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State-dependent sampling for online control

Christophe Fiter, Laurentiu Hetel, Wilfrid Perruquetti, and Jean-Pierre Richard

Abstract In this chapter, we present a novel self-triggered control which aims at de-

creasing the number of sampling instants for the state feedback control of perturbed

linear time invariant systems. The approach is based on convex embeddings that

allow for designing a state-dependent sampling function guaranteeing the system’s

exponential stability for a desired decay-rate and norm-bounded perturbations. One

of the main contributions of this work is an LMI based algorithm that optimizes

the choice of the Lyapunov function so as to enlarge the lower-bound of the sam-

pling function while taking into account both the perturbations and the decay-rate.

The advantages of the approach are illustrated with a numerical example from the

literature.

1 Introduction

In the past decade, Networked Control Systems have become an important center of

attention of researchers in control theory. These systems present numerous advan-

tages, such as reduced wiring, plug and play devices, increased agility, and ease of
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maintenance. However, because they are often required to share a limited amount of

resources, they generate fluctuations in the sampling intervals, which may result in

unstable behaviours. This brings up new theoretical challenges.

In order to take into consideration these new difficulties, several works have stud-

ied the stability of sampled-data systems with time-varying sampling ( [7], [6], [17],

[11], [3]).

More recently, another research direction has emerged, consisting in controlling

dynamically the sampling instants so as to reduce the processor and/or network

loads while ensuring the desired control performances. Two main approaches can

be found in the literature:

- The first approach is the event-triggered control ( [18], [13], [9], [16]), in which

intelligent sensors send information to the controller when special events occur

(for example when the system’s state leaves some boundary around the equilib-

rium point). In most works from the literature, this approach requires a dedicated

hardware.

- The second approach is the self-triggered control ( [15], [1], [19]), which emulates

event-triggered control without dedicated hardware, by computing at each sampling

instant a lower-bound of the next admissible sampling interval. In general in these

works, no method is given to compute the Lyapunov function so as to optimize the

lower-bound of the sampling intervals (i.e. in the worst case, independently of the

system’s state).

Still more recently, in [3], [4], and [5], the authors proposed a third dynamic sam-

pling control approach, state-dependent sampling, which consists in designing the

state-dependent sampling function (i.e. the self-triggered controller) offline, thanks

to a mapping of the state space and linear matrix inequalities (LMIs). An advan-

tage was that these LMIs could be used for optimizing the Lyapunov function, thus

solving the issue mentioned previously regarding regular self-triggered control ap-

proaches

In the present chapter, we present a novel self-triggered control scheme in the

case of LTI systems with unknown, exogenous, state-bounded perturbations. The

communication links are assumed to react instantaneously (i.e. there is no com-

munication delay). We guarantee the system’s exponential stability for a desired

decay-rate using Lyapunov stability conditions and convexification arguments. One

of the main contributions and advantages is the optimization of the Lyapunov func-

tion, taking into account both the effects of the sampling and the perturbation. It

optimizes the lower-bound of the sampling intervals for the proposed self-triggered

control scheme.

The chapter is organized as follows. First, we state the problem in Section 2 and

propose the main stability result in Section 3. Then, we design the self-triggered

controller in Section 4. Finally, simulation results are shown in Section 5 before

concluding in Section 6. All the proofs are given in the Appendix.

Notations: R+ = {λ ∈ R, λ ≥ 0}, R∗ = {λ ∈ R, λ 6= 0}, N∗ = {n ∈ N, n 6= 0},

and R∗
+ = R+ \{0}. λmax(M) denotes the largest eigenvalue of a symmetric matrix

M ∈ Rn×n. S+n (resp. S+∗
n ) is the set of positive (resp. positive definite) symmetric
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matrices P � 0 (resp. P ≻ 0) in Rn×n. The symmetric elements of a symmetric

matrix are denoted by ∗. ‖.‖ is the Euclidean norm on Rn.

2 Problem statement

2.1 System description

Consider the perturbed LTI system

ẋ(t) = Ax(t) +Bu(t) + Ew(t), ∀t ∈ R+, (1)

where x : R+ → Rn, u : R+ → Rnu , and w : R+ → Rnw represent respectively

the system state, the control function, and the exogenous disturbance. The matrices

A, B, and E are constant with appropriate dimensions.

The control is a piecewise-constant state feedback

u(t) = −Kx(tk), ∀t ∈ [tk, tk+1), ∀k ∈ N, (2)

where the gain K is fixed and such that A−BK is Hurwitz.

The sampling instants tk are defined by the self-triggered control law

tk+1 = tk + τ(x(tk)), ∀k ∈ N, (3)

where τ : Rn → R+ is a state-dependent sampling function to be designed.

The disturbance is assumed to be state-bounded:

∃W ≥ 0, ‖w(t)‖2 ≤ W‖x(tk)‖
2, ∀t ∈ [tk, tk+1), ∀k ∈ N. (4)

Such a perturbation can represent model uncertainties, local nonlinearities, or some

kind of measurement noises.

We denote by S the closed-loop system {(1),(2),(3),(4)}.

2.2 Objectives

Our goal is to design a sampling function τ as large as possible and with a maximal

lower-bound, while ensuring the exponential stability of S for a desired decay-rate

α, also called α-stability (i.e. such that there exists a scalar γ for which all trajecto-

ries satisfy ‖x(t)‖ ≤ γe−αt‖x0‖ for any initial condition x0).

To this aim, we use the well known Lyapunov exponential stability property:
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Proposition 1. (See [6] for example) Consider a scalar α > 0 and a quadratic

Lyapunov candidate function V (x) = xTPx, ∀x ∈ Rn, with P ∈ S+∗
n . If the

condition

V̇ (x) + 2αV (x) ≤ 0 (5)

is satisfied for all trajectories of S, then the system is globally α-stable.

Our objectives can then be formulated as:

Objective 1: Sampling map design

Given a quadratic Lyapunov function V , design a lower-bound approximation of the

optimal sampling function τVopt(x) = max τ(x) such that (5) holds.

Objective 2: Lyapunov function design

Find a quadratic Lyapunov function V such that there exists a sampling function τ

satisfying (5) with a minimum value τ∗ = infx∈Rn τ(x) as large as possible.

3 Main stability result

In this section, we provide sufficient stability conditions that depend on the time

variable σ , t− tk and on the sampled-state x , x(tk).
The following result is obtained by bounding the effects of the perturbations on

the system’s behaviour thanks to (4), by using the well known inequality ( [2])

xT y + yTx ≤ ε−1xTx+ εyT y, (6)

which is satisfied for any vectors x and y of same dimension, and any scalar ε > 0.

Theorem 1. Consider a tuning parameter ε > 0, scalars α > 0 and W ≥ 0, and

a sampling function τ : Rn → R+. Then, the system S is globally α-stable if there

exist a matrix P ∈ S+∗
n and scalars η ≥ 0 and µ ≥ 0 such that

(1 + ε−1)ETPE � ηI, Q5 � µI, (7)

and

xTΠ(σ)x ≤ 0, ∀x ∈ R
n, ∀σ ∈ [0, τ(x)], (8)

with

Π(σ) = Λ(σ)TQ1Λ(σ) + Λ(σ)TQ2 +QT
2 Λ(σ) +Q3 +Q4(σ), (9)

Λ(σ) = I +

∫ σ

0

esAds(A−BK), (10)

Q1 = (1 + 2αε)(ATP + PA) + εATPA+ 2(α+ ε+ 2εα2)P,
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Q2 = −(I + ε(A+ 2αI)T )PBK,

Q3 = εKTBTPBK +WηI,

Q4(σ) = σWµλmax(E
TE)fA(σ)I,

Q5 = ATP + PA+ ε−1ATPA+ (1 + 2α+ ε−1)P, (11)

and

fA(σ) =

{

1
λmax(A+AT )

(

eλmax(A+AT )σ − 1
)

if λmax(A+AT ) 6= 0,

σ otherwise.
(12)

Remark 1: Since A−BK is assumed to be Hurwitz (i.e. the LTI system (1) without

perturbation is stable with the continuous state feedback u(t) = −Kx(t)), one can

show that there always exist parameters P , η and µ, such that the conditions (7) are

satisfied and such that Π(0) ≺ 0, provided that the tuning parameter ε, the decay-

rate α, and the perturbations upper-bound W are small enough (if ε, α, and W are

close to 0, then Π(0) ≃ (A−BK)TP + P (A−BK)). With such parameters, we

can thus find a sampling function τ satisfying the stability conditions of Theorem

1, which is lower-bounded by a strictly positive scalar. An algorithm enlarging that

lower-bound will be provided in the next section.

4 Self-triggered controller design

The self-triggered control scheme we propose in this chapter is based on the stability

conditions from Theorem 1, which involve a few LMIs (7) (considering that ε is

a tuning parameter) as well as the more complex set of conditions: xTΠ(σ)x ≤
0, ∀x ∈ Rn, ∀σ ∈ [0, τ(x)].

These stability conditions can not be checked ”as is” in real time, since they in-

volve an infinite number of inequalities regarding the time variable σ. Therefore, in

order to obtain checkable conditions, we propose to use:

- A discretization of the time interval, with a step ∆ ∈ R∗
+ (which can be either

chosen by the user or imposed by the system);

- Convex embeddings around the matrix functionΠ over every time interval [j∆, (j+
1)∆] (with j ∈ N), so as to guarantee the desired performances between any two

successive discrete instants. Indeed, since the matrix function Π is continuous, then

for any j ∈ N it is possible to design a convex polytope with a finite number of

vertices Π
(j)
i (∆) (i ∈ {0, · · · , N}) such that for all x ∈ Rn,

(

xTΠ
(j)
i (∆)x ≤ 0, ∀i ∈ {0, · · · , N}

)

⇒
(

xTΠ(σ)x ≤ 0, ∀σ ∈ [j∆, (j + 1)∆]
)

. (13)
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4.1 Convex embedding design based on Taylor polynomials

Here, we adapt the result from [10] to design a convex embedding satisfying (13).

The approach is based on an N -order Taylor series approximation of Π .

The vertices are defined for i ∈ {0, · · · , N} and j ∈ N as

Π
(j)
i (∆) = Π̂

(j)
i (∆) + ν(j)(∆)I, (14)

with

Π̂
(j)
i (∆) =

i
∑

k=0

Ψ
(j)
k (∆)∆k, (15)

Ψ
(j)
0 (∆) = Γ

(j)
1 (∆)TQ1Γ

(j)
1 (∆) + Γ

(j)
1 (∆)TQ2 +QT

2 Γ
(j)
1 (∆) +Q3 + L

(j)
0 (∆),

Ψ
(j)
1 (∆) = Γ

(j)
2 (∆)T (Q1Γ

(j)
1 (∆) +Q2) + (Γ

(j)
1 (∆)TQT

1 +QT
2 )Γ

(j)
2 (∆) + L

(j)
1 (∆),

Ψ
(j)
k≥2(∆) = Γ

(j)
2 (∆)T

(Ak−1)T

k!
(Q1Γ

(j)
1 (∆) +Q2) + (Γ

(j)
1 (∆)TQT

1 +QT
2 )

Ak−1

k!
Γ

(j)
2 (∆)

+Γ
(j)
2 (∆)T

(

k−1
∑

i=1

(Ai−1)T

i!
Q1

Ak−i−1

(k − i)!

)

Γ
(j)
2 (∆) + L

(j)
k

(∆), (16)

and

Γ
(j)
1 (∆) = I +Nj(∆)(A −BK), Γ

(j)
2 (∆) = N ′

j(∆)(A −BK),

Nj(∆) =

∫ j∆

0

eAsds, N ′
j(∆) = ANj(∆) + I. (17)

If λmax(A+AT ) = 0, the matrices Lk(j) are defined as

L
(j)
0 (∆) = Wµλmax(E

TE)(j∆)2I,

L
(j)
1 (∆) = 2Wµλmax(E

TE)j∆I,

L
(j)
2 (∆) = Wµλmax(E

TE)I,

L
(j)
k≥3(∆) = 0. (18)

Otherwise, if λmax(A+AT ) 6= 0, they are defined as

L
(j)
0 (∆) = Wµ

λmax(E
TE)

λmax(A+AT )
j∆
(

eλmax(A+AT )j∆ − 1
)

I,

L
(j)
1 (∆) = Wµ

λmax(E
TE)

λmax(A+AT )

(

eλmax(A+AT )j∆
(

1 + j∆λmax(A+AT )
)

− 1
)

I,



State-dependent sampling for online control 7

L
(j)
k≥2(∆) = Wµ

λmax(E
TE)

λmax(A+AT )
eλmax(A+AT )j∆

(

j∆
(λmax(A+AT ))k

k!
+

(λmax(A+AT ))k−1

(k − 1)!

)

I. (19)

Finally,

ν(j)(∆) ≥ max
σ∈[j∆,(j+1)∆]

λmax

(

Π(σ) −

N
∑

k=0

Ψ
(j)
k (∆)(σ − j∆)k

)

. (20)

Remark 2: The matrices Ψ
(j)
k (∆) defined in (16) are the coefficients of the Taylor

polynomial of Π over [j∆, (j + 1)∆]. The constants ν(j)(∆) defined in (20) repre-

sent upper-bounds of the Taylor series approximation error over each time intervals

[j∆, (j + 1)∆].

Theorem 2. Consider ∆ ∈ R∗
+, j ∈ N, and x ∈ Rn. The polytope vertices Π

(j)
i (∆)

defined in (14) satisfy (13): if xTΠ
(j)
i (∆)x ≤ 0 for all i ∈ {0, · · · , N}, then

xTΠ(σ)x ≤ 0 for all σ ∈ [j∆, (j + 1)∆].

4.2 Design of the sampling function τ for given parameters

In this subsection, we consider that the parameters P ∈ S+∗
n , η ≥ 0, µ ≥ 0, and

ε > 0 satisfying (7) are given.

Then, using Theorem 2, it is possible to design a lower-bound estimation τ of

the maximal state-dependent sampling function satisfying the stability condition (8)

from Theorem 1 as:

τ(x) = j(x)∆, (21)

with

j(x) = min
{

j ∈ N | ∃i ∈ {0, · · · , N}, xTΠ
(j)
i (∆)x > 0

}

. (22)

Remark 3: It is important to guarantee that j(x) > 0 (and thus τ(x) > 0) for

any state x ∈ Rn. To this aim, one may simply check if the inequality Π
(0)
i (∆) �

0 is satisfied for all i ∈ {0, · · · , N}. If this is not the case, it may be that the

discretization step time ∆ is too large, or that the tuning parameter ε, the decay-

rate α, or the perturbations upper-bound W are also too large (see Remark 1). In

the following subsection, we will show how to design all these parameters so as to

optimize the lower-bound of the sampling function.

Remark 4: Note that the matrices Π
(j)
i (∆) can be computed offline. The number

of online computations required to perform the self-triggered control scheme (i.e.

to compute j(x)) is upper-bounded by n(n + 1)(N + 1) τ(x)
∆

multiplications and
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(n+ 1)(n− 1)(N + 1) τ(x)
∆

additions. The online complexity is thus O( τ(x)
∆

Nn2),
which is comparable to the one obtained in the self-triggered control scheme from

[15] for example. Note that choosing a larger step ∆ will reduce the number of

computations, but will end in a loss of precision for the sampling function (21).

Therefore, a trade-off has to be made between precision and online complexity.

4.3 Optimization of the parameters (maximization of the

lower-bound τ
∗ of the sampling function)

In this subsection, we propose an LMI-based algorithm that computes the differ-

ent parameters involved in the self-triggered control scheme (the Lyapunov matrix

P ∈ S+∗
n and the additional parameters ε > 0, η ≥ 0, and µ ≥ 0) so as to optimize

the lower-bound of the sampling function (21). It is based on the following property:

Theorem 3. Consider a tuning parameter ε > 0, a time-step ∆ > 0, and scalars

α > 0 and W ≥ 0. Consider a matrix P ∈ S+∗
n , scalars η ≥ 0 and µ ≥ 0, and

a sampling function τ : Rn → R+ such that the conditions from Theorem 1 hold.

If there exists an integer j∗ ∈ N∗ such that the matrix inequalities Π
(j)
i (∆) � 0

are satisfied for all i ∈ {0, · · · , N} and all j ∈ {0, · · · , j∗ − 1}, then the system

S is globally α-stable with the sampling function τ̄ : Rn → R+ defined as τ̄ (x) =
max(τ(x), j∗∆).

The conditions Π
(j)
i (∆) � 0 in Theorem 3 depend from the parameters P , η,

µ, and ε. Therefore, it becomes clear that maximizing the sampling function lower-

bound reduces to searching the parameters that maximize τ∗ , j∗∆. This can be

done as follows.

Algorithm:

Step 1: In this step, we consider the polytopic description (14) with upper-bounds

on the estimation errors ν(j)(∆) = 0. Then, for a given ε > 0, the search for P , η

and µ maximizing τ∗ in Theorem 3 reduces to an LMI problem (from (11) and (14)

to (19), we can see that the matrices Π
(j)
i (∆) are linear in P , η and µ), which can

be solved using LMI solvers. It is possible to find the appropriate parameter ε with

a linear search algorithm.

Step 2: Next, we compute the value of the upper-bounds ν(j)(∆) and of the matrices

Π
(j)
i (∆) that correspond to the obtained parameters P , η, µ, and ε.

Step 3: Finally, the lower-bound of the sampling function can be designed as

τ∗ = j∗∆,
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with

j∗ = min
{

j ∈ N | ∃i ∈ {0, · · · , N}, Π
(j)
i (∆) ≻ 0

}

.

This parameter optimization presents several advantages, among which the guar-

antee of a large lower-bound τ∗ = j∗∆ for the sampling intervals, and the reduction

of the online complexity, since it not necessary anymore to check the inequalities

xTΠ
(j)
i (∆)x > 0 for j ∈ {0, · · · , j∗ − 1} when computing j(x) in (22).

5 Numerical example

Consider the Batch Reactor system from [14] with some additional perturbation:

ẋ(t) =









1.38 −0.20 6.71 −5.67
−0.58 −4.29 0 0.67
1.06 4.27 −6.65 5.89
0.04 4.27 1.34 −2.10









x(t) +









0 0
5.67 0
1.13 −3.14
1.13 0









u(t) + w(t),

u(t) = −

[

−0.1006 0.2469 0.0952 0.2447
−1.4099 0.1966 −0.0139 −0.0823

]

x(tk).

We will use the polytopic description presented in Section 4.1, with a polynomial

approximation degree N = 5 in all the results that are presented.

5.1 Simulation results

Here, we consider a time-step ∆ = 0.005s, a desired decay-rate α = 0.1, and an

upper-bound W = 0.01 on the perturbations (i.e. such that ‖w(t)‖ ≤ 0.1‖x(tk)‖).

First, we apply the algorithm proposed in Section 4.3 to enlarge the lower-bound

τ∗ of the sampling function. We obtain τ∗ = 3∆ = 0.015s, with the parameters

P = 10−3









0.3608 0.0580 0.2611 −0.1701
0.0580 0.2443 0.1029 0.1101
0.2611 0.1029 0.2854 −0.1314
−0.1701 0.1101 −0.1314 0.2861









, ε = 0.0285, η = 0.0254, and

µ = 0.3614.

Then, we design the sampling function (which defines the self-triggered con-

troller) as proposed in Section 4.2.

Figure 1 presents the simulation results obtained with the designed self-triggered

controller and a perturbation satisfying ‖w(t)‖ ≤ 0.1‖x(tk)‖.

During this 10s simulation, the average sampling interval is τaverage = 0.051s,

which is more than three times the value of the optimized lower-bound τ∗.
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Fig. 1 Inter-execution times τ(x(tk)) and Lyapunov function V (x) = xTPx evolution

5.2 Advantages of the sampling function’s lower-bound

optimization

In order to illustrate the interest of the sampling function’s lower-bound optimiza-

tion, we consider the simpler case of the batch reactor system without perturbation

nor desired decay-rate, with the same time-step ∆ = 0.005s.

Using the optimization algorithm from Section 4.3, we get a lower-bound of the

sampling function τ∗ = 36∆ = 0.18s, whereas with a regular approach to compute

the Lyapunov function without taking into account the sampling (for example by

solving the LMI (A−BK)TP +P (A−BK) ≺ 0, as in [14]), we get τ∗ = 3∆ =
0.015s.

Optimizing the lower-bound of the sampling function provides three main ad-

vantages.

1) It guarantees a large lower-bound for the sampling intervals (0.18s instead of

0.015s in this case).

2) It allows for using larger time-steps if one needs to reduce the number of online

computations (in the present case, we can fix ∆ up to 0.18s with the optimization,

and up to 0.015s without).

3) It allows for reducing the number of online computations, since it is not necessary

to check the condition xTΠ
(j)
i (∆)x ≤ 0 for j ∈ {0, · · · , j∗ − 1} (here, it allows

for saving 33n(n + 1)(N + 1) additions and 33(n + 1)(n − 1)(N + 1) multipli-

cations during each sampling interval... provided that the sampling interval in the

non-optimized case is not smaller than 36∆ = 0.18s).
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6 Conclusion

We have introduced a novel self-triggered control approach based on convex embed-

dings that ensures the exponential stability with a desired decay-rate for perturbed

LTI systems with linear state feedback. An interesting feature of the approach is

that it allows for enlarging the lower-bound of the sampling function, by computing

an appropriate Lyapunov function, thanks to LMIs. Extensions to nonlinear systems

are currently under study.
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Appendix

Proof (Theorem 1). Denoting x(t) = Λ(σ)x+Jw(σ) (the solution of S with initial

value x and perturbation w), with x the sampled-state x(tk), σ the time t− tk, and

the matrices

Λ(σ) = I +

∫ σ

0

esAds(A−BK), (23)

and

Jw(σ) =

∫ σ

0

eA(σ−s)Ew(s)ds, (24)

one can rewrite the condition (5) in Proposition 1 as





Λ(σ)x + Jw(σ)
x

w(σ)





T 



ATP + PA+ 2αP −PBK PE

∗ 0 0
∗ ∗ 0









Λ(σ)x + Jw(σ)
x

w(σ)



 ≤ 0.

(25)

Then, the idea of the proof is to find an upper-bound of the left part (25) that is

independent of the perturbation w. Using the notations

M1 = ATP + PA+ 2αP, M2(σ) = −PBK +M1Λ(σ),
M3 = PE, M4(σ) = ETPTΛ(σ),

we can rewrite the left part of equation (25) as

Gw(σ, x) = xT (Λ(σ)TM1Λ(σ)− Λ(σ)TPBK −KTBTPΛ(σ))x
+Jw(σ)

TM1Jw(σ) + Jw(σ)
TM2(σ)x+ xTM2(σ)

T Jw(σ)
+Jw(σ)

TM3w(σ) + w(σ)TMT
3 Jw(σ)

+w(σ)TM4(σ)x + xTM4(σ)
Tw(σ).
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Then, using inequality (6), we get

Jw(σ)T M2(σ)x + xTM2(σ)
T Jw(σ) ≤ Jw(σ)T ε−1[P + ATPA]Jw(σ)

+xT ε[Λ(σ)TPΛ(σ) + [(A+ 2αI)Λ(σ) − BK]TP [(A+ 2αI)Λ(σ) − BK]]x,

Jw(σ)T M3w(σ) +w(σ)TMT
3 Jw(σ) ≤ Jw(σ)T PJw(σ) +w(σ)TETPEw(σ),

w(σ)TM4(σ)x + xTM4(σ)
Tw(σ) ≤ w(σ)T ε−1ETPEw(σ) + xTΛ(σ)T εPΛ(σ)x,

and thus obtain (with matrices Qi defined in (11)):

Gw(σ, x) ≤ xT
[

Λ(σ)TQ1Λ(σ) + Λ(σ)TQ2 +QT
2 Λ(σ) + εKTBTPBK

]

x

+w(σ)T (1 + ε−1)ETPEw(σ) + Jw(σ)
TQ5Jw(σ).

(26)

Using (7) and (4), we get

w(σ)T (1 + ε−1)ETPEw(σ) ≤ ηw(σ)Tw(σ) ≤ WηxTx. (27)

From (7), we also have

Jw(σ)
TQ5Jw(σ)≤µ

(
∫ σ

0

e
A(σ−s)Ew(s)ds

)T (∫ σ

0

e
A(σ−s)Ew(s)ds

)

.

Then, using Jensen’s inequality ( [8], Proposition B.8), the inequality (2.2) in [12],

along with classic inequalities and assumption (4), one gets

Jw(σ)
TQ5Jw(σ) ≤ σµ

∫ σ

0

w(s)TET
(

eA(σ−s)
)T (

eA(σ−s)
)

Ew(s)ds

≤ σµ

∫ σ

0

e(σ−s)λmax(A+AT )w(s)TETEw(s)ds

≤ σµλmax(E
TE)

∫ σ

0

e(σ−s)λmax(A+AT )‖w(s)‖2ds

≤ σWµλmax(E
TE)

(
∫ σ

0

eλmax(A+AT )sds

)

‖x‖2

= σWµλmax(E
TE)fA(σ)x

Tx, (28)

with fA(σ) defined in (12). Implementing inequalities (27) and (28) in (26) shows

that Gw(σ, x) ≤ xTΠ(σ)x, with Π(σ) defined in (9), and thus that Proposition 1

stability conditions are satisfied if xTΠ(σ)x ≤ 0 for all x ∈ Rn and σ ∈ [0, τ(x)].

Proof (Theorem 2). Let ∆ ∈ R∗
+, j ∈ N, and x ∈ Rn.

Step (1): Compute the Taylor expansion of the matrix function Π over the time

interval [j∆, (j + 1)∆]. Remember that Π(σ) involves the term Λ(σ) defined in

(10). Using the property
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∫ a+b

0

eAsds =

∫ a

0

eAsds+

∫ b

0

eAsds

(

A

∫ a

0

eAsds+ I

)

,

which is valid for any scalars a and b, we can rewrite Λ(σ) as a function of σ′ =
σ − j∆ ∈ [0, ∆]:

Λ(σ) = I +
(

Nj(∆) +
∫ σ′

0 eAsdsN ′
j(∆)

)

(A−BK)

= Γ
(j)
1 (∆) +

∑∞

i=1
Ai−1

i! σ′iΓ
(j)
2 (∆),

with the notations from (17). Using this last equation, one can show that (the com-

putational details are omitted)

Π(σ) =
∞
∑

k=0

Ψ
(j)
k (∆)σ′k,

with the matrices Ψ
(j)
k (∆) defined in (16). Here, the matrices L

(j)
k (∆) that appear in

(16) come from the Taylor expansion of the termQ4(σ) = σWµλmax(E
TE)fA(σ)I ,

and are defined in (18) and (19).

A polynomial approximation of order N of Π on the interval [j∆, (j+1)∆] can

therefore be expressed as

Π̃
(∆,j)
N (σ) =

N
∑

k=0

Ψ
(j)
k (∆)σ′k.

Step (2): The approximation error term R
(∆,j)
N (σ) = Π(σ) − Π̃

(∆,j)
N (σ) can be

bounded using the relation R
(∆,j)
N (σ) � ν(j)(∆)I , with ν(j)(∆) defined in (20).

With this, it is clear that if xT
(

Π̃
(∆,j)
N (σ) + ν(j)(∆)I

)

x ≤ 0, then xT∆(σ)x ≤ 0.

Step (3): Since the function

xT
(

Π̃
(∆,j)
N (.) + ν(j)(∆)I

)

x : [j∆, (j + 1)∆] → R

is polynomial, we can use the convex embedding design from [10], Section 3, to

prove that if we have xTΠ
(j)
i (∆)x ≤ 0 for all i ∈ {0, · · · , N}, with Π

(j)
i (∆) =

(

∑i

k=0 Ψ
(j)
k (∆)∆k

)

+ν(j)(∆)I , then we have xT
(

Π̃
(∆,j)
N (σ) + ν(j)(∆)I

)

x ≤ 0

for all σ ∈ [j∆, (j + 1)∆], and therefore Π(σ) ≤ 0.

Proof (Theorem 3). The matrix inequalities and Theorem 2 ensure that the sta-

bility conditions of Theorem 1 are satisfied for the sampling function τ̄ (x) =
max(τ(x), j∗∆).
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