radius. Therefore at runtime, an object can have less attributes than the ones

initially defined. It is also possible to modify the prototype chains dynamically, which would mean

modifying the “inheritance” links. Finally, the behavior of a program can also be dynamically

modified using the eval operator [22, 23]. However, we do not consider the impact of eval’s in

the strategy described in Subsection 3.1. For example, we do not account for classes entirely or

partially created by means of eval.

Still due to the dynamic nature of JavaScript, if a class has a property that receives the return of

a function call, this property is classified as an attribute, even if this call returns another function.

Listing 6 shows an example in which the property this.x (line 6) is classified as an attribute, instead

of a method, because the language is loosely typed and we do not evaluate the results of function

calls.

10http://prototypejs.org
11https://github.com/alexpods/ClazzJS

10

Page 12 of 39

http://mc.manuscriptcentral.com/jsme

Journal of Software: Evolution and Process

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

1 function getF () {

2 // getF () returns another function

3 return function () {...};

4 }

5 function f1 () { // class constructor

6 this.x = getF (); // property x

7 ...

8 }

Listing 6: Property that receives a function as the return of a function call

4 Evaluation Design

In this section, we describe the methodology we use to evaluate and to validate the strategy proposed

to detect classes in legacy JavaScript code. We first present the questions that motivate our research

(Subsection 4.1). Next, we describe the process we follow to select JavaScript repositories on GitHub

and to carry out the necessary clean up of the downloaded code (Subsection 4.2). The metrics we

use in our evaluation are described in Subsection 4.3. Finally, we report the design of a field study

with JavaScript developers in Subsection 4.4.

4.1 Research Questions

Our main goal is to evaluate the strategy we propose to detect class-like abstractions in legacy

JavaScript software. To achieve this goal, we pose the following research questions:

• RQ #1: Do developers emulate classes in legacy JavaScript applications?

• RQ #2: Do developers emulate subclasses in legacy JavaScript applications?

• RQ #3: Is there a relation between the size of a JavaScript application and the number of

class-like structures?

• RQ #4: What is the shape of the classes emulated in legacy JavaScript code?

• RQ #5: How accurate is our strategy to detect classes?

• RQ #6: Do developers intend to use the new support for classes that comes with

ECMAScript6?

With RQ #1, we check if the emulation of classes is a common practice in legacy JavaScript

applications. RQ #2 checks the usage of prototype-based inheritance. With RQ #3, we verify if

the number of JavaScript classes in a system is related to its size, measured in lines of code. With

RQ #4, we analyze the shape of JavaScript classes regarding the relation between the number of

attributes and the number of methods. With RQ #5, we evaluate the accuracy of the proposed

11

Page 13 of 39

http://mc.manuscriptcentral.com/jsme

Journal of Software: Evolution and Process

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

Page 14 of 39

http://mc.manuscriptcentral.com/jsme

Journal of Software: Evolution and Process

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

4.3 Metrics

In the following we describe the metrics we use to answer the first four research questions proposed

in Subsection 4.1.

4.3.1 Class Density (CD)

To measure the amount of source code related to the emulation of classes (as defined in Subsec-

tion 3.1) we use Class Density (CD), which is defined as:

CD =
function methods + # classes

functions

This metric is the ratio of functions in a program that are related to the implementation of

classes, i.e., that are methods or that are classes themselves. It ranges between 0 (system with no

functions related to classes) to 1 (a fully class-oriented system, where all functions are used to sup-

port classes). The denominator includes all functions in a JavaScript program. We use the number

of functions to implement methods (function methods) instead of the number of methods because,

in JavaScript, it is possible to share the same function to implement multiple methods. Listing 7

shows an example found in the system slick, where a function body is shared by two methods. In

this example, the Slick class provides two methods (getCurrent and slickCurrentSlide) that

perform the same action when called. Therefore, the number of methods is equal to two, but the

number of function methods is one.

1 Slick. prototype . getCurrent =

2 Slick. prototype . slickCurrentSlide = function () {

3 var _ = this;

4 return _. currentSlide ;

5 };

Listing 7: Methods sharing the same body in system slick

We used CD to classify the systems in four main groups:

• Class-free systems: systems that do not use classes at all (CD = 0).

• Class-aware systems: systems that use classes, but marginally (0 < CD ≤ 0.25).

• Class-friendly systems: systems with an important usage of classes (0.25 < CD ≤ 0.75)

• Class-oriented systems: systems where most structures are classes (CD > 0.75).

13

Page 15 of 39

http://mc.manuscriptcentral.com/jsme

Journal of Software: Evolution and Process

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

4.3.2 Subclass Density (SCD)

To evaluate the usage of inheritance, we propose the metric Subclass Density (SCD), defined as:

SCD =
| { C ∈ Classes | DIT (C) ≥ 2 } |

| Classes | − 1

where Classes is the set of all classes in a given system and DIT is the Depth of Inheritance Tree.

Classes with DIT = 1 only inherit from the common base class (Object). SCD ranges from 0

(system that does not make use of inheritance) to 1 (system where all classes inherit from another

class, except the class that is the root of the class hierarchy). SCD is only defined for systems that

have at least two classes.

4.3.3 Data-Oriented Class Ratio (DOCR)

In a preliminary analysis, we noticed many classes having more attributes than methods. This

contrasts to the common shape of classes in class-based languages, when classes usually have more

methods than attributes [24]. To better understand the members of JavaScript classes, we propose

a metric called Data-Oriented Class Ratio (DOCR), defined as follows:

DOCR =
| { C ∈ Classes | NOA(C) > NOM(C) } |

| Classes |

where Classes is the set of all classes in a system. DOCR ranges from 0 (system where all classes

have more methods than attributes or both measures are equal) to 1 (system where all classes

are data-oriented classes, i.e., their number of attributes is greater than the number of methods).

DOCR is only defined for systems that have at least one class.

4.4 Field Study Design

To validate our strategy for detecting classes, we perform a field study with the developers of

60 JavaScript applications, including 50 systems from our previous work [9], and 10 new systems.

These systems have at least 1,000 stars on GitHub, 150 commits, and are not forks of other projects.

After checking out each system, we cleaned up the source code to remove unnecessary files, as we

did for the dataset described in Subsection 4.2.

The systems considered in the field study are presented in Table 2, including their version, a

brief description, size (in lines of code), number of files, and number of functions. The selection

includes well-known and widely used JavaScript systems, from different domains, covering frame-

works (e.g., angular.js and jasmine), editors (e.g., brackets), browser plug-ins (e.g., pdf.js),

games (e.g., 2048 and clumsy-bird), etc. The largest system (ace) has 140,023 LOC and 594 files

with .js extension. The smallest system (masonry) has 208 LOC and a single file. The average

14

Page 16 of 39

http://mc.manuscriptcentral.com/jsme

Journal of Software: Evolution and Process

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

Page 17 of 39

http://mc.manuscriptcentral.com/jsme

Journal of Software: Evolution and Process

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

Table 2: JavaScript systems (ordered by the CD column, see description in accompanying text).
SCD can only be computed for systems with 2 or more classes. DOCR can only be computed for
systems with at least one class.

System Version Description LOC #Files #Func #Class #Meth #Attr CD SCD DOCR

masonry 3.2.3 Cascading grid layout library 208 1 10 0 0 0 0.00 - -

randomColor 0.2.0 Color generator 373 1 16 0 0 0 0.00 - -

respond 1.4.2 Polyfill for CSS3 queries 460 3 15 0 0 0 0.00 - -

resume - Resume creator 460 1 19 0 0 0 0.00 - -

clumsy-bird - Flappy Bird Game 672 7 36 0 0 0 0.00 - -

impress.js 0.5.3 Presentation framework 769 1 24 0 0 0 0.00 - -

jquery-pjax 1.9.3 Plugin to handle Ajax requests 913 1 33 0 0 0 0.00 - -

async 1.1.0 Async utilities 1,114 1 100 0 0 0 0.00 - -

modernizr 2.8.3 HTML5 and CSS3 detector 1,382 1 69 0 0 0 0.00 - -

deck.js 1.1.0 Modern HTML Presentations 1,473 6 51 0 0 0 0.00 - -

zepto.js 1.1.6 Minimalist jQuery API 2,497 17 233 0 0 0 0.00 - -

photoSwipe 4.0.7 Image gallery 4,401 9 185 0 0 0 0.00 - -

semantic-UI 1.12.3 UI component framework 18,369 23 1,191 0 0 0 0.00 - -

jQueryFileUp 9.9.3 File upload widget 4,011 14 179 1 1 3 0.01 - 1.00

leaflet 0.7.3 Library for interactive maps 8,711 75 677 4 0 7 0.01 0.00 1.00

backbone 1.1.2 Data structure for web apps 1,681 2 115 1 1 0 0.02 - 0.00

chart.js 1.0.2 HTML5 charts library 3,463 6 189 2 2 5 0.02 0.00 0.50

turn.js 4.0.0 Page flip effect for HTML5 6,916 5 267 3 3 6 0.02 0.00 1.00

react 0.13.2 Library for building UI 16,654 143 608 7 8 17 0.02 0.00 0.57

meteor 1.1.0.2 Development platform 41,195 72 1,378 15 12 14 0.02 0.21 0.20

underscore 1.8.2 Functional helpers 1,531 1 123 1 5 1 0.03 - 0.00

jasmine 2.2.1 JavaScript testing framework 7,749 62 892 3 8 11 0.03 0.00 0.67

paper.js 0.9.22 Vector graphics framework 26,039 65 1,071 30 10 115 0.04 0.00 0.90

typeahead.js 0.10.5 Auto-complete library 2,576 19 233 11 1 72 0.05 0.00 1.00

d3 3.5.5 Visualization library 13,079 268 1,259 19 45 41 0.05 0.22 0.58

wysihtml5 0.3.0 Rich text editor 5,913 69 343 2 17 8 0.06 0.00 0.00

sails 0.11.0 MVC framework for Node 12,724 101 425 8 23 40 0.07 0.00 0.25

ionic 1.0.0.4 HTML5 mobile framework 19,322 103 492 8 26 21 0.07 0.29 0.50

jquery 2.1.4 jQuery JavaScript library 7,736 79 330 6 25 31 0.09 0.00 0.50

ghost 0.6.2 Blogging platform 15,290 142 659 15 47 44 0.09 0.00 0.27

timelineJS 2.35.6 Visualization chart 18,371 93 896 12 69 11 0.09 0.00 0.08

express 4.12.3 Minimalist framework 3,590 11 131 3 12 14 0.11 0.00 0.67

reveal.js 3.0.0 HTML presentation framework 5,811 16 242 5 22 18 0.11 0.00 0.40

video.js 4.12.5 HTML5 video library 9,823 46 586 6 63 17 0.11 0.00 0.50

three.js 0.0.71 JavaScript 3D library 39,449 202 1,266 99 48 544 0.12 0.00 0.92

numbers.js - Mathematics library for Node 2,965 10 132 2 16 4 0.14 0.00 0.00

polymer 0.5.5 Library for building web apps 11,849 1 763 22 103 68 0.16 0.00 0.41

grunt 0.4.5 JavaScript task runner 1,932 11 103 1 16 8 0.17 - 0.00

skrollr 0.6.29 Scrolling library 1,772 1 58 1 12 0 0.22 - 0.00

ace 1.1.9 Source code editor 140,023 594 4,337 291 673 785 0.22 0.01 0.46

mousetrap 1.5.3 Library for handling shortcuts 1,281 5 46 1 10 0 0.24 - 0.00

hammer.js 2.0.4 Handle multi-touch gestures 2,348 19 124 6 33 25 0.31 0.00 0.33

brackets 1.3.0 Source code editor 130,770 392 4,298 173 1,239 750 0.33 0.09 0.31

angular.js 1.4.0.1 Web application framework 49,220 191 981 61 276 171 0.34 0.03 0.21

intro.js 1.0.0 Templates for introductions 1,255 1 42 1 14 2 0.36 - 0.00

algorithms 0.8.1 Data structures & algorithms 3,263 58 165 14 59 32 0.44 0.23 0.21

pdf.js 1.1.1 Web PDF reader 57,359 88 2,277 181 895 795 0.47 0.11 0.44

bower 1.4.1 Package manager 8,464 60 304 15 143 97 0.51 0.00 0.40

mustache.js 2.0.0 Logic-less template syntax 594 1 33 3 15 7 0.55 0.00 0.33

less.js 2.3.1 CSS pre-processor 12,045 99 707 64 327 278 0.55 0.21 0.34

gulp 3.8.11 Streaming build system 99 3 5 1 2 6 0.60 - 1.00

fastclick 1.0.6 Library to remove click delays 841 1 23 1 16 10 0.74 - 0.00

pixiJS 3.0.2 Rendering engine 21,024 113 703 87 453 546 0.76 0.33 0.46

isomer 0.2.4 Isometric graphics library 770 7 47 7 31 27 0.81 0.00 0.57

2048 - Number puzzle game 873 10 76 7 62 29 0.91 0.00 0.14

slick 1.5.2 Carousel visualization engine 2,300 1 81 1 86 0 0.93 - 0.00

floraJS 3.1.1 Simulation of natural systems 2,942 20 86 18 62 315 0.93 0.00 0.94

parallax 2.1.3 Motion detector for devices 1,007 3 57 2 56 75 0.95 0.00 1.00

jade 1.9.2 Template engine for Node 11,427 27 169 19 142 73 0.95 0.83 0.26

socket.io 1.3.5 Realtime app framework 1,297 4 57 4 58 46 1.00 0.00 0.00

16

Page 18 of 39

http://mc.manuscriptcentral.com/jsme

Journal of Software: Evolution and Process

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

Page 19 of 39

http://mc.manuscriptcentral.com/jsme

Journal of Software: Evolution and Process

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

Precision (P) =
TP

TP + FP

Recall (R) =
TP

TP + FN

F-score (F1) = 2 ×
P × R

P + R

where TP represents the true positives, FP the false positives, and FN the false negatives. For

classes, TP is the number of class-like structures correctly identified by our tool, FP is the number

of class-like structures erroneously identified, and FN is the number of existing class-like structures

that are not identified. F-score is the harmonic mean of precision and recall. For methods and

attributes, the measures are defined in a similar way, but searching for method-like and attribute-

like structures, respectively.

5 Results

In this section, we present the answers to the six proposed research questions.

5.1 Do developers emulate classes in legacy JavaScript applications?

We found classes in 623 out of 918 systems (68%). The system with the largest number of classes

is gaia (1,001 classes), followed by nodeinspector (330 classes), and babylon.js (294 classes).

MathJax is the largest system (122,683 LOC) that does not have classes. Figure 6(a) shows the

distribution of the number of classes for the systems that have at least one class. The first quartile

is two (lower bound of the black box within the “violin”) with 135 systems having only one class.

The median is 5 and the third quartile is 15 (upper bound of the black box). Listing 8 shows an

example of a class Color, detected in the system three.js. We omit part of the code for the sake

of readability.

1 THREE.Color = function (color) { // Constructor

2 ...

3 return this.set(color)

4 };

5 THREE.Color. prototype = {

6 r: 1, g: 1, b: 1, // Attributes

7 // Methods

8 setRGB : function (r, g, b) { ... },

9 ...

10 }

Listing 8: Example of class in three.js

18

Page 20 of 39

http://mc.manuscriptcentral.com/jsme

Journal of Software: Evolution and Process

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

Page 21 of 39

http://mc.manuscriptcentral.com/jsme

Journal of Software: Evolution and Process

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

Page 22 of 39

http://mc.manuscriptcentral.com/jsme

Journal of Software: Evolution and Process

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

Page 23 of 39

http://mc.manuscriptcentral.com/jsme

Journal of Software: Evolution and Process

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

Page 24 of 39

http://mc.manuscriptcentral.com/jsme

Journal of Software: Evolution and Process

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

Page 25 of 39

http://mc.manuscriptcentral.com/jsme

Journal of Software: Evolution and Process

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

Page 26 of 39

http://mc.manuscriptcentral.com/jsme

Journal of Software: Evolution and Process

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

Table 5: Precision, Recall, and F-Score results

Precision (%) Recall (%) F-Score (%)
Systems Classes Methods Attributes Classes Methods Attributes Classes Methods Attributes

ace 93 100 100 100 100 100 96 100 100

algorithms.js 100 100 100 100 100 100 100 100 100

angular.js 92 100 87 100 93 100 96 96 93

bower 100 100 100 100 100 100 100 100 100

clumsy-bird 100 100 100 0 0 0 0 0 0

d3 100 100 100 83 48 79 91 65 88

express 100 100 100 60 36 56 75 53 72

intro.js 100 100 100 100 100 100 100 100 100

jade 100 100 100 100 100 100 100 100 100

jasmine 100 100 100 7 5 24 13 10 39

jquery 100 100 100 100 100 100 100 100 100

jqueryfileup 100 100 100 100 100 100 100 100 100

leaflet 100 100 100 9 0 4 17 0 8

less.js 100 100 100 100 100 100 100 100 100

masonry 100 100 100 100 100 100 100 100 100

modernizr 100 100 100 100 100 100 100 100 100

mousetrap 100 100 100 100 100 100 100 100 100

mustache.js 100 100 100 100 100 100 100 100 100

numbers.js 100 100 100 100 100 100 100 100 100

paper.js 100 100 100 100 3 59 100 6 74

pdf.js 100 100 100 100 100 100 100 100 100

pixijs 100 100 100 100 100 100 100 100 100

randomcolor 100 100 100 100 100 100 100 100 100

sails 100 100 100 100 100 100 100 100 100

skrollr 100 100 100 100 100 100 100 100 100

slick 100 100 100 100 100 100 100 100 100

socket.io 100 100 100 100 100 100 100 100 100

three.js 100 100 100 100 100 100 100 100 100

underscore 100 100 100 100 100 100 100 100 100

video.js 100 100 100 11 15 16 20 26 28

Mean 99.5 100 99.57 85.67 80 84.6 86.93 81.87 86.73

False positives for attributes. We have two situations in which methods are indeed identified

as attributes in the system angular.js. Listing 10 shows part of the implementation for the class

JQLite. Our strategy correctly classifies the property ready (line 2) as a method, but it is not able

to do the same with the property splice (line 3). The function [].splice is not recognized as a

function because its implementation is not part of the source code of angular.js (it is a JavaScript

native function from Array object). Currently, our implementation does not recognize as methods

functions that are initialized with JavaScript built-in functions.

Listing 11 shows another example of a property that is not identified as a method in angular.js,

as we can see in the following comment:

“$get is marked as attribute a lot, it should always be a method.” (Developer of angular.js)

In this case, the property $get receives an array that contains a function in its second element.

Although the developer considers that this property is a method, our approach identifies it as an

array and therefore classifies it as an attribute.

25

Page 27 of 39

http://mc.manuscriptcentral.com/jsme

Journal of Software: Evolution and Process

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

1 function match () {...};

2

3 MessageFormatParser . prototype . startStringAtMatch =

4 function startStringAtMatch (match) {

5 this. stringQuote = match;

6 ...

7 };

Listing 9: Example of method incorrectly identified as a class in angular.js

1 JQLite . prototype = {

2 ready: function (fn) {...} ,

3 splice : []. splice ,

4 ...

5 };

Listing 10: Example of missing method (line 3 - system angular.js)

5.5.2 Recall

We achieve a recall of 100% in 24 out of 30 systems for classes; in 22 systems for methods; and in

23 systems for attributes. In the following paragraphs we discuss the false negatives we detected

for classes, methods, and attributes.

False negatives for classes. Six developers pointed out at least one missing class in their systems.

In the case of the system clumsy-bird, the base class constructors are not available in the GitHub

repository. The application imports an external file, which contains these base classes.13 The

import statement is placed directly in the main HTML file. For this reason, we were not able to

detect classes in this system.

As a second case, Express’ developer stated that our tool missed two classes, as shown in the

following answer excerpt:

“So I have taken a look at the UML diagram you attached to the email and they do look mostly

right. The main thing missing is there is also an Application class and a Router class, to round out

a total of five main classes. The three you have there do look right, though.” (Developer of system

Express)

According to our strategy, Application and Router are not classes. Application is imple-

mented as a singleton object, and we do not identify such structures as classes, as commented in

Subsection 3.3. Router is not a class because its methods and attributes are not directly bound to

13http://cdn.jsdelivr.net/melonjs/2.0.2/melonJS.js

1 this.$get = [’$window ’, function (\ $window) {...}];

Listing 11: Example of an array that contains a function (system angular.js)

26

Page 28 of 39

http://mc.manuscriptcentral.com/jsme

Journal of Software: Evolution and Process

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

this nor prototype. Instead, the constructor function uses __proto__ (an accessor property), as

we can see in Listing 12 (line 5). In fact, __proto__ is a special name used by Mozilla’s JavaScript

implementation to expose the internal prototype of the object through which it is accessed. How-

ever, the use of __proto__ has been discouraged14, mostly because it is not supported by other

browsers.

In the four remaining systems (D3, jasmine, video.js, and Leaflet), the causes for missing

classes are related to the use of external frameworks and libraries that provide their own style

for implementing class-like abstractions. The following comments are examples of answers in this

category:

“The classes you found are only a small part of Leaflet classes. This is because Leaflet uses its

own class utility: https://github.com/Leaflet/Leaflet/blob/master/src/core/Class.js” (Developer of

system Leaflet)

“From a pure Object Orientation point of view, I would probably call almost every file inside ‘src

/ core‘ in the jasmine repo its own class (minus a few like ‘util.js‘ and ‘base.js‘ at least), which is

more like 45 classes.” (Developer of system jasmine)

1 var proto = module . exports = function () {

2 function router () {

3 ...

4 }

5 router . __proto__ = proto;

6 router . params = {};

7 router .stack = [];

8 ...

9 };

10 proto.param = function param(name , fn) {...};

11 proto. handle = function () {...};

12 ...

Listing 12: Example of function router which is not detected as a class in system express

False negatives for methods and attributes. In all six systems with missing classes we also

have, as consequence, missing methods and attributes. Besides these cases, developers of other two

systems pointed out missing methods. In the first case, for system angular.js, our approach iden-

tified some methods as attributes, as discussed in the previous subsection (precision). In the second

case, paper.js’s developers use a customized implementation that allows our approach to identify

the classes, but not the methods. Listing 13 illustrates this issue for the class Line. In this case,

the association between the constructor Line (line 3) and the methods getPoint(), getVector(),

etc (lines 9-11) is built by using a project-specific function called Base.extend (line 1). The usage

of this function hides the methods and some attributes from our tool.

14https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/proto

27

Page 29 of 39

http://mc.manuscriptcentral.com/jsme

Journal of Software: Evolution and Process

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

1 var Line = Base. extend ({

2 _class : ’Line ’,

3 initialize : function Line(arg0 , arg1 , ...) {

4 // Attributes

5 this._px = arg0;

6 this._py = arg1;

7 ...

8 },

9 getPoint : function () {...} ,

10 getVector : function () {...} ,

11 ...

12 }

Listing 13: Class implementation for system paper.js which uses a project-specific function
(Base.extend) to implement classes

5.5.3 F-Score

Table 5 also reports the F-score results. The measures are equal to 100% in 22 out of 30 systems for

classes, methods, and also for attributes. In the remaining systems, the measures range from 0%

(clumsy-bird) to 96% (ace and angular.js) for classes, from 0% (clumsy-bird and leaflet) to

96% (angular.js) for methods, and from 0% (clumsy-bird) to 93% (angular.js) for attributes.

The system clumsy-bird has F-score equal to zero because it uses base class constructors that are

not available in its source code repository, as discussed in Subsection 5.5.2.

5.5.4 Overall results

Figure 13 presents the results for precision, recall, and F-score considering the whole population

of classes, methods, and attributes, independently from system. The overall measurements range

from 97% (classes) to 100% (methods) for precision, from 70% (methods) to 89% (attributes) for

recall, and from 82% (methods) to 94% (attributes) for F-score.

5.6 Do developers intend to use the new support for classes that comes with

ECMAScript 6?

Table 6 summarizes the answers for this question. Nineteen developers (58%) answered that they

intend to use the new syntax. Two of them declared to have plans to migrate their systems to the

new syntax, while the others stated that they intend to use it only when implementing new features

and projects, as stated in the following answer:

“I’m quite confident that ES6 will make for a more robust codebase. And I think the most interesting

point is that it can be applied progressively. We don’t have to make a massive rewrite. Any new

code we add can be ES6, and then we can slowly rewrite old code to be ES6 as well.” (Developer of

system socket.io)

28

Page 30 of 39

http://mc.manuscriptcentral.com/jsme

Journal of Software: Evolution and Process

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

Page 31 of 39

http://mc.manuscriptcentral.com/jsme

Journal of Software: Evolution and Process

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

case, when the identifier is assigned to a class property, we can improve our heuristics by checking

if this identifier corresponds to a variable or parameter that is valid in the same scope. This way,

the property can be classified as an attribute, instead of being wrongly classified as a method. We

also acknowledge that, during program’s execution, identifiers can receive a function as a value,

transforming the class property into a method. However, this is the case of dynamically modified

features, and our approach identifies class structures statically. The same understanding can be

applied to class properties assigned to functions that are not part of the application, i.e., functions

that belong to the JavaScript API or to external libraries and frameworks.

To reduce the chances of false negatives, we can modify the heuristics to also recognize the

syntax with __proto__, used by Mozilla’s JavaScript implementation, to expose the internal

prototype of objects. Even though, as mentioned in Subsection 5.5.2, the use of this syntax has

been discouraged by Mozilla. Moreover, we can also review our heuristics regarding singletons.

Since not every singleton object is a class, further research is needed to precisely determine which

ones indeed represent classes in a legacy JavaScript system. For the other false negatives pointed

in Subsection 5.5, the base class constructors implemented in external files (e.g., in libraries and

frameworks) cannot be statically identified as classes because their source code is not part of the

system under analysis.

6.2 Practical Implications

Almost 70% of the systems we studied use classes (CD > 0). In fact, this usage may increase in the

future because many developers intend to use the new ECMAScript 6 syntax for classes, as shown

in our field study (Subsection 5.6). Therefore, we might consider the adaptation to the JavaScript

ecosystem of many tools, concepts, and techniques widely used in class-based languages, like: (a)

metrics to measure class properties like coupling, cohesion, complexity, etc; (b) reverse engineering

techniques and tools to extract class and other diagrams from source code; (c) IDEs that include

class-based views, like class browsers; (d) tools to detect bad smells in JavaScript classes; (e)

recommendation engines to suggest best object-oriented programming practices; (f) techniques to

detect violations and deviations in the class-based architecture of JavaScript systems; (g) tools to

migrate to ECMAScript 6.

7 Threats to Validity

This section presents threats to validity according to the guidelines proposed by Wohlin et al. [29].

These threats are organized in three categories, addressing internal, external, and construct validity.

Internal Validity. In the field study, to address RQ #5, we recognize three internal threats. First,

we consider that the developers correctly evaluated all elements we provided in the class diagrams of

their systems. We acknowledge this activity is error-prone. However, we asked the main developers

of each system, who are probably the most qualified people to conduct such evaluation. Second,

30

Page 32 of 39

http://mc.manuscriptcentral.com/jsme

Journal of Software: Evolution and Process

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

since some developers did not provide the names of all classes that represent false negatives in their

systems, the first author of this study performed a manual verification in the related source code

files in order to identify the remaining structures. The third internal threat is related to the non

classification of singletons as classes, as mentioned in Subsection 3.3. In fact, in our field study

some of the interviewed developers considered that singletons are classes.

External Validity. To address the first four research questions, we used a dataset of 918 JavaScript

systems. For research questions RQ #5 and RQ #6, which involved contacting developers, we used a

dataset of 60 JavaScript systems. As a threat, our datasets, both obtained from GitHub repository,

might not represent the whole population of JavaScript systems. But, at least, we selected a

representative number of popular and well-known systems, of different sizes and covering various

domains.

Construct Validity. We use the library Linguist and a custom-made script, as described in

Subsection 4.2, to remove unnecessary files from our dataset. We assume that this clean up process

does not remove any source code files that could be used to implement classes.

8 Related Work

Richards et al. [22] conduct a large-scale study on the use of eval in JavaScript, based on a corpus of

more than 10,000 popular web sites. They report that eval is popular and not necessarily harmful,

although its use can be replaced with equivalent and safer code or language extensions in most

scenarios. Moreover, it is usually considered a good practice to use eval when loading scripts or

data asynchronously. After this first study, restricted to eval’s, the authors conduct a second study

on a broad range of JavaScript dynamic features [4]. They conclude for example that libraries

often change the prototype links dynamically, but such changes are restricted to built-in types, like

Object and Array, and changes in user-created types are more rare. The authors also report that

most JavaScript programs do not delete attributes from objects dynamically. To some extent, these

findings support the feasibility of using heuristics to extract class-like structures statically from

JavaScript code, as proposed in this paper.

Gama et al. [10] identify five styles for implementing methods in JavaScript: inside/outside con-

structor functions using anonymous/non-anonymous functions and using prototypes. Their main

goal is to implement an automated approach to normalizing JavaScript code to a single consistent

object-oriented style. They claim that mixing styles in the same code may hinder program compre-

hension and make maintenance more difficult. The strategy proposed in this paper covers the five

styles proposed by the authors. Additionally, we also detect attributes and inheritance.

Feldthaus et al. [30, 31] describe a methodology for implementing automated refactorings on

a nearly complete subset of the JavaScript language (ECMAScript 5). The authors specify and

implement three refactorings: rename property, extract module, and encapsulate property. The

31

Page 33 of 39

http://mc.manuscriptcentral.com/jsme

Journal of Software: Evolution and Process

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

rename property is similar to the refactoring rename field for typed languages. The main difference

is that while fields in Java, for example, are statically declared within class definitions, properties in

JavaScript are associated with dynamically created objects and are themselves dynamically created

after first write. The goal of the refactoring extract module is to use anonymous functions to make

global functions become local. These anonymous functions will then return object literals with

properties through which the previous global functions can be invoked. The encapsulate property

refactoring can be used to encapsulate state by making a field private and redirecting access to that

field via newly introduced getter and setter methods. It targets constructor functions that emulate

classes in JavaScript. To determine if a function works as a constructor, they look for functions

that initialize an object when invoked, like those that are invoked with new or Object.create().

Fard and Mesbah [32] propose a set of 13 JavaScript code smells, including generic smells

(e.g., long functions and dead code) and smells specific to JavaScript (e.g., creating closures in

loops and accessing this in closures). They also describe a tool, called JSNose, for detecting code

smells based on a combination of static and dynamic analysis. Among the proposed patterns, only

Refused Bequest is directly related to class-emulation in JavaScript. In fact, this smell was originally

proposed to class-based languages [33, 34], to refer to subclasses that do not use or override many

elements from their superclasses. Interestingly, our strategy to detect classes opens the possibility

to detect other well-known class-based code smells in JavaScript, like Feature Envy, Large Class,

Shotgun Surgery, Divergent Change, etc.

Nicolay et al. [35] present an abstract machine for a core JavaScript-like language that tracks

write side-effects in JavaScript functions to detect their purity. A function is considered pure if it

does not generate observable side-effects. Since classes and methods, detected by our strategy, are

functions in JavaScript, it is possible to extend the concept of purity to such class-like structures in

order to improve program understanding and maintenance.

Nguyen et al. [36] use a static-analysis-based mining method to mine JavaScript usage patterns

in web applications. They introduce JSModel, a graph representation for JavaScript code, and

JSMiner, a tool that mines inter-procedural and data-oriented JavaScript usage patterns. Although

they do not consider class-like structures in their work, the different strategies for class emulation

can be considered usage patterns in JavaScript.

There is also a variety of tools and techniques for analyzing, improving, and understanding

JavaScript code, including tools to prevent security attacks [37, 38, 39], and to understand event-

based interactions [40, 41, 42, 43]. CoffeeScript15 is another language that aims to expose the “good

parts of JavaScript” by only changing the language’s syntax [44, 45]. CoffeeScript compiles one-

to-one into JavaScript code. As ECMAScript 6, the language includes class-related keywords, like

class, constructor, extends, etc.

15http://coffeescript.org

32

Page 34 of 39

http://mc.manuscriptcentral.com/jsme

Journal of Software: Evolution and Process

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

9 Conclusion

This paper provides a large-scale study on the usage of class-based structures in JavaScript, a

language that is used nowadays to implement complex single-page applications for the Web. We

propose a strategy to statically detect class emulation in JavaScript and the JSClassFinder

tool, that supports this strategy. We use JSClassFinder on a corpus of 918 popular JavaScript

applications, with different sizes and from multiple domains, in order to describe the usage of class-

like structures in legacy JavaScript systems. We perform a field study with JavaScript developers

to evaluate the accuracy of our strategy and tool.

We summarize our findings as follows. First, there are essentially four types of JavaScript soft-

ware, regarding the usage of classes: class-free (systems that do not make any usage of classes),

class-aware (systems that use classes marginally), class-friendly (systems that make relevant usage

of classes), and class-oriented (systems that have the vast majority of their data structures imple-

mented as classes). The systems in these categories represent, respectively, 32%, 34%, 27%, and

7% of the systems we studied. Precision, recall and F-score measures indicate that our tool is able

to identify the classes, methods, and attributes in JavaScript systems. The overall results range

from 97% to 100% for precision, from 70% to 89% for recall, and from 82% to 94% for F-score.

Second, we found that there is no significant relation between size and class usage. Therefore,

we cannot conclude that the larger the system, the greater the usage of classes, at least in propor-

tional terms. For this reason, we hypothesize that the background and experience of the systems’

developers have more impact on the decision to design a system around classes, than its size.

Third, prototype-based inheritance is not popular in JavaScript. We counted only 70 out of 918

systems (8%) using inheritance. We hypothesize that there are two main reasons for this. First,

even in class-based languages there are strong positions against inheritance, and a common recom-

mendation is to “favor object composition over class inheritance” [46, 47]. Second, prototype-based

inheritance is more complex than the usual implementation of inheritance available in mainstream

class-based object-oriented languages.

Fourth, classes in JavaScript have usually less than 28 attributes and 61 methods (90th percentile

measures). It is also common to have data-oriented classes, i.e., classes with more attributes than

methods. In half of the systems, we have at least 39% of such classes.

Fifth, 58% of JavaScript developers answered our field study saying they intend to use the ES6

new syntax for class emulation, but usually only for new features and projects.

As future work, we plan to adapt our approach to be able to: (a) measure other class prop-

erties, like coupling, cohesion, and complexity; (b) extract class dependencies and other diagrams

from source code; (c) identify bad smells in JavaScript classes; (d) recommend best object-oriented

programming practices for JavaScript; (e) detect violations and deviations in the class-based archi-

tecture of JavaScript systems; (f) support developers that intend to migrate their legacy code to

use ECMAScript 6 classes.

33

Page 35 of 39

http://mc.manuscriptcentral.com/jsme

Journal of Software: Evolution and Process

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

All our data and toolset are publicly available at https://github.com/aserg-ufmg/

JSClassFinder.

Acknowledgments

The authors would like to thank CNPq, CAPES and FAPEMIG. This research is partially supported

by STICAmSud project 14STIC-02 and FONDECYT 1160575.

References

[1] H.M. Kienle. It’s about time to take JavaScript (more) seriously. IEEE Software, 27(3):60–62,

May 2010.

[2] Frolin S. Ocariza Jr., Karthik Pattabiraman, and Benjamin Zorn. JavaScript errors in the

wild: An empirical study. In 22nd IEEE International Symposium on Software Reliability

Engineering (ISSRE), pages 100–109. IEEE Computer Society, 2011.

[3] Alex Nederlof, Ali Mesbah, and Arie van Deursen. Software engineering for the web: the state

of the practice. In 36th International Conference on Software Engineering (ICSE), Companion

Proceedings, pages 4–13, 2014.

[4] Gregor Richards, Sylvain Lebresne, Brian Burg, and Jan Vitek. An analysis of the dynamic

behavior of JavaScript programs. In Conference on Programming Language Design and Imple-

mentation (PLDI), pages 1–12, 2010.

[5] European Association for Standardizing Information and Communication Systems (ECMA).

ECMA-262: ECMAScript Language Specification. edition 5.1, 2011.

[6] A. H. Borning. Classes versus prototypes in object-oriented languages. In ACM Fall Joint

Computer Conference, pages 36–40, 1986.

[7] Arjun Guha, Claudiu Saftoiu, and Shriram Krishnamurthi. The essence of JavaScript. In 24th

European Conference on Object-Oriented Programming (ECOOP), pages 126–150, 2010.

[8] European Association for Standardizing Information and Communication Systems (ECMA).

ECMAScript Language Specification, 6th edition, Draft October, 2014.

[9] Leonardo Humberto Silva, Miguel Ramos, Marco Tulio Valente, Alexandre Bergel, and Nicolas

Anquetil. Does JavaScript software embrace classes? In 22nd IEEE International Conference

on Software Analysis, Evolution, and Reengineering (SANER), pages 73–82, 2015.

[10] W. Gama, M.H. Alalfi, J.R. Cordy, and T.R. Dean. Normalizing object-oriented class styles in

JavaScript. In 14th IEEE International Symposium on Web Systems Evolution (WSE), pages

79–83, Sept 2012.

34

Page 36 of 39

http://mc.manuscriptcentral.com/jsme

Journal of Software: Evolution and Process

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

[11] Douglas Crockford. JavaScript: The Good Parts. O’Reilly, 2008.

[12] David Flanagan. JavaScript: The Definitive Guide. O’Reilly, 2011.

[13] David Ungar and Randall B. Smith. SELF: The power of simplicity. In 2nd Conference on

Object-oriented Programming Systems, Languages and Applications (OOPSLA), pages 227–242.

ACM, 1987.

[14] A. H. Borning. Classes versus prototypes in object-oriented languages. In Proceedings of 1986

ACM Fall Joint Computer Conference, pages 36–40. IEEE Computer Society Press, 1986.

[15] Christopher Anderson, Paola Giannini, and Sophia Drossopoulou. Towards type inference for

JavaScript. In 19th European Conference on Object-Oriented Programming (ECOOP), pages

428–452, 2005.

[16] Leonardo Humberto Silva, Daniel Hovadick, Marco Tulio Valente, Alexandre Bergel, Nicolas

Anquetil, and Anne Etien. JSClassFinder: A Tool to Detect Class-like Structures in JavaScript.

In 6th Brazilian Conference on Software: Theory and Practice (CBSoft), Tools Demonstration

Track, pages 113–120, 2015.

[17] Oscar Nierstrasz, Stéphane Ducasse, and Tudor Gı̌rba. The story of moose: An agile

reengineering environment. In 10th European Software Engineering Conference Held Jointly

with 13th ACM SIGSOFT International Symposium on Foundations of Software Engineering

(ESEC/FSE-13), ESEC/FSE-13, pages 1–10, New York, NY, USA, 2005. ACM.

[18] Martin Fowler. UML Distilled: A Brief Guide to the Standard Object Modeling Language.

Addison-Wesley Longman Publishing Co., Inc., 3 edition, 2003.

[19] Stéphane Ducasse, Tudor Gîrba, and Adrian Kuhn. Distribution map. In 22nd IEEE Interna-

tional Conference on Software Maintenance (ICSM), pages 203–212, 2006.

[20] S. R. Chidamber and C. F. Kemerer. A metrics suite for object oriented design. IEEE Trans-

actions on Software Engineering, 20(6):476–493, 1994.

[21] Grady Booch, Robert Maksimchuk, Michael Engle, Bobbi Young, Jim Conallen, and Kelli

Houston. Object-Oriented Analysis and Design with Applications (3rd Edition). Addison Wesley

Longman Publishing Co., Inc., 2004.

[22] Gregor Richards, Christian Hammer, Brian Burg, and Jan Vitek. The eval that men do: A

large-scale study of the use of eval in JavaScript applications. In 25th European Conference on

Object-oriented Programming (ECOOP), 2011.

[23] Fadi Meawad, Gregor Richards, Floréal Morandat, and Jan Vitek. Eval begone!: Semi-

automated removal of eval from JavaScript programs. In 27th Conference on Object Oriented

Programming Systems Languages and Applications (OOPSLA), pages 607–620, 2012.

35

Page 37 of 39

http://mc.manuscriptcentral.com/jsme

Journal of Software: Evolution and Process

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

[24] Ricardo Terra, Luis Fernando Miranda, Marco Tulio Valente, and Roberto S. Bigonha. Qual-

itas.class Corpus: A compiled version of the Qualitas Corpus. Software Engineering Notes,

38(5):1–4, 2013.

[25] Gareth Baxter, Marcus Frean, James Noble, Mark Rickerby, Hayden Smith, Matt Visser,

Hayden Melton, and Ewan Tempero. Understanding the Shape of Java Software. In 21st Con-

ference on Object-oriented Programming Systems, Languages, and Applications (OOPSLA),

pages 397–412. ACM, 2006.

[26] Panagiotis Louridas, Diomidis Spinellis, and Vasileios Vlachos. Power Laws in Software. ACM

Transactions on Software Engineering and Methodology, 18:1–26, 2008.

[27] Richard Wheeldon and Steve Counsell. Power Law Distributions in Class Relationships. In

International Working Conference on Source Code Analysis and Manipulation, pages 45–54,

2003.

[28] Paloma Oliveira, Marco Tulio Valente, and Fernando Lima. Extracting relative thresholds for

source code metrics. In IEEE Conference on Software Maintenance, Reengineering and Reverse

Engineering (CSMR-WCRE), pages 254–263, 2014.

[29] Claes Wohlin, Per Runeson, Martin Höst, Magnus C. Ohlsson, and Björn Regnell. Experimen-

tation in Software Engineering. Springer, 2012.

[30] Asger Feldthaus, Todd D. Millstein, Anders Møller, Max Schäfer, and Frank Tip. Refactoring

towards the good parts of JavaScript. In 26th Conference on Object-Oriented Programming

(OOPSLA), Companion Proceedings, pages 189–190, 2011.

[31] Asger Feldthaus, Todd D. Millstein, Anders Møller, Max Schafer, and Frank Tip. Tool-

supported refactoring for JavaScript. In 26th Conference on Object-Oriented Programming,

Systems, Languages, and Applications (OOPSLA), pages 119–138, 2011.

[32] A.M. Fard and A. Mesbah. JSNOSE: Detecting JavaScript code smells. In 13th IEEE In-

ternational Working Conference on Source Code Analysis and Manipulation (SCAM), pages

116–125, 2013.

[33] Martin Fowler. Refactoring: improving the design of existing code. Addison-Wesley, 1999.

[34] Michele Lanza and Radu Marinescu. Object-oriented metrics in practice: using software metrics

to characterize, evaluate, and improve the design of object-oriented systems. Springer, 2006.

[35] Jens Nicolay, Carlos Noguera, Coen De Roover, and Wolfgang De Meuter. Detecting function

purity in JavaScript. In 15th IEEE International Working Conference on Source Code Analysis

and Manipulation (SCAM), pages 101–110, 2015.

36

Page 38 of 39

http://mc.manuscriptcentral.com/jsme

Journal of Software: Evolution and Process

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

[36] Hung Viet Nguyen, Hoan Anh Nguyen, Anh Tuan Nguyen, and Tien N. Nguyen. Mining inter-

procedural, data-oriented usage patterns in JavaScript web applications. In 36th International

Conference on Software Engineering (ICSE), pages 791–802, 2014.

[37] Philipp Vogt, Florian Nentwich, Nenad Jovanovic, Engin Kirda, Christopher Krügel, and Gio-

vanni Vigna. Cross site scripting prevention with dynamic data tainting and static analysis.

In Network and Distributed System Security Symposium (NDSS), 2007.

[38] Arjun Guha, Shriram Krishnamurthi, and Trevor Jim. Using static analysis for Ajax intrusion

detection. In 18th International Conference on World Wide Web (WWW), pages 561–570,

2009.

[39] Dachuan Yu, Ajay Chander, Nayeem Islam, and Igor Serikov. JavaScript instrumentation for

browser security. In 34th Symposium on Principles of Programming Languages (POPL), pages

237–249, 2007.

[40] Saba Alimadadi, Sheldon Sequeira, Ali Mesbah, and Karthik Pattabiraman. Understand-

ing JavaScript event-based interactions. In International Conference on Software Engineering

(ICSE), pages 367–377, 2014.

[41] Andy Zaidman, Nick Matthijssen, Margaret-Anne D. Storey, and rie van Deursen. Understand-

ing Ajax applications by connecting client and server-side execution traces. Empirical Software

Engineering, 18(2):181–218, 2013.

[42] Saba Alimadadi, Ali Mesbah, and Karthik Pattabiraman. Hybrid DOM-Sensitive Change

Impact Analysis for JavaScript. In 29th European Conference on Object-Oriented Programming

(ECOOP 2015), volume 37, pages 321–345, 2015.

[43] Keheliya Gallaba, Ali Mesbah, and Ivan Beschastnikh. Don’t call us, we’ll call you: Characteriz-

ing callbacks in JavaScript. In 9th ACM/IEEE International Symposium on Empirical Software

Engineering and Measurement (ESEM), pages 247–256. IEEE Computer Society, 2015.

[44] Mark Bates. Programming in CoffeeScript. Addison-Wesley Professional, 1st edition, 2012.

[45] Alex MacCaw. The Little Book on CoffeeScript. O’Reilly Media, Inc., 2012.

[46] Erich Gamma, Richard Helm, Ralph Johnson, and John M. Vlissides. Design Patterns: Ele-

ments of Reusable Object-Oriented Software. Addison-Wesley Professional, 1994.

[47] S. Stefanov. JavaScript Patterns. O’Reilly Media, 2010.

37

Page 39 of 39

http://mc.manuscriptcentral.com/jsme

Journal of Software: Evolution and Process

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

