
HAL Id: hal-01566278
https://hal.science/hal-01566278

Submitted on 20 Jul 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On Simulated Annealing Dedicated to Maximin Latin
Hypercube Designs

Pierre Bergé, Kaourintin Le Guiban, Arpad Rimmel, Joanna Tomasik

To cite this version:
Pierre Bergé, Kaourintin Le Guiban, Arpad Rimmel, Joanna Tomasik. On Simulated Annealing
Dedicated to Maximin Latin Hypercube Designs. [Research Report] LRI. 2016. �hal-01566278�

https://hal.science/hal-01566278
https://hal.archives-ouvertes.fr

On Simulated Annealing Dedicated to Maximin
Latin Hypercube Designs

Pierre Bergé, Kaourintin Le Guiban,
Arpad Rimmel, Joanna Tomasik,

LRI, CentraleSupélec, Université Paris-Saclay
Bat 650, Rue Noetzlin, 91405 Orsay, France

August 26, 2016

Abstract
The goal of our research was to enhance local search heuristics used

to construct Latin Hypercube Designs. First, we introduce the 1D-move
perturbation to improve the space exploration performed by these algo-
rithms. Second, we propose a new evaluation function ψp,σ specifically
targeting the Maximin criterion.

Exhaustive series of experiments with Simulated Annealing, which we
used as a typically well-behaving local search heuristics, confirm that
our goal was reached as the result we obtained surpasses the best scores
reported in the literature. Furthermore, the ψp,σ function seems very
promising for a wide spectrum of optimization problems through the Max-
imin criterion.

1 Introduction
The study of complex systems usually requires a considerable computation time.
To speed up computations, the system may be replaced by a faster approximat-
ing model. To create this model, a set of outcomes for different parameter values
is needed. The set of parameter values has an impact on the accuracy of the
approximating model. Different sampling methods for this set of parameters has
been proposed in [4]. If we note k the number of inputs of the system and n the
number of possible values taken by an input variable xk, the choice of n sample
vectors can be represented by points on a hypercube of size n and dimension
k. Among the designs proposed, we focus on the Maximin Latin Hypercube
Design (LHD).

The LHD implements the Latin constraint: each coordinate in [|1;n|] must
appear only once in every dimension. In other words, the coordinates of any
pairs of nodes differ in all dimensions. Moreover, the Maximin constraint means
that we search the configuration with the maximal dmin, where dmin is the
minimal distance between two points of the design. An instance is defined by

1

ar
X

iv
:1

60
8.

07
22

5v
1

 [
cs

.A
I]

 2
3

A
ug

 2
01

6

the values of the dimension k and the size n. Consequently, an instance will be
noted k/n, for example 10/50.

There are exactly
(
n
2

)
= n(n−1)

2 distances between points. They may be
ordered d1 ≤ d2 ≤ ... ≤ di ≤ di+1... ≤ d(n2)

, by definition, dmin = d1. In the
remainder, we often refer to square values: Di = d2i .

As the Maximin LHD problem is believed to be NP-hard, heuristics are
widely used to solve it. The use of deterministic methods are, for the moment,
rather limited: branch-and-bound was only used with k ≤ 3 by [8, 9] (a highscore
is a minimal maximal distance between any pair of design points for a given
instance) . The survey [6] of metaheuristics sums up their performance on
Maximin LHD and reports that SA not only outperformed other evolutionary
algorithms but also improved many of the previous highscores for k ≤ 10 and
n ≤ 25. For this reason we choose to work on the improvement of SA applied
to Maximin LHDs.

After introducing usual methods used to solve Maximin LHD with SA, we
propose a new mutation and a new evaluation function to improve on the best
current scores. Eventually, we show how it permits to exceed a great part of
the scores presented by the literature. These results should not exclusively be
considered in the particular SA context as they may offer the opportunity to
boost the performance of local search algorithms for different designs with the
Maximin constraint.

N.B. This reports completes our paper [2] providing the precisions and de-
tails which had to be omitted in its camera-ready version due to the page number
limit. It should thus be cited together with [2].

2 Typical approach to solve Maximin LHD with
Simulated Annealing

SA is a metaheuristic most commonly used for discrete search spaces inspired
by a metallurgical process. It consists in visiting the search space with a pertur-
bation on the configurations and deciding whether the mutated configuration
should be selected. That is why it alternates phases of heating and slow cooling
to influence this choice: as in physics, by controlling the cooling process, we
give an opportunity to the configuration to find the lowest energy.

It is proven that SA converges to the global minimum with the Metropolis
probability [1]. Several ingredients are compulsory for SA [3]: a perturbation
(a mutation), an evaluation function Hpot (also called potential energy) and a
temperature decrease T (k), where k is the iteration number. The acceptance
probability depends on T (k) and the gap of potential energy between the new
and the old configuration. When the current configuration at the iteration num-
ber k is ω, a configuration ω′ will be accepted with the Metropolis probability:

pk = min

(
1, e

Hpot(ω
′)−Hpot(ω)

KT (k)

)

2

Constant K is typically fixed to 1. A configuration ω is defined by n points
with k coordinates respecting the Latin constraints.

Survey [6] examined several perturbations among which m2 was the most
efficient. It deals with a pair of points: a randomly chosen one and a critical one.
A critical point is a point involved in dmin. Mutation m2 transposes the coor-
dinates of these points in one dimension. The authors of [6] proposed mutation
m3 which is a variant of m2 as the transposition takes place in the dimension
which ensures a better dmin for a subsequent configuration ω′. Mutation m3

outperformed m2 for 9/10, 4/25 and 8/20.
Article [6] compared two evaluation functions: −dmin and φp introduced

in [5]:

φp =

(n2)∑
i=1

d−pi


1
p

. (1)

Function φp is more efficient than −dmin certainly because it takes into
account changes on every distance whereas the function −dmin only considers
the shortest distance of the configuration. As the paper [6] obtained the best
score of the literature, we used the same values to set the values of parameter p.

3 New perturbation targeting LHD

3.1 Principle of the perturbation
We use m2 as a basis to construct a better performing perturbation. To clarify
its principle, we define the notion of the neighborhood:

Definition 1 (Neighbor of a point). For a given instance k/n, a point p1 of a
configuration ω is a neighbor of the point p2 if and only if there is a dimension
j for which coordinates of these two points are the closest possible. In other
terms, ∃j ∈ [|1; k|] such that |p1(j)− p2(j)| = 1.

The new mutation 1D–move consists in taking a critical point as before and
taking one of its neighbor. Then we exchange the coordinates in one of the
dimensions concerned by the neighborhood.

We choose a 3/5 instance to illustrate 1D–move. Table 1 gives the coordi-
nates of the points of a configuration ω. First, we choose a critical point: dmin
is determined by points p1 and p2, so we take p1. Points p2 (on axis x, y and
z), p3 (on axis y) and p4 (on axis z) are neighbors of p1. For the sake of the
example, we shall choose p4 as a neighbor. Then, we exchange the coordinates
of p1 and p4 on axis z because p1 and p4 are neighbors through dimension z.
The new configuration is also given in Table 1.

3

Points p1 p2 p3 p4 p5
x 0 1 2 3 4
y 1 2 0 4 3
z 2 1 4 3 0

Points p1 p2 p3 p4 p5
x 0 1 2 3 4
y 1 2 0 4 3
z 3 1 4 2 0

Table 1: Illustration of 1D–move with an initial (left) and a following (right)
configuration

3.2 Performance Evaluation
1D–move outperforms not only m2 but m3 as well. We reproduced the exper-
iments made in [6] keeping the same value of parameter p (p = 10) for 4/25,
9/10 and 8/20 to show its performance (Table 2). SA performs a linear ther-
mal descent until temperature T = 0 is reached. The initial temperature is set
thanks to a series of preliminary runs. We computed 100 effective runs and we
present here the average within the 95% confidence interval.

Instance m2 m3 1D–move
4/25 177.59± 0.29 177.67± 0.29 180.51± 0.27
9/10 156.24± 0.10 156.06± 0.08 156.54± 0.06
8/20 431.98± 0.61 433.72± 0.84 436.20± 0.56

Table 2: Performance of SA with different mutations

To explain the efficiency of 1D–move, we can refer to SA on the Traveling
Salesman Problem. Article [7] shows that the perturbations which move the
smallest number of edges are the best. 1D-move modifies the same number of
points as m2 and m3. Consequently, 2(n−2) distances are modified by all these
mutations. However, the changes on distances are smaller with 1D–move given
that modifications on coordinates are ±1 thanks to the neighborhood property.
We prove it with Eq. (2). Our hypothesis is that this specific property explains
why 1D–move is more efficient.

Let us consider a n/k configuration ω and the two mutations m2 and 1D–
move. We want to prove that the changes due to these two mutations are not
necessarily represented by the same order of magnitude. Let us note:

m2 : ω −→ ω′ and 1D–move : ω −→ ω′′.

We assume the two mutations translate the point p2 on a given dimension j.
We also take a point p1 of the configuration which remains invariant with these

p1

p2 p′′2 p′2
d

d′′ d′

Figure 1: Effect of m2 and 1D–move

4

mutations (p′1 and p′′1 equal to p1). The objective is to find a configuration for
which ∆d =

∣∣dp′1,p′2 − dp1,p2∣∣ is equivalent to n in the m2 case. This difference
is:

∆d =

∣∣∣∣∣∣
√√√√ k∑

l=1

(p′2(l)− p1(l))2 −

√√√√ k∑
l=1

(p2(l)− p1(l))2

∣∣∣∣∣∣ .
As most of the dimensions are not concerned by this move, we just note:

k∑
l=1,l 6=j

(p′2(l)− p1(l))
2

=

k∑
l=1,l 6=j

(p2(l)− p1(l))
2

= a2.

Variable a depends on n and k. If p1 and p2 are neighbors regarding all dimen-
sions (except j), a2 = k − 1. We take a configuration for which a2 = k − 1,
p1(j) = 0, p2(j) = n − 1 and p′2(j) = 1. This configuration is illustrated in
Figure 1.

By separating j from other dimensions, we eventually find:

∆d =
∣∣∣√a2 + (n− 1)2 −

√
a2 + 1

∣∣∣
=
∣∣∣√k − 1 + (n− 1)2 −

√
k
∣∣∣ . (2)

Some configurations respect the property: k � n2, for which ∆d = O(n). This
means that the difference between two distances may take values with the order
of magnitude n. It is not possible with 1D–move. Using the triangle inequality
and the neighborhood property: ∆d ≤ 1.

With m2 (or m3 which is more restrictive than m2), ∆d sometimes reaches
the order of magnitude n. We showed with ∆d ≤ 1 that it was impossible with
1D–move which allows the local search to be more regular.

4 New evaluation function targeting Maximin

4.1 Presentation of a Maximin effect: narrowing the dis-
tribution of distances

We study the properties of distances obtained with the evaluation function φp in
SA solutions. We represent all the distances of a configuration in histograms and
identify properties that will allow us to establish a better evaluation function
below. From now on, we distinguish three cases relative to values taken by n
and k. We note the mean of D for any configuration as D(k, n) = kn(n+1)

6 as
shown in [9].

5

Figure 2: Histograms of distances for 50/40, 30/50 and 10/100 solutions

6

Case n ≤ k

In this case (see Figure 2, 50/40), the distances of potential solutions are con-
centrated around the mean. It is highly probable that two points at random
taken will be neighbors. This explains why a point is close to all others in SA
solutions and we talk about unimodal distribution. In our example 50/40 in
Figure 2, the statistical range of D relative to D, Dmax−Dmin

D
= 340

13667 = 2.5%,
in fact, is narrow. The rationale for this behavior is that when the number of
points is less than the number of dimensions, it happens, in absence of con-
straints, that all the points are equidistant. Since the Latin constraint has to
be respected, the points cannot be exactly equidistant. The distances, however,
do not differ significantly.

Case k ≤ n ≤ 2k

In this case (Figure 2, 30/50), distributions are concentrated around two peaks.
The first peak is mainly around the average distance (actually, there is a little
shift between the peak and the mean because both the peaks preserve D) and
the second peak is located around the doubled average distance. Much more
distances are concerned by the first peak.

We illustrate this phenomenon with the 30/50 instance in Figure 2. We can
explain this by the fact that it is possible for this many points to be placed in an
hyperoctahedron. In such a geometric object, each point is at the same distance
from every other point but one, which is farther away. Thus, the distribution
of distances shows two values, with the smaller being represented much more
frequently.

In our example, D(30, 50) = 12500. Concerning the highest peak, the sta-
tistical range remains small compared with the mean: the ratio is 7.8%, larger
than in the first case for the whole distribution. There are only seven distances
located in the interval [13183; 24865]

Case 2k ≤ n

In this last case (Figure 2, 10/100), distances are distributed more uniformly.
There is neither a dense peak nor a sparse interval. We observe a decrease of
occurrences with an increase in the value of the distance.

Observations and consequences

For the first case, the only peak is naturally thin thanks to SA and particularly
φp action. There is a little point in trying to narrow it more. We note that
for the two last cases (k ≤ n), narrowing differences between distances lead to
improve performance. We illustrate this on the 8/20 instance. We represent
distance sets of several possible solutions and observe that the best solutions
have the most narrowed distributions. We compare two solutions in Figure 3
with Dmin = 421 and Dmin = 446 which is the best solution found in [6].
Indeed, we note that Dmin = 446 has the most narrow peak. We formulate

7

Inst. σ φ10 & m2 ψ10,σ & m2 φ10 & 1D-move ψ10,σ & 1D-move
4/25 70 177.59± 0.29 177.98± 0.71 180.51± 0.27 181.24± 0.23
9/10 20 156.24± 0.10 156.09± 0.06 156.54± 0.06 156.49± 0.10
8/20 65 431.98± 0.61 433.58± 0.70 436.20± 0.56 445.28± 0.45

Table 3: Performance of SA with different setups for evaluation function and
mutation

the hypothesis that this property may be beneficial for SA performance. We
introduce below a new evaluation function taking into account this aspect.

Figure 3: Distance sets of two 8/20 solutions

4.2 Definition of evaluation function ψ

We propose an evaluation function ψp,σ to replace the usual function φp:

ψp,σ =

(n2)∑
i=1

wid
−p
i


1
p

, where wi =
1√∑(n2)

j=1 e
−|

Dj−Di|2
σ2

. (3)

The idea is to add weights wi ≥ 1 for each distance term d−pi . These weights
determine if the distance is close to other ones. If a distance is far from the oth-
ers, the weight will be high. Consequently, it forces the distances to be close to
each other. A single drawback of ψ is its complexity in O(n4). There are differ-
ent ways to reduce this complexity. First, for instance, it is possible to consider
only the differences which respect |Dj −Di|2 ≤ 5σ2. In this way, we avoid the
calculations of terms that may be considered as negligible (e−5 � 1). Instead
of summing up

(
n
2

)
distances, we can randomly choose O(n) distances Dj .

4.3 Tuning of parameter σ and its justification
Let us focus on the parameter σ: given that we aim at furnishing a large number
of scores, we need to tune it in a global way. It must depend directly on n

8

and k, without preliminary experiments for each instance k/n. Looking at the
definition of ψp,σ, this variable is introduced in order to regulate the order of
magnitude of the exponential term. We see that σ should have approximately
the same order of magnitude than the values taken by |Dj −Di|2.

This is why we try to give the expression of a linear function of k and n which
is similar to typical values |Dj −Di|2. To establish it, we study the variance of
a random variable: the tuning of σ is founded on Theorem 2.

Theorem 2. Let D(k, n) be the random variable representing any square dis-
tance in any configuration of instance k/n. We have D (k, n) ∼ N

(
kn(n+1)

6 , g (n)
)

with g (n) ∼ 7kn4

180 +O(n3).

Proof. Thanks to [9], we know that E(D (k, n)) = kn(n+1)
6 . We note (P1, P2)

the random variable that gives any couple of points for n/k. The random vari-
able D (k, n) is a function of (P1, P2). For any 1 ≤ j ≤ k, we note Y (j) =

(P1(j)− P2(j))
2 and get D (k, n) =

∑k
j=1 Y (j). As Y (i) and Y (j) are indepen-

dent if i 6= j, we note Y (i) = Y to keep the notation simple. If k is high enough,
we apply the Central Limit Theorem: D (k, n) ∼ N

(
kn(n+1)

6 , kVar(Y)
)
. We

focus first on E(Y 2) = E((P1(j)− P2(j))4):

E(Y 2) =

∑n
x=1

∑
y 6=x(x− y)4

n(n−1)
2

=
2
(
n
∑n−1
z=1 z

4 −
∑n−1
z=1 z

5
)

n(n− 1)
=
n4

15
+O

(
n3
)
.

We thus deduce Var(Y) = E(Y 2)− E(Y)2 = n4

15 −
n4

36 +O
(
n3
)
∼ 7n4

180 .

We propose a global tuning of σ2 as a linear function of the variance of our
configurations. As computing the variance of a configuration, at every iteration,
would be expensive, we formulate the hypothesis that the variance of the square
distances set of the SA solutions follows the function g (n) above. The idea of
the tuning is to consider σ2 linearly dependent on the variance of the random
variable D (k, n). In the weights wi, we compare the difference between the
current distance and an extra one with σ by calculating |Dj−Di|

2

σ2 in order to
identify which differences Dj −Di have to be taken into account.

In the case n ≥ 2k, we assume σ2 = ckn4. According to several experiments
series, we identify a good compromise with c = 1

300 .
In the case n ≤ k, leading to unimodal distributions, ψ does not bring

more interesting results than φ. It is equivalent to assuming c to be very large
(c→∞).

Finally, the case k ≤ n ≤ 2k which is an intermediary of the two previous
cases, can be tuned with σ = 2ckn4. This proposition does not obviously
represent the best tuning for all possible instances but gives an efficient and
simple solution for the tuning of σ.

It is necessary to mention that the case k ≤ n ≤ 2k is the case where tuning
is essential: to be as efficient as possible, the value of σ has to be carefully

9

HHH
HHn
k

3 4 5 6 7 8 9 10

3 6 7 8 12 13 14 18 19

4 6 12 14 20 21 26 28 33

5 11 15 24 27 32 40 43 50

6 14 22 32 40 47 54 62 68

7 17 28 40 52 62 72 81 91

8 21 42 50 66 80 91 103 116

9 22 42 61 82 95 114 128 144

10 27 50 82 95 113 134 158 175

11 30 55 82 111 133 157 184 211

12 36 63 94 142 158 184 213 243

13 41 70 107 143 184 214 246 279

14 42 78 109 162 220 247 282 318

15 48 89 135 179 228 281 323 363

16 50 94 154 200 254 328 364 412
17 56 102 163 221 277 343 413 462

18 57 114 176 249 306 376 469 515

19 62 123 193 268 336 408 491 576

20 66 138 210 293 372 448 528 645

21 69 149 232 315 401 482 570 674
22 82 154 246 347 433 525 623 721
23 82 165 260 364 468 566 667 773
24 83 173 276 391 506 609 720 837

25 89 183 294 419 541 657 768 897

Table 4: Highscores obtained with “all purpose” tuning

selected. Table 3 shows the impact of ψp,σ on SA performance with mutations
m2 and 1D-move. We keep the same experimental setup as in Subsection 3.2:
SA makes a thermal linear descent, the results presented come out from 100
runs and the average is within the 95% confidence interval.

In Table 4, we update scores for the same instances as in [6]. The results
were produced with 107 iterations and p = 5. Our function ψp,σ is used when
k ≤ n, φp elsewhere. We note in bold type improved results and in italics results
worse than [6]. For 4 ≤ k ≤ 8, the use of 1D–move and ψp,σ allows us to exceed
a large number of scores but this improvement is less significant for other values.
For k = 3, we suppose that the new tools are not able to outperform previous
results because the results are already optimal or very good. For k = {9, 10}, a
credible hypothesis is that the value of nk is so close to 1 that the effect of ψp,σ
is weak. Generally, results could be better with a specifically adapted tuning.
Here, we established temperature, p and σ by making compromises between
all the instances. However, in a real life case, by treating complex systems,
we work on a defined instance with k and n fixed. In such circumstances, we
naturally advice to customize the tuning of the different parameters by making
preliminary experiments on this very instance. We expect that such an approach

10

would produce results outperforming those in Table 4.

5 Conclusion
In this article, we introduce new techniques to treat the Maximin LHD con-
struction. The first one is the 1D–move mutation especially dedicated to the
LHD structure. It is very efficient for a local search on LHDs because it makes
it possible to follow a step-by-step path on the cost surface without jumping
over possible minima. The second tool, the evaluation function ψp,σ directly
focuses upon Maximin optimization.

As numerous problems, among them Maximin Designs, involve this criterion,
we emphasize that this function can be used for many other applications. In the
Maximin LHD context, the function ψp,σ tries to find solutions by narrowing a
set of possible distances. SA, with 1D–move and ψp,σ, gave results better than
those considered to be “the best known” for the majority of cases without any
dedicated tuning.

References
[1] E. Aarts and P. van Laarhoven. Statistical cooling: A general approach to

combinatorial optimization problems. Philips Journal of Research, 40(4),
1985.

[2] P. Bergé, K. Le Guiban, A. Rimmel, and J. Tomasik. Search Space Explo-
ration and an Optimization Criterion for Hard Design Problems. In Proc.
of ACM GECCO, pages 43–44, July 2016.

[3] S. Kirkpatrick, D. Gelatt Jr., and M. P. Vecchi. Optimization by simmulated
annealing. Science, 220(4598):671–680, 1983.

[4] M. McKay, R. Beckman, and W. Conover. A Comparison of Three Methods
for Selecting Values of Input Variables in the Analysis of Output from a
Computer Code. Technometrics, 21, 1979.

[5] M. D. Morris and T. J. Mitchell. Exploratory designs for computational
experiments. Journal of statistical planning and inference, 43:381–402, 1995.

[6] A. Rimmel and F. Teytaud. A Survey of Meta-heuristics Used for Computing
Maximin Latin Hypercube. In Proc. of EvoCOP, pages 25–36, 2014.

[7] P. Tian, J. Ma, and D. Zhang. Application of the simulated annealing algo-
rithm to the combinatorial optimisation problem with permutation property:
An investigation of generation mechanism. European Journal of Operational
Research, 118:81–94, 1999.

[8] E. R. van Dam, B. Husslage, D. den Hertog, and H. Melissen. Maximin latin
hypercube designs in two dimensions. Operations Research, 55(1):158–169,
2007.

11

[9] E. R. van Dam, G. Rennen, and B. Husslage. Bounds for maximin latin
hypercube designs. Operations Research, 57(3):595–608, 2009.

12

	1 Introduction
	2 Typical approach to solve Maximin LHD with Simulated Annealing
	3 New perturbation targeting LHD
	3.1 Principle of the perturbation
	3.2 Performance Evaluation

	4 New evaluation function targeting Maximin
	4.1 Presentation of a Maximin effect: narrowing the distribution of distances
	4.2 Definition of evaluation function
	4.3 Tuning of parameter and its justification

	5 Conclusion

