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Youla-Kucera control structures for switching

Francisco Navas1, Imane Mahtout2, Vicente Milanés2 and Fawzi Nashashibi1

Abstract— This paper explores the different controller struc-
tures in connection with Youla-Kucera (YK) parameteriza-
tion to provide stable controller reconfiguration. Mathematical
stability proof is given for each of the structures. Even if
stability is guaranteed, transient effects of switching between
controllers can become important for the system performance.
Thus, transient behavior depending on the control structure is
also analysed. A comparative study is carried out among all
the structures, so guidelines are given on how to choose the
appropriate YK control structure.

I. INTRODUCTION

Computer-controlled systems (i.e. humanoids, automated
vehicles) are getting more and more complex, demanding
advanced control algorithms able to reach the performance
goals. This computer-controlled system are alive, meaning
that the plant can change in time, potential faults must be
properly handled or even new sensor/actuators can be added
[1]. Such systems require a control technique able to perform
controller reconfiguration depending on these events.

Controller reconfiguration goes from switching between
two fixed linear controllers to interpolation of control signals
generated by different single controllers. However, stability
is a commom problem in controller reconfiguration appli-
cations. A linear combination of two stabilizing controllers
could not result in a stabilizing controller [2]. 40 years ago,
the study of coprime factorizations of linear plants led to
a theory giving the class of all stabilizing controllers for a
linear plant: Youla-Jabr-Bongiorno-Kucera (YK) parameter-
ization [3]. Stable controller switching is possible by using
the class of all stabilizing controllers, as first mentioned in
[4]. Stability proof can be found in [5]; later extended under
arbitrary change of the switching signal over time in [6].

YK has solved problems in different control areas: High
performance control blends strenghs of classical, optimal
and robust control through YK theory. The idea is to obtain
high performance on the face of uncertainty and change in
a plant [7]; a fault tolerant control structure with a direct
separation in terms of fault signature, useful to fault detection
and consequent controller reconfiguration [8]; or Plug&Play
control [9], which introduces new sensors/actuators, provid-
ing stabilizing guarantees during the transition phase as well
as retaining the original control structure.
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But some drawbacks come up when using the YK architec-
ture: complexity of resulting controller, matrix inversability
or disconnection of the plant for implementation. The stan-
dard structure in [4] has been modified in the literature to
avoid matrix inversability [10], plant disconnection [11] [12],
or to reduce the complexity of the resulting controller [13].

The main focus in this paper is to summarize all these
structures, highlighting the solved problems, and providing
mathematical proof that stability remains. A partial compar-
ison between some structures has been already adressed in
[13], but it does not include all the structures in the literature,
stability proof is not given, and the transient behavior is not
analysed. Even if transitions are stable, transient effects of
switching between controllers can become important for the
system performance. Thus, transient responses are studied for
all the YK control structures, analyzing their performance.

The paper is organized as follows: Section II introduces
the YK mathematical basis. Control structures in this section
correspond to those that appeared for the first time in
[4]. Modifications of these structures to avoid some of the
associated problems to YK are shown in section III. Section
IV compares the transient response of all the structures
through a numerical example. To finish, concluding remarks
are given in section V.

II. YOULA-KUCERA CONTROLLER
MODIFICATION

This section introduces the mathematical basis in which
Youla-Kucera (YK) relies on for making stable transition
between different controllers. The change between both
controllers is made through the parameterization of all the
stabilizing controllers for a given plant. This parameteriza-
tion is based on the doubly coprime factorization [14].

The notation is standard; RH∞ is the real stable transfer
function space; G represents the input/output behavior or
internal dynamics of the physical system to control. In the
case of LTI continous systems, the state space representation
of G yields:

ẋ(t) = Ax(t)+Bu(t)

y(t) =Cx(t)+Du(t)
, G(s) =

[
A B
C D

]
(1)

where t indicates time, x(t) is the state vector, ẋ(t) = dx/dt
is the evolution over time of the state vector, y(t) the
measurement vector and u(t) the control vector. Coefficients
A, B, C and D are constant matrices with the corresponding
dimensions. n is the plant order.

The plant could be stabilized by any appropriate LTI



controller Ki in state-space:

ẋ(t) = Ac
i x(t)+Bc

i y(t)

u(t) =Cc
i x(t)+Dc

i y(t)
, Ki(s) =

[
Ac

i Bc
i

Cc
i Dc

i

]
(2)

where Ac
i , Bc

i , Cc
i and Dc

i are constant matrices for each
controller Ki. mi denotes controller order.

Assuming that K0 corresponds to an initial controller and
K1 to a final one, it is possible to switch between them
in a stable way thanks to the YK parameterization of all
controllers.

The plant G and both controllers K0 and K1 must be
factorized to apply the Youla-Kucera theory.

A. Doubly coprime factorization

For single-input single-output (SISO) systems, factoriza-
tion leads to plant and controller being represented as the
product of two transfer functions. Coprimeness refers to the
absence of common zeros in the right half-plane.

For multi-input multi-output (MIMO) systems, factoriza-
tion is represented as the ratio between a stable matrix
transfer function with a matrix transfer function inversely
stable. Coprimeness is expressed as a full rank condition on
the matrices outside of the unit circle.

In both cases, double coprimeness excludes unstable
pole/zero cancellations, and refers to the idea of being right
and left coprime [15]. Definitions and theorem below are
applicable for both SISO and MIMO systems:

Definition 1: Two different matrices Mi and Ni are right
coprimes over RH pxm

∞ if they have the same number of
columns and if matrices Xr,i and Yr,i exist such that:[

Xr,i Yr,i
][Mi

Ni

]
= Xr,iMi +Yr,iNi = I (3)

Definition 2: Two different matrices M̃i and Ñi are left
coprimes over RH pxm

∞ if they have the same number of rows
and if matrices Xl,i and Yl,i exist such that:[

M̃i Ñi
][Xl,i

Yl,i

]
= M̃iXl,i + ÑiYl,i = I (4)

These coprime factors should be such that G, K0 and K1
are:

G = NiM−1
i = M̃i

−1Ñi

Ki =UiV−1
i = Ṽi

−1Ũi

with i = 0,1

(5)

At the same time, these coprime factors Ui, Ũi, Vi, Ṽi,
Ni, Ñi, Mi and M̃i ∈ RH∞ must satisfy the double Bézout’s
identity [16]:[

Ṽi −Ũi
−Ñi M̃i

][
Mi Ui
Ni Vi

]
=

[
Mi Ui
Ni Vi

][
Ṽi −Ũi
−Ñi M̃i

]
=

[
I 0
0 I

]
(6)

Theorem 1 permits to obtain coprime factors for [G,K0]
and [G,K1] , when G, K0 and K1 are described in state-space
form. These factors satisfy (5) and (6) (further details can be
found in [7]):

Theorem 1: Consider a plant in state space represen-
tation as G = C(zI − A)−1B + D with A,B,C stabilizable
and detectable, and a stabilizing controller Ki = Cc

i (zI −
Ac

i )
−1Bc

i +Dc
i . Fi and Fc

i should be chosen such that A+BFi
and Ac

i +Bc
i Fc

i ∈ RH pxm
∞ . Coprime factors are given by:

[
Mi Ui
Ni Vi

]
=


A+BFi 0 B 0

0 Ac
i +Bc

i Fc
i 0 Bc

i
Fi Cc

i +Dc
i Fc

i I Dc
i

C+DFi Fc
i D I

 (7)

[
Ṽi −Ũi
−Ñi M̃i

]
=

A+BYiDc
i C BYiCc

i −BYi BYiDc
i

Bc
i ZiC Ac

i +Bc
i ZiDCc

i −Bc
i ZiD Bc

i Zi
Fi−YiDc

i C −Cc
i I −Dc

i
C −Fc

i 0 I


with Yi = (I−Dc

i D)−1 and Zi = (I−DDc
i )
−1

(8)

An non-minimal realization for the doubly coprime factors
shown in Eqs. (7) and (8) results in an order equivalent to
n+mi.

B. Youla-Kucera parameterization

YK parameterization provides all stabilizing controllers
for a given plant G, by interconnecting an initial controller
K0 with a parameter Q, called YK parameter, which can be
any stable system with appropriate dimensions.

Theorem 2: Consider a fixed plant G connected to an
initial controller K0 described by their coprime factors G =
N0M−1

0 = M̃0
−1Ñ0 and K0 =U0V−1

0 = Ṽ0
−1Ũ0. Then the set

of all stabilizing controllers for G is described by:

K(Q) = (U0 +M0γQ)(V0 +N0γQ)−1 =

= (Ṽ0 + γQÑ0)
−1(Ũ0 + γQM̃0), Q ∈ RH∞

(9)

From this general description is possible to change from
an initial controller K0 to K1 online, without losing stability
by choosing the appropriate Q. It should be calculated as
follows [2]:

Theorem 3: Let G = N0M−1
0 = M̃0

−1Ñ0 be a coprime
factorization of the plant G and K0 = U0V−1

0 = Ṽ0
−1Ũ0 an

initial stabilizing controller. A second controller is given by
K1 =U1V−1

1 = Ṽ1
−1Ũ1. Q is calculated as:

Q = X1(Ũ1V0−Ṽ1U0) (10)

with X1 = M−1
0 M1.

As coprime factors are stable, the transfer function X1 is
stable. In some special cases, coprime factors will coincide
M0 = M1 and therefore X1 = I.

From these two theorems, the standard control structures
for controller switching are derived. Figure 1 shows the con-
trol structure for switching based on right coprime factors.
On the other hand, the structure in fig. 2 depends on left
coprime factors. As standard, one means the very first YK
control structures that appeared in [4]. The complexity of
these control structure is defined as the order/state dimension
of the switched controller K(Q): A non-minimal realization
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of structure 1 and 2 may yield a K(Q) with 7(n+m0) +
3(n+m1) states.

When doing controller transitions, the scalar factor γ plays
a key role. It regulates the different level of activation of the
YK parameter Q. γ may vary from 0 to 1, being 0 a 100%
contribution of K0 and 1 a 100% contribution of K1. In short,
γ is the switching signal between K0 and K1.

The stability in the transition is ensured when Q ∈ RH∞,
so any linear combination of Q and γ will provide stable
responses. Independently of the value of γ , the closed-loop
(CL) poles during the transition will be the combination
of the CL poles of [G,K0] and [G,K1]. Proof relies on the
controller description K(Q) in eq. (9). Further details can be
found in [5].

III. MODIFIED CONTROLLER ARCHITECTURES
FOR SWITCHING

Fig. 1 represents the YK implementation for controller
reconfiguration based on right coprime factors, whereas Fig.
2 depicts the YK control structure for switching based on
left coprime factors. Both implementations present some
drawbacks such a high order complexity of K(Q), matri-
ces’ inversability or controller design from scratch. These
structures are modified in [12] [10] [13], so the associated
problems can be suppressed. These are explained below,
highlighting the solved problems and providing mathematical
proof that transition between controllers is stable.

A. Structures 3 and 4

Controller reconfiguration using structures 1 and 2 requires
the initial controller K0 to be divided in its coprime factors
U0, V0 or Ũ0 and Ṽ0. Even if the system is already operational
with an initial controller K0, this one should be disconnected.
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This is unfeasible if the system shutdown is very expensive,
or the initial controller is part of a safety circuit.

[12] keeps the initial controller in place, accessing at its
terminal to carry out the YK controller reconfiguration. New
control dynamics can be added online, without removing
the original controller. This allows to return to the original
controller in case of problems with the new one. Control
structures for right and left coprime factorizations are shown
in Figs. 3 and 4 respectively. As K0 is not decomposed in
coprime factors, inversion of matrices is no longer needed;
and the complexity of the resulting K(Q) is lower: 5(n+
m0)+ 3(n+m1)+m0. Please notice that the calculation of
the YK parameter Q differs from the standard one in eq.
(10):

Theorem 4: Let G = N0M−1
0 = M̃0

−1Ñ0 be a coprime
factorization of the plant G and K0 = U0V−1

0 = Ṽ0
−1Ũ0 an

initial stabilizing controller that can not be disconnected. A
second controller is given by K1 =U1V−1

1 = Ṽ1
−1Ũ1.

When using right coprime factors M0 and N0, Q′ is
calculated as:

Q′ = QV−1
0 = X1(Ũ1−Ṽ1Ũ0Ṽ0

−1
) (11)

When using left coprime factors M̃0 and Ñ0, Q′′ is calculated
as:

Q′′ = QṼ0
−1

= X1(Ṽ0
−1
(Ũ1V0−Ṽ1U0)) (12)

with X1 = M−1
0 M1.

Once structures 3 and 4 are defined, the YK property
of stable controller reconfiguration is verified. Stability has
already been demonstrated in the literature (see [5]) for
structures 1 and 2 through eq. (9). To prove that stability
is still preserved in these new structures, it is only necessary
to check that K(Q) remains as in eq. (9).
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According to the block diagram of structure 3 (fig. 3),
K(Q) yields:

u = (K0 +M0γQ′)(I +N0γQ′)−1y

u = (U0V−1
0 +M0γQ′)(I +N0γQ′)−1y

u = (U0V−1
0 +M0γQV−1

0 )(I +N0γQV−1
0 )−1y

u = (U0 +M0γQ)(V0 +N0γQ)−1y

(13)

which is equivalent to K(Q) description in eq. (9) for right
coprime factors.

According to the block diagram of structure 4 (fig. 4),
K(Q) yields:

u = (K0 + γQ′′M̃0)(I + γQ′′Ñ0)
−1y

u = (Ṽ0
−1Ũ0 + γQ′′M̃0)(I + γQ′′Ñ0)

−1y

u = (Ṽ0
−1Ũ0 + γQṼ0

−1M̃0)(I + γQ′′Ñ0)
−1y

u = (Ũ0 + γQM̃0)(Ṽ0 + γQÑ0)
−1y

(14)

which is equivalent to K(Q) description in eq. (9) for left
coprime factors.

Stable controller reconfiguration property is ensured even
if different structures are employed. Thus, CL poles during
the transition keeps being the combination of the CL poles
of [G,K0] and [G,K1].

B. Structures 5 and 6

Another critical point in the implementation of structures
1 and 2 is the inversion of coprime factors V0 and Ṽ0. As a
solution, two new structures related to loop transfer recovery
were proposed in [10] [13]. Structures so-called 5 and 6
do not present matrix inversion. Their block diagrams are
depicted in fig. 5 and 6. Notice that unlike structures 3 and
4 the calculation of the YK parameter Q remains as in eq.
(10), and the initial controller K0 should be disconnected
for structure implementation. Besides, the resulting controller
order is the same that structures 1 and 2: 7(n+m0)+3(n+
m1).

Again stable controller reconfiguration property is checked
with eq. (9).
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According to the block diagram of structure 5 (fig. 5),
K(Q) yields:

u = (U0 +M0γQ)(M̃0y− Ñ0u) =

u = (I +(U0 +M0γQ)Ñ0)
−1(U0 +M0γQ)M̃0y

(15)

where according to Bézout’s identity M0Ñ0 = M̃0N0 and (I+
U0Ñ0) = M̃0V0, yielding:

u = (M̃0V0 + M̃0N0γQ)−1(U0 +M0γQ)M̃0y

u = (V0 +N0γQ)−1(U0 +M0γQ)y
(16)

which is equivalent to K(Q) description in eq. (9) for right
coprime factors.

According to the block diagram of structure 6 (fig. 6),
K(Q) yields:

u = M0ω

u = M0(Ũ0 + γQM̃0)(I +(Ũ0 + γQM̃0)N0)
−1y

u = M0(Ũ0 + γQM̃0)(Ṽ0M0 + γQÑ0M0)
−1y

u = (Ũ0 + γQM̃0)(Ṽ0 + γQÑ0)
−1u

(17)

which is equivalent to K(Q) description in eq. (9) for right
coprime factors.

C. Structures 7 and 8

Finally, the work in [13] deals with the reduction of the
implementation complexity by eliminating the YK parameter
Q. Notice that this parameter is derived from eq. (10),
which depends on six coprime factors. Structures 7 and 8
make the YK controller reconfiguration independent of Q.
Control structures for right and left coprime factorizations
are shown in figures 7 and 8 respectively. The equivalent
complexity order results in 4(n + m0) + 2(n + m1) states.
Again structure implementation requires the initial controller
to be disconnected. Notice how for the special case where
X1 = I, the complexity order gets even lower.

Stable controller reconfiguration property is still preserved
even if Q is no longer in the structure. Mathematical proof
is shown below:



According to the block diagram of structure 7 (fig. 7),
K(Q) yields:

u = ((1− γ)U0 + γU1M̃1M̃0
−1
)(M̃0y− Ñ0u)

u = ((1− γ)U0 + γU1M̃1(−GU0 +V0))(M̃0y− Ñ0u)

u = ((1− γ)U0 + γ(−U1Ñ1U0 +U1M̃1V0))(M̃0y− Ñ0u)

u = ((1− γ)U0 + γ((I−M1Ṽ1)U1 +M1Ũ1V0))(M̃0y− Ñ0u)

u = (U0 + γM1(Ũ1V0−Ṽ1U0))(M̃0y− Ñ0u)

u = (U0 +M0γQ)(M̃0y− Ñ0u)

u = (I +(U0 +M0γQ)Ñ0)
−1(U0 +M0γQ)M̃0y

(18)

where according to the Bézout’s identity M0Ñ0 = M̃0N0 and
(I +U0Ñ0) = M̃0V0, yielding:

u = (M̃0V0 + M̃0N0γQ)−1(U0 +M0γQ)M̃0y

u = (V0 +N0γQ)−1(U0 +M0γQ)y
(19)

which is equivalent to K(Q) description in eq. (9) for right
coprime factors.

According to the block diagram of structure 8 (fig. 8),
K(Q) yields:

u = M0ω

u = M0((1− γ)Ũ0 + γM−1
0 M1Ũ1)

(1+((1− γ)Ũ0 + γM−1
0 M1Ũ1)N0)

−1y

u = M0(Ũ0 + γQM̃0)(1+(Ũ0 + γQM̃0)N0)
−1y

u = M0(Ũ0 + γQM̃0)(Ṽ0M0 + γQÑ0M0)
−1y

u = (Ũ0 + γQM̃0)(Ṽ0 + γQÑ0)
−1y

(20)

which is equivalent to K(Q) description in eq. (9) for left
coprime factors.

On the other hand, it has been assumed that there is
no variation in the system represented by G; when doing
controller switching in a system with variations the dual
YK formulation needs also to be employed. All the plants
stabilized by a given controller are represented by G(S),
where S is the dual YK parameter [17]. In that case, CL
stability involves both Q and S: (I − QS)−1 ∈ RH∞ [5].
Thus, control structures 7 and 8 cannot be used when system
variations are present, as Q is no longer in the structure.

IV. TRANSIENT BEHAVIOR

By exploiting the YK parameterization it is possible to
change controllers without losing stability, no matter what
of the described control structures are used. As already
mentioned, when doing controller transition γ plays the key
role as switching signal between K0 and K1. The rate of
change of the switching signal γ could be any, without
affecting the CL stability of the system [6]. This section stud-
ies transient responses when using the different YK control
structures, determining if the use of some structure improves
the transient behavior when doing controller reconfiguration.

Notice that the rate of change of γ could be any, but a
numerical example with the fastest γ rate is given such that
transient differences are more remarkable.
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Fig. 9. Comparison of transient behavior between different YK control
structures. Step from 0 to 1.

Consider the following state space representation of a
system:

G(s) =
[

A B
C D

]
=

[
−2.5 2.0
1.25 0.0

]
(21)

A controller K0 was designed to make the system follow a
step reference:

K0(s) =
[

Ac
0 Bc

0
Cc

0 Dc
0

]
=

[
0.0 1.0
−1.0 −0.4

]
(22)

such that the following stable CL pole remains:

polesCL(G,K0) =
[
−1
]

(23)

Later, the controller is replaced by a slower one:

K1(s) =
[

Ac
1 Bc

1
Cc

1 Dc
1

]
=

[
0.0 0.5
−1.0 −0.2

]
(24)

which CL pole is closer to the origin:

polesCL(G,K1) =
[
−0.5

]
(25)

Responses of both controllers are shown as black and blue
dot-lines in the middle graph of fig. 9.

Once G, K0 and K1 are defined, double coprime factors
N0, M0, N1, M1, Ñ0, M̃0, Ñ1, M̃1, U0, V0, U1, V1, Ũ0, Ṽ0, Ũ1,
Ṽ1 are obtained through Theorem 1. These factors are used
for the calculation of Q, Q′ and Q′′, so all the YK control
structures can be implemented and compared in terms of
transient performance.

Figure 9 depicts the transient behavior of each of the
structures. The top graph represents how γ is modified to



TABLE I
SUMMARY TABLE.

K0 disconnection Complexity Inversability YK parameter System variation (Q,S) Time Oscillations

Structure 1 Yes 7(n+m0)+3(n+m1) Yes Q Yes 12s Yes

Structure 2 Yes 7(n+m0)+3(n+m1) Yes Q Yes 4s No

Structure 3 No 5(n+m0)+3(n+m1)+m0 No Q’ Yes 9s No

Structure 4 No 5(n+m0)+3(n+m1)+m0 No Q” Yes 4s Yes

Structure 5 Yes 7(n+m0)+3(n+m1) No Q Yes 2s Yes

Structure 6 Yes 7(n+m0)+3(n+m1) No Q Yes 4s No

Structure 7 Yes 4(n+m0)+2(n+m1) Yes - No 2s Yes

Structure 8 Yes 4(n+m0)+2(n+m1) Yes - No 4s No

carry out the switching from K0 to K1. System responses
when doing the transition are shown for the structures 1 to
8 at the middle graph. The bottom graph plots the error
to K1 response once the YK structure is activated. In all
cases, the initial controller K0 (black dot-line) is working
until γ becomes 1 at 11s. Then, the transient to reach K1
response (blue dot-line) is different for each of the structures:
Structures 5 and 7 presents the same response, the time
to reach the desired behavior is the fastest 2s, but with
an oscillation in the response; structures 2, 6 and 8 takes
twice the time but without overshoot; Structure 3 is even
slower, about 9 s, but consequently transition is smoother;
finally, structure 1 and 4 present oscillations over the desired
response, with times reaching 12s and 4s respectively.

When doing controller reconfiguration, one looks for a
transition without overshoot and as fast as possible between
K0 and K1 responses. This is the case of structures 2, 6 and
8.

Table I gathers benefits and drawbacks of each structure
seen in previous sections, as well as transition behavior char-
acterized by settling time and the presence of oscillations.

V. CONCLUSIONS
This paper has explored the different YK control structures

for stable controller reconfiguration.
The YK mathematical basis is explained and applied to

derive the standard YK structures for controller switching.
Once drawbacks of these structures are presented, different
modifications are proposed to deal with problems such
order complexity, plant disconnection or matrix inversability.
Stability property is still preserved despite modifications in
the structure, which means that CL poles during transition
are the same even if different structures are used.

Even if stability and CL poles are maintained during
transition, transient behavior of each structure is investigated.
Transient responses results different depending on the used
YK controller structure. Structures 1, 4, 5 and 7 exhibit
an oscillating response to be avoided. The rest present
acceptable behaviors, but one or the other should be chosen
depending on the desired time to reach the final response
and the controller complexity. Structures 2, 6 and 8 are the
fastest ones without oscillation.

Finally, the different properties mentioned throughout the
paper are summarized in table I. This table can serve as a

guide to choose the appropiate structure, according to the
expected system performance.
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