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Abstract We propose a model order reduction approach for balanced truncation
of linear switched systems. Such systems switch among a finite number of linear
subsystems or modes.

We compute pairs of controllability and observability Gramians corresponding
to each active discrete mode by solving systems of coupled Lyapunov equations.
Depending on the type, each such Gramian corresponds to the energy associated
to all possible switching scenarios that start or, respectively end, in a particular
operational mode.

In order to guarantee that hard to control and hard to observe states are
simultaneously eliminated, we construct a transformed system, whose Gramians
are equal and diagonal. Then, by truncation, directly construct reduced order
models. One can show that these models preserve some properties of the original
model, such as stability and that it is possible to obtain error bounds relating the
observed output, the control input and the entries of the diagonal Gramians.

Keywords 93A15 · 93A30 · 93B11 · 93C05 · 93C10

1 Introduction

In recent years, the need for accurate mathematical modeling of physical and
artificial processes for simulation and control has been steadily increasing. To
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cope with it, inclusion of more detail at the modeling stage is required, which
inevitably leads to analyzing larger-scale, more complex dynamical systems. Such
high dimensional systems are often linked to spatial discretization of underlying
time-dependent coupled partial differential equations (PDE).

In broad terms, model order reduction (MOR) is concerned with finding effi-
cient computational prototyping tools to replace such complex and large models
by simpler and smaller models that capture their dominant characteristics. Such
reduced order models (ROM) could be used as efficient surrogates for the original
model, replacing it as a component in larger simulations. For details on different
MOR techniques, we refer the readers to the book [1] and to the surveys [4,6].

Hybrid systems are a class of nonlinear systems which result from the interac-
tion of continuous time dynamical subsystems with discrete events. These systems
are hence described by both discrete and continuous states, inputs and outputs.
The transitions between the discrete states may result in a jump in the continuous
internal variable. The discrete dynamics is determined by a finite-state determin-
istic automaton equipped with outputs (the so-called Moore automaton).

Switched systems constitute a subclass of hybrid systems, in the sense that the
discrete dynamics is simplified, i.e. any discrete state transition is allowed and the
set of discrete events coincides with the set of discrete states.

A switched system is a dynamical system that consists of a finite number of
subsystems and a logical rule that orchestrates switching between these subsys-
tems. These subsystems or discrete modes are usually described by a collection of
differential or difference equations. The discrete events interacting with the sub-
systems are governed by a piecewise continuous function, i.e. the switching signal.

One can classify switched systems based on the dynamics of their subsystems,
for example continuous-time or discrete-time, linear or nonlinear and so on. In this
work we analyze continuous-time linear switched systems (LSS) with reset maps
(or coupling/switching matrices). The latter term refers to matrices that scale the
continuous state at the switching times.

Hybrid and switched systems represent useful models for distributed embedded
systems design where discrete controls are routinely applied to continuous pro-
cesses. In particular, switched systems have applications in control of mechanical
and aeronautical systems, power converters and also in the automotive industry.
For a detailed characterization of theses classes of dynamical systems, we refer the
readers to the books [19,37,38,16]. In the past years, hybrid and switched systems
have received increasing attention in the scientific community, which can be partly
explained by the fast development of the switch control research area (see [24,40,
18]). In this context, adaptive control techniques based on switching between dif-
ferent controllers are used to achieve stability and improve transient response. The
study of the properties of hybrid and switched systems includes such topics as sta-
bility (see [13,40,37]), realization including observability/controllability (see [27,
30]), analysis of switched DAEs (see [21,39]) and numerical solutions (see [17]).

In some cases, the complexity of verifying and assessing general properties of
these systems is very high so that the use of these models is limited in applications
where the size of the state space is large. A useful tool for dealing with such
complexity is MOR. A very prolific MOR method that has been continuously
developed over the years is balanced truncation (BT). It was initially introduced in
the systems and control theory in [23,26]. The main idea behind BT is to transform
a dynamical system to a balanced form defined in such a way that appropriately
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chosen controllability and observability Gramians are equal and diagonal. Then a
reduced-order model is computed by truncating the states corresponding to the
small diagonal elements of the Gramians. For more details on BT especially from a
practical point of view (i.e. application to large scale systems, solution of Lyapunov
equations etc.), see [20,7].

In this paper we present a model order reduction algorithm for linear switched
switched based on balanced truncation. We consider linear switched systems whose
linear subsystems may have different state-space dimensions, and where the change
of the discrete mode is accompanied with a change in the continuous state using
linear reset maps. As it is usual in balanced truncation, the proposed method
is based on the following steps. First, observability/controllability Gramians are
calculated. Then, using these Gramians a state-space transformation is calculated
such that after the application of this state-space transformation, the observability
and controllability Gramians are equal to each other and they are diagonal. Finally,
the reduced model is obtained by discarding those states which correspond to small
diagonal elements (referred to as singular values) of these Gramians.

In this paper we propose the definition of new type of Gramians for LSS. More
precisely, for each discrete mode we define observability/controllability Grami-
ans.We propose two definitions of observability/controllability Gramians: one def-
inition defines observability/controllability Gramians as solutions of an LMI, the
other one defines them as solution of Sylvester equations. The latter Gramians
satisfy the LMIs of the first definition. Note that both the LMIs and the Sylvester
equations mix Gramians which belong to different discrete modes. The proposed
Gramians exist even if the underlying LSS is not exponentially stable for all switch-
ing signals, but only for slow enough switching signals. Furthermore, we present
an analytical error bound for the L2 norm of the difference between the outputs of
the original and reduced LSS. This error bound is formulated in terms of singular
values of the Gramians. However, this error bound is valid only for slow enough
switching signals, i.e., for switching signals with large enough dwell time. Recall
that dwell time is the minimal amount of time spent in each discrete mode.

Considerable attention has been dedicated in recent years to the problem of
MOR for linear switched system. The related work can be grouped into the fol-
lowing categories.

In [14,41,43,44] the matrices of the reduced order model were obtained by
solving a set of LMIs, and the papers in this group differ from each other in the
specific assumptions they imposed on the system at hand and the form of the LMIs
employed. More precisely, for a given dimension of the reduced model and for a
given error bound these papers propose a set of LMIs, solution of which can be
used to calculate the matrices of the reduced order model. The L2 gain of the sys-
tem representing the difference between the input-output behavior of the original
and the reduced model is then bounded by the fixed error bound. The advantage
of [14,41,43,44] is that error bounds are available. The disadvantage is that the
proposed conditions are only sufficient, and the trade-off between the dimension
of the reduced model and the error bound is not clear. Moreove, the computa-
tional complexity of solving those LMIs might be to high. In contrast to [14,41,
43,44], the current paper proposed a method, whose applicability depends on the
existence of solution for a few simple LMIs which are necessary to find the observ-
ability/controllability Gramians. Once the existence of these Gramians is assured,
the model reduction method can be applied. Moreover, there is an analytic error
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bound and the trade-off between the approximation error and the dimension of the
reduced system is formalized in terms of the singular values of those Gramians.
Furthermore, under some very mild assumptions, the Gramians can be obtained
by solving Sylvester equations instead of LMIs. Another difference with respect
to [14,41,43,44] is that we consider a more general class of switched systems: in
contrast to [14,41,43,44] the switched systems considered are allowed to have reset
maps and the linear subsystems may have different state-space dimensions.

In [25], a model reduction method is proposed for switched systems with au-
tonomous switching, i.e. switching which depends on continuous outputs. The
proposed method is based on balanced truncation of the linear sub-models. How-
ever, [25] proposes no error bounds. In contrast, in this paper we consider switched
systems with external switching (the switching signal is an external input), and
we provide analytic error bounds.

In [9–11] balanced truncation for discrete-time switched systems was studied.
The balanced truncation was based on discarding those states which correspond
to the small singular values of the Gramians. The Gramians themselves were de-
fined as solutions of the LMIs. An analytic error bound based on singular val-
ues of the Gramians was provided. However, the model reduction procedure of
[9–11] provided a reduced model whose linear subsystems at each discrete mode
depended on the switching signal and often they may not exist. switching signal.
More precisely, if q(k) denotes the discrete mode at time step k, the matrices of the
reduced model had to satisfy Āq(k) = Lq(k+1)Aq(k)Rq(k), B̄q(k) = Lq(k+1)Bq(k),
C̄q(k) = Aq(k)Rq(k), where (Aq, Bq, Cq) and (Āq, B̄q, C̄q) are the matrices of the
linear subsystem associated with the discrete mode q for the original and reduced
models respectively, and Lq, Rq are suitable matrices. For example, if the switching
signal is 123121, then Ā2 = L3A2R2 and Ā2 = L1A2R2 has to hold simultaneously.
In [10,11] no conditions are provided to guarantee that this is possible. Moreover,
if we consider the switching signal 121124, then we get a different set of equal-
ities which Ā2 should satisfy. That is, the model reduction algorithm of [9–11]
need not always yield a well-posed switched system, even if the Gramians exist,
moreover, the parameters of this switched system will depend on the switching
signals. In contrast to [9–11], in this paper we deal with continuous-time switched
systems, and the parameters of the reduced model do not depend on the time-
varying switching signals (of course, the parameters of each linear subsystem will
depend on the discrete mode the subsystem is associated with).

In [22] a model reduction algorithm is proposed which is based on finding ob-
servability/controllability Gramians for each linear subsystem and then bringing
them into a diagonal form by a common state-space transformation. Moreover,
[22] proposes necessary and sufficient conditions for the existence of such a trans-
formation. In contrast to the current paper [22] presents no error bound for the
difference between the input-output behavior of the original and of the reduced
model. Moreover, in contrast to [22] we consider systems with reset maps and
linear subsystems whose dimensions may vary according to the discrete state.

In [3,2,34] model reduction procedures based on moment matching is proposed.
In contrast to the current paper, those methods do not allow for analytical error
bounds. However, in [3,2] it is guaranteed that the reduced model will have the
same input-output behavior for certain switching signals. As to [34], in contrast
to the present paper, it considers switched systems with autonomous switching
and it proposed a model reduction procedure which guarantees that the reduced
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model has the same steady-state output response to certain inputs as the original
model.

In [31,35,36] model reduction based on generalized observability/reachability
Gramians are proposed. The method of [31,35,36] applies only to quadratically
stable linear switched systems. Here, quadratic stability means that there exists a
common quadratic Lyapunov function for all the linear subs-systems. Quadratic
stability is known to be sufficient but not necessary for the linear switched system
to be exponentially stable for any switching signal and zero continuous input. The
Gramians at hand are solutions of a certain LMI. After calculating a solution of
the LMI, a linear state-space transformation is applied to the original model such
that the observability Gramian becomes diagonal and equals the controllability
Gramian. Then the states corresponding to small singular values of these Gramians
are thrown away. Furthermore, in [31] an analytical error bound is presented which
involves the singular values of the Gramians. The current paper can be seen as
an improvement upon [31,35,36]. The algorithm proposed in this paper can be
applied to switched systems which are not quadratically stable, and like in [31,
35,36] there is a clear error bound and trade-off between the size of the reduced
order model and approximation error. However, the price we pay for it is that the
error bound is valid only for switching signals with a sufficiently large dwell time.
Another improvement upon [31,35,36] is that we consider switched systems with
reset maps and with linear subsystems whose dimensions are not necessarily the
same.

The definitions of Gramians proposed in this paper are inspired by the defini-
tions previously encountered for the case of bilinear and stochastic systems (see
[5,42]).

Finally, it is worth mentioning that MOR for LSS is related to the notion
of approximate bisimulation introduced in [15]. The paper [15] does not directly
address model reduction. Instead, it proposes a definition of simulation relations
among hybrid systems. Informally, an approximate simulation relation between
two hybrid systems is a multivalued map between their state spaces, which ap-
proximately respects the dynamics and the output map of the systems at hand. As
a consequence, if two hybrid systems are related by an approximation simulation
relation, then their outputs will be close to each other. If one of the hybrid systems
has a simpler structure, for example, it is a finite-state transition system, then the
existence of a approximation simulation relation allows to use the simple system
for control synthesis or verification. While the general goal of model reduction and
of finding approximate simulation relations is the same (both aim at replacing a
complex model by a simpler one), the details a very different. In particular, in
model reduction, the aim is to replace a model with a model of the same type but
with less states.For example, a switched system is replaced by another switched
system with a smaller number of states. In contrast, the goal in using approxi-
mate simulation relations is to replace a hybrid/nonlinear system by a finite-state
transition system, which is approximately similar to the original system. A formal
comparison between classical model reduction approaches and the ideas of [15]
would certainly be very useful, but it would go beyond the scope of this paper.

The paper is organized as follows; in the second section, we introduce continuous-
time linear switched systems in a formal way. Furthermore, we provide a character-
ization of input-output mappings in time domain corresponding to such systems.
Section 3 describes the procedure of constructing infinite energy Gramians for the
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simplified case with only two discrete modes. Next, in Section 4 we provide a sys-
tem theoretic interpretation of such Gramians (for the general case with D modes).
Furthermore, we formally introduce the balancing algorithm followed by the MOR
step, i.e. the truncation. A measure of the quality of approximation by reduction
is provided by means of a error bound. Additionally, we investigate the possibility
of preserving system theoretic properties such as stability, for the reduced system.
Section 5 is designated for the numerical experiments while a summary of the
findings and the conclusion are presented in Section 6.

2 Linear switched systems

Definition 1 A continuous time linear switched system (LSS) is a control system
of the form:

Σ :

{
ẋ(t) = Aσ(t)x(t) + Bσ(t)u(t), x(t) = x0,

y(t) = Cσ(t)x(t),
(1)

where Ω = {1, 2, . . . , D}, D > 1, is a set of discrete modes, σ(t) is the switching
signal, u is the input, x is the state, and y is the output.

The system matrices
bAq ∈ Rnq×nq , Bq ∈ Rnq×m, Cq ∈ Rp×nq , where q ∈ Ω, correspond to the linear
system active in mode q ∈ Ω, and x0 is the initial state. We consider the Eq
matrices to be invertible. Furthermore, the transition from one mode to another
is made via the so called switching or coupling matrices Kq1,q2 ∈ Rnq2×nq1 where
q1, q2 ∈ Ω.

Remark 1 The case for which the coupling is made between identical modes is
excluded, Hence, when q1 = q2 = q, consider that the coupling matrices are
identity matrices, i.e. Kq,q = Inq .

The notation Σ = (n1, n2, . . . , nD, {(Aq,Bq,Cq)|q ∈ Ω}, {Kqi,qi+1 |qi, qi+1 ∈
Ω},x0) is used as a short-hand representation for LSSs described by the equa-
tions in (1). The vector n =

(
n1 n2 · · · nD

)
is the dimension (order) of Σ.

The restriction of the switching signal σ(t) to a finite interval of time [0, T ] can
be interpreted as finite sequence of elements of Ω × R+ of the form:

ν(σ) = (q1, t1)(q2, t2) . . . (qk, tk),

where q1, . . . , qk ∈ Ω and 0 < t1 < t2 < · · · < tk ∈ R+, t1 + · · · + tk = T , such
that for all t ∈ [0, T ] we have:

σ(t) =


q1 if t ∈ [0, t1],
q2 if t ∈ (t1, t1 + t2],
. . .
qi if t ∈ (t1 + . . .+ ti−1, t1 + . . .+ ti−1 + ti], for 2 6 i 6 k.

In short, by denoting Ti := t1 + . . .+ ti−1 + ti, T0 := 0, Tk := T , write

σ(t) =

{
q1 if t ∈ [0, T1],

qi if t ∈ (Ti−1, Ti], i > 2.
(2)
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Intuitively, the switching signal defined above specifies that in the interval [Ti−1, Ti)
the mode qi is active and hence the continuous state and output change according
to the linear system associated with this mode, i.e.,

ẋ(t) = Aqx(t) + Bqu(t), y(t) = Cqix(t). (3)

Remark 2 (The number of entries of the vector x(t) changes with time) Note that
the continuous state depends on the discrete mode, in fact, the dimension of the
space it belongs to changes when the discrete mode changes. This is due to the fact
that the state-space dimension of linear systems associated with different modes
can be different.

Note that in order to define x, the equations (3) are not sufficient, as the initial
state of the differential equation in (3) is not specified. This calls for a careful and
formal definition of what we mean by a solution of an LSS. To this end, denote
by PC(R+,Rn), Pc(R+,Rn), the set of all piecewise-continuous, and piecewise-
constant functions, respectively.

Definition 2 A tuple (x,u, σ,y), where x : R+ →
⋃D
i=1 R

ni , u ∈ PC(R+,Rm),
σ ∈ Pc(R+, Ω),y ∈ PC(R+,Rp) is called a solution, if the following conditions
simultaneously hold:

1. The restriction of x(t) to [Ti−1, Ti) is differentiable, and satisfies ẋ(t) = Aqix(t)+
Bu(t), and x(Ti) = Kqi,qi+1 lim

t↗Ti
x(t).

2. For all t ∈ R+, y(t) = Cσ(t)x(t) holds.

Remark 3 (Existence and uniqueness of solution) The solution of a linear switched
system is unique for every initial state, continuous input and switching signal. More
precisely, for every initial state x0, input signal u and switching signal σ, there
exists a unique function x : R+ →

⋃D
i=1 R

ni , and y : R+ → Rp which satisfies
the conditions of Definition 2, and such that x(0) = x0. It is sufficient to show
that there exists a unique function x : R+ →

⋃D
i=1 R

ni such that x(0) = x0
and which satisfies the conditions of Definition 2. In order to show existence, for
every i ∈ N, define the functions zi : [Ti−1, Ti] → Rni recursively as follows: let
z0 : [0, T1] → Rni be the solution of the differential equation ż1(t) = Aq1z1(t) +
Bq1u(t) with the initial state z1(0) = x(0), and if zi is defined, then let zi+1 be
the solution of the differential equation żi+1(t) = Aqi+1zi+1(t) + Bqi+1u(t) with
the initial state zi+1(Ti) = Kqi,qi+1zi(Ti). Define now x by x(t) = zi(t) for all
t ∈ [Ti−1, Ti) for all i ∈ N. It is clear that x satisfies Definition 2. Assume that
x̂ : R+ →

⋃D
i=1 R

ni satisfies the conditions of Definition 2 and x̂(0) = x(0). We will
show by induction that for every i ∈ N, the restrictions of x̂ and x to [Ti, Ti+1)
are equal. Indeed, for i = 0, consider he restriction of x̂ to [0, T1) is a solution
of the differential equation ż1(t) = Aq1z1(t) + Bq1u(t) with the initial condition
z1(0) = x̂(0) = x(0), and hence by the uniqueness of solutions of differential
equations, restriction of x̂ to [0, T1) equals the restriction of z1 to [0, T1), and the
latter equals the restriction of x to [0, T1). Assume that the induction hypothesis
is true for i ≤ k. In particular, this implies that the restrictions of x and x̂ to
[Tk, Tk+1) are equal. In particular, lim

t↗Tk+1

x(t) = lim
t↗Tk+1

x̂(t), and hence x(Tk+1) =

Kqk+1,qk+2 lim
t↗Tk+1

x(t) = Kqk+1,qk+2 lim
t↗Tk+1

x̂(t) = x̂(Tk+1). Since the restrictions

of x and x̂ to [Tk+1, Tk+1) are solutions of the same differential equation żk+1(t) =
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Aqk+1zk+1(t)+Bqk+1u(t) with the same initial condition zk+1(Tk+1) = x̂(Tk+1) =
x(Tk+1), by uniqueness of the solution of a differential equation, the restrictions
of x and x̂ to [Tk+1, Tk+2) are equal.

The switching matrices Kqi,qi+1 allow having different dimensions for the subsys-
tems active in different modes. If the Kqi,qi+1 matrices are not explicitly given, it
is considered that they are identity matrices.

The input-output behavior of an LSS system can be described in time domain
using the mapping f(u, σ). This particular map can be written in generalized kernel
representation (as suggested in [28]) using the unique family of analytic functions:

gq1,...,qk : Rk+ → Rp and hq1,...,qk : Rk+ → Rp×m with q1, . . . , qk ∈ Ω, k > 1 such
that for all pairs (u, σ) and for T = t1 + t2 + · · ·+ tk we can write:

f(u, σ)(t) = gq1,...,qk (t1, ..., tk) +
k∑
i=1

∫ ti

0
hqi,qi+1,...,qk (ti − τ, ti+1, . . . , tk)u(τ + Ti−1)dτ,

(4)

where the functions g,h are defined for k > 1, as follows,

gq1,q2,...,qk (t1, t2, . . . , tk) = Cqke
Aqk tkKqk−1,qke

Aqk−1
tk−1Kqk−2,qk−1 · · · Kq1,q2e

Aq1 t1x0,
(5)

hq1,q2,...,qk (t1, t2, . . . , tk) = Cqke
Aqk tkKqk−1,qke

Aqk−1
tk−1Kqk−2,qk−1 · · ·Kq1,q2e

Aq1 t1Bq1 .
(6)

In the rest of the paper, we will make the following assumption.

Assumption 21 If Σ is an LSS of the form (3), we assume that for all q =
1, . . . , D, Aq is stable, i.e. all eigenvalues of Aq have a strictly negative real part.

Assumption 21 implies that each linear subsystem of the LSSs are stable. However,
this does not imply that the LSS at hand is stable for any switching signal, see
[19,37,38,16] for counter-examples.

Remark 4 (Role of minimallity) Since in this paper we aim at proposing a MOR
method for LSS, it is natural to discuss the issue of LSS of minimal order real-
izing a certain input-output function. Indeed, transforming an LSS to a minimal
order one, while preserving its input-output behavior could be a first step towards
model order reduction. There exists a complete realization theory and a mini-
mization algorithm for linear switched systems [29,27]. According to this theory,
a linear switched system is called minimal, if the sum of the dimensions of its LTI
subsystems is minimal among all the linear switched systems describing the same
input-output function. It is also shown that minimality is equivalent to observabil-
ity and reachability of the linear switched system. Here, observability means that
any non-zero continuous state will yield a non-zero output for a suitable switching
signal, and reachability means that the span of all states reached by varying con-
tinuous input and switching signals is the whole state-space. It is well known [29,
27] that a linear switched system can be observable (respectively reachable), with-
out any of its LTI sub-systems being observable (respectively reachable). Based
on this observation, it can be shown by means of counter-examples that minimal-
ity of a linear switched system does not imply that of its LTI sub-systems, i.e.,
it can happen that a linear switched system is minimal, but the LTI subsystems
are not. For this reason we do not assume minimality of the LTI subsystems, as
it would exclude a large class of input-output behaviors which are realizable by
linear switched systems.
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In particular, [29,27] propose algorithms for transforming a linear switched
system to a minimal one, while preserving its input-output function. Hence, that
minimization algorithm can be considered as a primitive model reduction algo-
rithms, which eliminates those states which do not contribute to the input-output
behavior of the system. Note that the minimization algorithm produces a system
whose input-output behavior is exactly the same as that of the original system,
while the goal of model reduction is to produce a system whose input-output be-
havior is sufficiently close, but not necessarily the same as that of the original
system. Since the former goal is a special case of the latter one, minimization
algorithms can be viewed as subclasses of model reduction algorithms. However,
since they aim at preserving exactly the same input-output behavior, they tend
to produce too large systems.

Naturally, before applying any model reduction to a linear switched system, one
can use the minimization algorithm of [29,27] to obtain a smaller linear switched
system model.

However, in this paper we prefer not to restrict attention to minimal LSS, as it
is not necessary and in fact would lead to technical complications. More precisely,
the proposed algorithm could yield non-minimal models, even if applied to minimal
LSS. Since the main analytical result of the paper is proven using repeated appli-
cation of the model reduction procedure for eliminating one single state, assuming
minimality could lead to technical difficulties. Indeed, if our assumptions include
minimality of the LSS at hand, then after applying the model reduction procedure
to eliminate one state, we might end up with an LSS which is not minimal. Then,
we could no longer apply the same model reduction algorithm to this reduced LSS.
We could minimize this reduced LSS. However, for the proof we need this LSSs to
be balanced with Gramians which are diagonal and which are sub-matrices of the
balanced Gramians of the original LSS. It is not clear if applying the minimization
algorithm will preserve these properties.

The remark that the proposed algorithm may result in non-minimal LSS might
seem counter-intuitive. Intuitively, the proposed algorithm, like all the other bal-
anced truncation algorithms, will eliminate certain poorly controllable and poorly
observable states. However, we have no proof that the proposed algorithm will
eliminate unobservable or unreachable states. In fact, it is known that the bal-
anced truncation algorithm from [31] may result in non-minimal models. Note
that in our algorithm we require that the observability and reachability Gramians
are positive definite. While in the LTI case this would imply minimality of the LTI
system, it is not clear if our assumptions imply minimality of the switched system.
In fact, the counter-example of [31] is a strong indication that this is not the case.
However, since the Gramians proposed in this paper are different from that of [31],
formally we cannot be certain. All these issues require further research.

3 Energy Gramians for LSS for two modes

The purpose of this section is to provide some intuition behind the general defi-
nition of Gramians which will be presented in Section 4 later on. For simplicity
of the exposition, we first consider the simplified case D = 2 (the LSS system
switches between two modes only). This situation is encountered in most of the
numerical examples in the literature we came across. see Section 4.
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3.1 Setup and notations

Assume that there are two discrete modes, i.e., D = 2. Depending on the values
of the switching signal σ(t), the original system Σ switches between the following
subsystems,

Σ1 :

{
ẋ1(t) = A1x1(t) + B1u(t),

y(t) = C1x1(t).
or Σ2 :

{
ẋ2(t) = A2x2(t) + B2u(t),

y(t) = C2x2(t),
, (7)

where dim(Σ1) = n1 (i.e. x1 ∈ Rn1 and A1 ∈ Rn1×n1 ,B1,C
T
1 ∈ Rn1) and also

dim(Σ2) = n2 (i.e. x2 ∈ Rn2 and E2,A2 ∈ Rn2×n2 ,B2,C
T
2 ∈ Rn2). Notice that we

allow both the two subsystems to be written in descriptor format (having possibly
singular E matrix).

Denote, for simplicity, with K1 the coupling matrix when switching from mode
1 to mode 2 (instead of K1,2) and, with K2, the coupling matrix when switching
from mode 2 to mode 1 (instead of K2,1) with K1 ∈ Rn2×n1 and K2 ∈ Rn1×n2 .

In the following, for the first two levels we present the generalized kernels,
which were previously defined in (6), i.e.,

Level 1 :

{
h1(t1) = C1e

A1t1B1,

h2(t2) = C2e
A2t1B2.

,Level 2 :

{
h1,2(t1, t2) = C1e

A1t1K2e
A2t2B2,

h2,1(t1, t2) = C2e
A2t1K1e

A1t2B1.

Consider a LSS system Σ as described in (1) with two operational modes, i.e
D = 2 and Ω = {1, 2}. Consider dim(Σk) = nk for k = 1, 2 and let K1 ∈ Rn2×n1

and K2 ∈ Rn1×n2 be the coupling matrices.

Definition 3 For ν ∈ {1, 2}, let Ων,+ and Ω+,ν be the ordered sets containing
all tuples that can be constructed with symbols from the alphabet Ω = {1, 2}
and that start (and respectively end) with the symbol ν. Also, no two consecutive
characters are allowed to be the same. Hence, explicitly write the new introduced
sets as follows:

Ω1,+ = {(1), (1, 2), (1, 2, 1), . . .}, Ω2,+ = {(2), (2, 1), (2, 1, 2), . . .}, (8)

Ω+,1 = {(1), (2, 1), (1, 2, 1), . . .}, Ω+,2 = {(2), (1, 2), (2, 1, 2), . . .}. (9)

Definition 4 Let the ith unit vector of length k be denoted with

ei = [0, . . . , 1, . . . , 0]T ∈ Rk, ei(`) = 1, if ` = i and ei(`) = 0, else.

In some contexts we may use the alternative notation ei,k to emphasize its dimen-
sion k. The identity matrix Ik ∈ Rk×k can be written as Ik = [e1,k e2,k . . . ek,k].
Also, let 0k,` ∈ Rk×` be an all zero matrix. When k = `, we use the notation
0k =∈ Rk×k or simply 0 when the dimension is clearly inferred.
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3.2 Level k switching - an intermediate step

3.2.1 Reachability Gramians

Introduce the following level k energy functional grq1,q2,...,qk(t1, t2, . . . , tk) : Rk →
Rnq1×m, corresponding to the switching sequence (q1, q2, . . . , qk) ∈ Ωk, as

grq1,q2,...,qk(t1, t2, . . . , tk) = eAq1
t1Kq2,q1e

Aq2
t2Kq3,q2 · · ·Kqk,qk−1e

Aqk
tkBqk . (10)

By fixing the first element of the tuple (q1, q2, . . . , qk), i.e., q1 ∈ {1, 2}, note
that (q1, q2, . . . , qk) can either be an element of Ω1,+ or of Ω2,+ (as introduced in
Definition 4).

If we choose q1 = 1, then it follows that (q1, q2, . . . , qk) ∈ Ω1,+. Examples of
energy functionals associated to sequences fromΩ1,+, are for instance the following

gr1(t1) = eA1t1B1, gr1,2(t1, t2) = eA1t1K2e
A2t2B2,

gr1,2,1(t1, t2, t3) = eA1t1K2e
A2t2K1e

A1t3B1, . . .

In general, define the level k infinite Gramian corresponding to mode q1 ∈ {1, 2}
as

P(k)
q1 =

∫ ∞
0
· · ·
∫ ∞
0

grq1,q2,...,qk (t1, t2, . . . , tk)
(
grq1,q2,...,qk (t1, t2, . . . , tk)

)T
dt1dt2 . . . dtk.

(11)

Note that due to Assumption 21, the infinite integrals in (11) are well defined. By
making use of the recurrence relation

grq1,q2,...,qk(t1, t2, . . . , tk) =
(
eAq1

t1Kq2,q1

)
grq2,q3,...,qk(t2, t3, . . . , tk),

it follows that the kth Gramian corresponding to mode 1 (or respectively mode
2) can be written in terms of the (k − 1)th Gramian corresponding to mode 2 (or
mode 1), as

P(k)
q1 =

∫ ∞
0

· · ·
∫ ∞
0

(
eAq1

t1Kq2,q1

)
grq2,...,qk(t2, . . . , tk)

(
grq2,...,qk(t2, . . . , tk)

)T
(
eAq1

t1Kq2,q1

)T
dt1 . . . dtk =

∫ ∞
0

eAq1
t1Kq2,q1

(∫ ∞
0

gq2,...,qk(t2, . . . , tk)(
grq2,...,qk(t2, . . . , tk)

)T
dt2 . . . dtk

)
KT
q2,q1e

AT
q1
t1dt1

=

∫ ∞
0

eAq1
t1Kq2,q1P

(k−1)
q2 KT

q2,q1e
AT
q1
t1dt1. (12)

Next introduce the linear reachability Gramians for the case with no switching.

They are denoted with P(1)
q , corresponding to mode q ∈ {1, 2}, and can be defined

as

P(1)
q =

∫ ∞
0

grq(t)
(
grq(t)

)T
dt =

∫ ∞
0

eAqtBqB
T
q e

AT
q tdt. (13)

It is a well known result that P(1)
q satisfies the following Lyapunov equation:

AqP(1)
q + P(1)

q AT
q + BqB

T
q = 0. (14)
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Proposition 1 With Assumption 21,the level k reachability Gramians correspond-
ing to modes 1 and 2 from (11) are the unique solutions of the recursive systems
of linear equations:

A1P(k)
1 + P(k)

1 AT
1 + K2P(k−1)

2 KT
2 = 0, (15)

A2P(k)
2 + P(k)

2 AT
2 + K1P(k−1)

1 KT
1 = 0, (16)

where k > 1 and P
(1)
q1 is as in (14).

Proof of Proposition 2. By multiplying the equality in (12) with Aq1 to the
left and with AT

q1 to the right, we write

Aq1P
(k)
q1 + P(k)

q1 AT
q1 =

∫ ∞
0

Aq1e
Aq1

t1Kq2,q1P
(k−1)
q2 KT

q2,q1e
AT
q1
t1dt1

+

∫ ∞
0

eAq1
t1Kq2,q1P

(k−1)
q2 KT

q2,q1e
AT
q1
t1AT

q1dt1

=

∫ ∞
0

d

dt1

(
eAq1

t1Kq2,q1P
(k−1)
q2 KT

q2,q1e
AT
q1
t1dt1

)
= −Kq2,q1P

(k−1)
q2 KT

q2,q1 .

Hence it follows that, for q1, q2 ∈ {1, 2} with q1 6= q2, we write

Aq1P
(k)
q1 + P(k)

q1 AT
q1 + Kq2,q1P

(k−1)
q2 KT

q2,q1 = 0,

which proves the statements in (15) and (16).

3.2.2 Observability Gramians

Define the level k energy functional goqk,...,q2,q1(tk, . . . , t2, t1) : Rk → Rp×nq1 , cor-

responding to the switching sequence (qk, . . . , q2, q1) ∈ Ωk, as

goqk,qk−1,...,q1
(tk, . . . , t2, t1) = Cqke

Aqk tkKqk−1,qke
Aqk−1

tk−1Kqk−2,qk−1 · · ·Kq1,q2e
Aq1 t1

(17)

By fixing the last element of the tuple, i.e., q1 ∈ {1, 2}, note that (qk, . . . , q2, q1)
can either be an element of Ω+,1 or of Ω+,2 (as introduced in Definition 4).

If q1 = 1 is chosen, then it follows that (qk, qk−1, . . . , q1) ∈ Ω1,+. Examples of
energy functionals associated to sequences from Ω+,1, are the following

go1(t1) = C1e
A1t1 , go2,1(t2, t1) = C2e

A2t2K1e
A1t1 ,

go1,2,1(t3, t2, t1) = C1e
A1t3K2e

A2t2K1e
A1t1 , . . .

Define level k infinite Gramian corresponding to mode q1 ∈ {1, 2} as

Q(k)
q1 =

∫ ∞
0

· · ·
∫ ∞
0

(
goqk,...,q2,q1(tk, . . . , t2, t1)

)T
goqk,...,q2,q1(tk, . . . , t2, t1)dt1 . . . dtk.

(18)
Note that the infinite integrals in (18) are well-defined due to Assumption 21. By
using the following recurrence relation,

goqk,...,q2,q1(tk, . . . , t2, t1) = goqk,...,q3,q2(tk, . . . , t3, t2)
(
Kq1,q2e

Aq1
t1
)
,
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the kth observability Gramian corresponding to mode 1 (or respectively mode 2)
can be written in terms of the (k − 1)th observability Gramian corresponding to
mode 2 (or respectively mode 1), as

Q(k)
q1 =

∫ ∞
0

· · ·
∫ ∞
0

(
Kq1,q2e

Aq1
t1
)T (

goqk,...,q2(tk, . . . , t2)
)T

goqk,...,q2(tk, . . . , t2)

(
Kq1,q2e

Aq1
t1
)
dt1 . . . dtk =

∫ ∞
0

eA
T
q1
t1KT

q1,q2

(∫ ∞
0

(
goqk,...,q2(tk, . . . , t2)

)T
goqk,...,q2(tk, . . . , t2)dt2 . . . dtk

)
Kq1,q2e

Aq1
t1dt1

=

∫ ∞
0

eA
T
q1
t1KT

q1,q2Q
(k−1)
q2 Kq1,q2e

Aq1
t1dt1. (19)

The linear observability Gramian (for the case with no switching) Q(1)
q which

corresponds to mode q ∈ {1, 2}, can be written as

Q(1)
q =

∫ ∞
0

(
goq(t)

)T
goq(t)dt =

∫ ∞
0

eA
T
q tCT

q Cqe
Aqtdt. (20)

It is a well known result that Q(1)
q satisfies the following Lyapunov equation:

AT
q Q(1)

q +Q(1)
q Aq + CT

q Cq = 0. (21)

Proposition 2 With Assumption 21, the level k observability Gramians corre-
sponding to modes 1 and 2 defined in (18) are the unqiue solution of the recusive
systems of linear equations

AT
1Q

(k)
1 +Q(k)

1 A1 + KT
1Q

(k−1)
2 K1 = 0, (22)

AT
2Q

(k)
2 +Q(k)

2 A2 + KT
2Q

(k−1)
1 K2 = 0, (23)

where the starting point is represented by the linear Gramians (with no switching)

Ω
(1)
q1 in (21) that correspond to the first level.

Proof of Proposition 4. By multiplying the identity in (19) with AT
q1 to the left

and with Aq1 to the right, we write

AT
q1Q

(k)
q1 +Q(k)

q1 Aq1 =

∫ ∞
0

AT
q1e

AT
q1
t1KT

q1,q2Q
(k−1)
q2 Kq1,q2e

Aq1
t1dt1

+

∫ ∞
0

eA
T
q1
t1KT

q2,q1Q
(k−1)
q2 Kq1,q2e

Aq1
t1Aq1dt1

=

∫ ∞
0

d

dt1

(
eA

T
q1
t1KT

q1,q2Q
(k−1)
q2 Kq1,q2e

Aq1
t1dt1

)
= −KT

q1,q2Q
(k−1)
q2 Kq2,q1 .

Hence it follows that, for q1, q2 ∈ {1, 2} with q1 6= q2, we write

AT
q1Q

(k)
q1 +Q(k)

q1 Aq1 + KT
q1,q2Q

(k−1)
q2 Kq1,q2 = 0.

which proves the statements in (22) and (23).
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3.3 Infinite Gramians and Lyapunov equations

Next, we will propose a definition of reachability/observability Gramians which
collects level k reachability/observability Gramians. We will start with reachability
Gramians.

Definition 5 Introduce the infinite reachability Gramian Pq1 corresponding to
mode q1 ∈ {1, 2} of the LSS system Σ as

Pq1 =

∞∑
k=1

∫ ∞
0
· · ·
∫ ∞
0

grq1,q2,...,qk (t1, t2, . . . , tk)
(
grq1,q2,...,qk (t1, t2, . . . , tk)

)T
dt1 . . . dtk,

⇒ Pq1 =
∞∑
k=1

P(k)
q1 = P(1)

q1 + P(2)
q1 + . . . , (24)

in terms of the multivariate functions grq in (10) or matrices P(k)
q1 in (11).

Note that Pq1 is computed by taking into account the inner products of energy
functionals associated to all possible switching sequences (of any length k) that
start in mode q1.

Definition 6 Introduce the infinite observability Gramian Qq1 corresponding to
mode q1 ∈ {1, 2} of the LSS system Σ as

Qq1 =

∞∑
k=1

∫ ∞
0
· · ·
∫ ∞
0

(
goqk,...,q2,q1 (tk, . . . , t2, t1)

)T
goqk,...,q2,q1 (tk, . . . , t2, t1) dt1dt2 . . . dtk

Qq1 =
∞∑
k=1

Q(k)
q1 = Q(1)

q1 +Q(2)
q1 + . . . (25)

Note that Qq1 is computed by taking into account the inner products of energy
functionals associated to all possible switching sequences (of any length k) that
end in mode q1.

Note that the existince of the newly defined Gramians is not evident. The
following result from [42] addresses the existence of the newly defined Gramians.
In a nutshell, it states that this holds if the norm of the coupling matrices is
sufficiently small. In order to state this result, we need the following notation.
Write the matrices {Pq,Aq,Bq,Cq}, q ∈ {1, 2} and {Kq1,q2}, q1, q2 ∈ {1, 2} in
block-diagonal format, as

XD =

[
X1 0
0 X2

]
, X ∈ {A,B,C,P}, K D=

[
0 K1

K2 0

]
. (26)

Proposition 3 If

AD is stable and ‖K D‖ = max(‖K1‖, ‖K2‖) 6
√

2α

β
, (27)

where α, β > 0 are such that ‖eADt‖ 6 βe−αt. for all t ∈ R+
1, then the infi-

nite sums in (24)–(25) are absolutely summable, and hence the reachability and
observability Gramians in (24) – (25) exist.

1 Note that if AD is stable, then there always exist constants α, β > 0 such that ‖eADt‖ 6
βe−αt holds
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Infinite reachability/observability Gramians satisfy Sylvester equations.

Proposition 4 Assume (27) of Proposition 3 holds. Then the infinite reachabil-
ity Gramians defined in (24) satisfy the following system of generalized coupled
Lyapunov equations{

A1P1 + P1A
T
1 + K2P2K

T
2 + B1B

T
1 = 0,

A2P2 + P2A
T
2 + K1P1K

T
1 + B2B

T
2 = 0.

(28)

Proof of Proposition 5. By adding the equalities stated in (15) and (16) for
k > 2 as well as the one corresponding to k = 1 (in (13)), it follows that

(
Aq1P

(1)
q1 + P(1)

q1 AT
q1

+ Bq1BT
q1

)
+

∞∑
k=2

(
Aq1P

(k)
q1 + Pq1AT

q1
+ Kq2,q1P

(k−1)
q2 KT

q2,q1

)
= 0

⇒ Aq1

( ∞∑
k=1

P(k)
q1

)
+
( ∞∑
k=1

P(k)
q1

)
AT
q1 + Kq2,q1

( ∞∑
k=1

P(k)
q1

)
KT
q2,q1 + Bq1B

T
q1 = 0.

⇒ Aq1Pq1 + Pq1A
T
q1 + Kq2,q1Pq1K

T
q2,q1 + Bq1B

T
q1 = 0 ∀q1 6= q2 ∈ {1, 2},

which shows the validity of the equalities introduced in (28).

Proposition 5 Assume (27) of Proposition 3 holds. Then the infinite observabil-
ity Gramians defined in (25), satisfy the following system of generalizaed coupled
Lyapunov equations{

AT
1Q1 +Q1A1 + KT

1Q2K1 + CT
1 C1 = 0,

AT
2Q2 +Q2A2 + KT

2Q1K2 + CT
2 C2 = 0,

(29)

in terms of the multivariate functions goq in (10) and matrices Q(k)
q1 in (18).

Proof of Proposition 6. By adding the equalities stated in (22) and (23) for
k > 2 as well as the one corresponding to k = 1 (in (20)), it follows that

(
AT
q1Q

(1)
q1 +Q(1)

q1 Aq1 + CT
q1C

T
q1

)
+
∞∑
k=2

(
AT
q1Q

(k)
q1 +Qq1Aq1 + KT

q1,q2Q
(k−1)
q2 Kq1,q2

)
= 0⇒ AT

q1

( ∞∑
k=1

Q(k)
q1

)
+
( ∞∑
k=1

Q(k)
q1

)
Aq1 + KT

q1,q2

( ∞∑
k=1

Q(k)
q1

)
Kq1,q2 + CT

q1Cq1 = 0.

⇒ AT
q1Qq1 +Qq1Aq1 + KT

q1,q2Qq1Kq1,q2 + CT
q1Cq1 = 0 ∀q1 6= q2 ∈ {1, 2},

which shows the validity of the equalities presented in (29).

Remark 5 Instead of solving the two equations in (29) separately, one can solve
one equation

ADPD + PDAT
D + K DPDKT

D+ BDBT
D = 0, (30)

and recover the reachability Gramians P1 and P2 as block diagonal entries of PD.
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Remark 6 Additional to (26), write the matrices {Qq}, q ∈ {1, 2} in block-diagonal

format, as QD =

[
Q1 0
0 Q2

]
. Hence, instead of solving the two equations in (29)

separately, one can solve one equation

AT
DQD + QDAD + KT

DQDK D+ CT
DCD = 0, (31)

and recover the observability Gramians as the block diagonal entries of QD.

For high order examples, it is not trivial to solve such generalized Lyapunov
equations as (30) and (31). A possible approach is to approximate these solutions
with truncated sums of positive definite matrices,

PD ≈
H∑
k=1

P
(k)
D , QD ≈

H∑
k=1

Q
(k)
D , H > 1, (32)

where P
(k)
D and Q

(k)
D can be written as solutions of regular Lyapunov equations,

ADP
(k)
D + P

(k)
D AD + K DP

(k−1)
D KT

D= 0,

AT
DQ

(k)
D + Q

(k)
D AD + KT

DQ
(k−1)
D K D= 0, k > 2.

For practical applications, solving many such Lyapunov equations is expensive.
One can compute low rank factors instead of the full solutions to speed up the
calculations ad avoid memory problems (for example, by using the toolbox in [32]).

4 Extension to LSS with D ≥ 2 modes

Below, we extend the definitions of reachability/observability Gramians presented
above for the case D = 2 to the general case of D > 2 modes.

To this end, let Ω = {1, 2, . . . , D}, D > 2 and fix the starting mode q1 ∈ Ω.
Introduce the switching scenario (q1, q2, . . . , qk) ∈ Ωk. Since we exclude equal
neighboring modes, i.e. qj 6= qj+1, 1 6 j 6 k − 1, it follows that there are
(D−1)k−1 ways of choosing such a switching sequence (q1, q2, . . . , qk). For D = 2,
there was only one possible sequence chosen uniquely.

For general number of modes D, we have to take into consideration the inner

products corresponding to all sequences. Hence we adapt the definition of P(k)
q1

from (11) as follows

P(k)
q1 =

∫ ∞
0

· · ·
∫ ∞
0

D∑
q2=1, q2 6=q1

. . .
D∑

qk=1, qk 6=qk−1

grq1,q2,...,qk(t1, t2, . . . , tk)

(
grq1,q2,...,qk(t1, t2, . . . , tk)

)T
dt1dt2 . . . dtk. (33)

where grq1,q2,...,qk(t1, t2, . . . , tk) : Rk+ → Rnq1×m is defined in the exactly same way
as in (10), but now for the general case of D ≥ 2, i.e.,

grq1,q2,...,qk(t1, t2, . . . , tk) = eAq1
t1Kq2,q1e

Aq2
t2Kq3,q2 · · ·Kqk,qk−1e

Aqk
tkBqk .
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Note that the infinite integrals in (33) are well defined, due to Assumption 21.
Again, one can write a recurrence relation by fixing the mode indexes q3, . . . , qk,

grq1,q2,...,qk(t1, t2, . . . , tk) =
D∑

q2=1, q2 6=q1

(
eAq1

t1Kq2,q1

)
grq2,q3,...,qk(t2, t3, . . . , tk).

Next, it follows that the kth reachability Gramian corresponding to mode q1 can
be written in terms of the (k−1)th reachability Gramians corresponding to modes
Ω \ {q1}, as

P(k)
q1 =

∫ ∞
0

D∑
q2=1, q2 6=q1

eAq1
t1Kq2,q1P

(k−1)
q2 KT

q2,q1e
AT
q1
t1dt1. (34)

Similarly, we adapt the definition of Q(k)
q1 from (18) as follows

Q(k)
q1 =

∫ ∞
0

· · ·
∫ ∞
0

D∑
q2=1, q2 6=q1

. . .
D∑

qk=1, qk 6=qk−1

grq1,q2,...,qk(t1, t2, . . . , tk)

(
grq1,q2,...,qk(t1, t2, . . . , tk)

)T
dt1dt2 . . . dtk. (35)

where goqk,...,q2,q1(tk, . . . , t2, t1) : Rk → Rp×nq1 is defined as in (36), i.e.,

goqk,qk−1,...,q1
(tk, . . . , t2, t1) = Cqke

Aqk tkKqk−1,qke
Aqk−1

tk−1Kqk−2,qk−1 · · ·Kq1,q2e
Aq1 t1

(36)
Similarly to the reachability Gramians, kth observability Gramian corresponding to mode q1
can be written in terms of the (k−1)th observability Gramians corresponding to modes Ω\{q1},
as

Q(k)
q1 =

∫ ∞
0

D∑
q2=1, q2 6=q1

(Kq2,q1e
Aq1 t1 )TP(k−1)

q2 Kq2,q1e
ATq1

t1dt1. (37)

Note that the infinite integrals in (33)–(35) are well defined, due to Assumption 21. Again,
one can write a recurrence relation by fixing the mode indexes q3, . . . , qk,

grq1,q2,...,qk (t1, t2, . . . , tk) =
D∑

q2=1, q2 6=q1

(
eAq1 t1Kq2,q1

)
grq2,q3,...,qk (t2, t3, . . . , tk).

Next, it follows that the kth reachability and observability Gramian corresponding to mode
q1 can be written in terms of the (k − 1)th reachability respectively observability Gramians
corresponding to modes Ω \ {q1}, as

P(k)
q1 =

∫ ∞
0

D∑
q2=1, q2 6=q1

eAq1 t1Kq2,q1P
(k−1)
q2 KT

q2,q1
e
ATq1

t1dt1.Q(k)
q1 (38)

=

∫ ∞
0

D∑
q2=1, q2 6=q1

(Kq2,q1e
Aq1 t1P(k−1)

q2 KT
q2,q1

e
ATq1

t1dt1. (39)

Definition 7 Define the infinite reachability Gramian corresponding to mode q1 ∈ Ω, as

Pq1 =

∞∑
k=1

P(k)
q1 . (40)
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Definition 8 Define the observability Gramians as

Qq1 =

D∑
q1=1

Q(k)
q1 . (41)

Similarly to the case ofD = 2, the question of existence of infinite reachability/observability

Gramians arises. It turns out that there exist an extension of Proposition 3 to the general case

D > 2. Again, the justification of what we propose comes from Theorem 2 in [42], which ad-

dresses the existence of bilinear infinite Gramians for MIMO systems. In order to present the

announced result, we need the following notation, which is an extension of (26) defined for
D = 2

Let τnk : {1, . . . , n} → {1, . . . , n} be a cyclic permutation of index k where
k ∈ {0, 1, . . . , n − 1}. The explicit rule is given by τnk (`) = mod(k + `, n), ` ∈
{1, . . . , n}, while the permutation τnk can also be written as,

τnk =

(
1 2 . . . n

mod(k + 1, n) mod(k + 2, n) . . . mod(k + n, n)

)
, (42)

mod : {1, . . . , 2n−1} → {1, . . . , n}, mod(k, n) =


k, if 1 6 k 6 n− 1

n, if k = n

k − n, if n+ 1 6 k 6 2n− 1

.

Introduce the permutation matrix Φnk ∈ Rn×n corresponding to τnk , that has
the `th row equal to the unit vector eTτnk (`),n. Note that ΦnkΦ

n
n−k = In and

(Φnk )T = Φnn−k, k ∈ {0, . . . , n}. For example, write

τ30 =

(
1 2 3
1 2 3

)
, τ31 =

(
1 2 3
2 3 1

)
, τ32 =

(
1 2 3
3 1 2

)
, and Φ3

2 =

 0 0 1
1 0 0
0 1 0

 .
For all X ∈ {A,B,C,P,Q} and k ∈ {1, . . . , D − 1}, consider the notations

XD =


X1 0 . . . 0
0 X1 . . . 0

0 0
. . . 0

0 0 . . . XD

 , K Dk = Φ̃
D
k


K1,τDD−k(1)

0 . . . 0

0 K2,τDD−k(2)
. . . 0

0 0
. . . 0

0 0 . . . KD,τDD−k(D)

 ,
(43)

where Φ̃
D
k ∈ R

∑D
i=1 ni×

∑D
i=1 ni is a block-permutation matrix written in terms of

ΦDk , by replacing its one entries with identity matrices Ini of appropriate dimen-

sions. For example, choose D = 3 and k = 2, and write the matrix Φ̃
3
2 as:

Φ̃
3
2 =

 0 0 In2

In3 0 0
0 In1 0

 ∈ R(n1+n2+n3)×(n1+n2+n3).

Note that, following the definition of Φnk , we can write that Φ̃
3
2 = Φn1+n2+n3

n1+n3
.
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Proposition 6 Assume that

AD is stable and ‖Γ‖ 6
√

2α

β
, (44)

where Γ =
√
‖
∑D−1
k=1 K DkK

T
Dk
‖ and the scalars α, β. α, β > 0 are such that

‖eADt‖ 6 βe−αt holds for all t ∈ R+. Then the infinite sums (33)–(35) are abso-
lutely convergent, and hence the reachability Gramians in (33) and observability
Grammia (41) are well-defined.

Hence, the existence of the new proposed Gramians is assured when, basically, the
norm of the coupling matrices is sufficiently small. Note also that, if D = 2, the
exact result from (27) is obtained. Note that we can generalize the results form
Remark 3 and 4 for the case with D modes. Moreover, the equations satisfied by
the reachability Gramians Pi, for i ∈ {1, 2, . . . , D} can be extended from (28), as
follows

AiPi + PiAT
i +

D∑
j=1, j 6=i

Kj,iPjKT
j,i + BiB

T
i = 0, (45)

if the condition (44) of Proposition (6) holds. Similarly, if the condition (44) of
Proposition (6) holds, then the system of generalized Lyapunov equations

AT
i Qi +QiAi +

D∑
j=1, j 6=i

KT
i,jQjKi,j + CT

i Ci = 0. (46)

is satisfied by the matrices Qi, ∈ Ω.

Remark 7 One can rewrite the D equations stated in (45) as one equation in the
following way,

ADPD + PDAT
D +

D−1∑
k=1

K DkPDKT
Dk + BDBT

D = 0. (47)

Remark 8 Similarly, we can rewrite the equations in (46) as only one equation,

AT
DQD + QDAD +

D−1∑
k=1

KT
DkQDK Dk + CT

DCD = 0. (48)

The Gramians introduced in Definition 7 and 8 are mainly going to be used
for the original possibly large-scale system. In this case, we would like to avoid
computing the Gramians as solutions of LMIs (as in [31]). Additionally, we present
a more relaxed definition of Gramians which will turn out to be useful for model
reduction.

Definition 9 Let M > 0 be a constant The collection of matrices {Pi > 0}Di=1 is
said to be M -relaxed reachability Gramians, if they satisfy the following collection
of LMI,

∀i ∈ {1, 2, . . . , D} : AiPi + PiAT
i +MPi + BiB

T
i < 0

∀q ∈ {1, 2, . . . , D} :
D∑

i=1,i6=q

Ki,qPiKT
i,q > 0

(49)
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Similarly, the collection of matrices {Qi > 0}Di=1 is said to be M -relaxed reacha-
bility Gramians, if they satisfy the following collection of LMI.

∀i ∈ {1, 2, . . . , D} : AT
i Qi +QiAi +MQi + CT

i Ci < 0,

∀q ∈ {1, 2, . . . , D} :
D∑

i=1,i6=q

KT
q,iQiKT

i,q > 0
(50)

Note that there might exist several M -relaxed reachability/observability Grami-
ans.

Remark 9 (Relationship between Gramians and relaxed Gramians) Let {Pq}Dq=1

be infinite reachability Gramians according to Definition 7 and assume that for
all q ∈ {1, 2, . . . , D},

∑D
i=1,i6=qKi,qPiK

T
i,q is strictly positive definite. Then for all

q ∈ {1, 2, . . . , Q} there exists Mq > 0such that
∑D
i=1,i6=qKi,qPiK

T
i,q > MqPq and

hence, by taking M = minDq=1Mq, {Pq}Dq=1 satisfy (49) for a suitable constant

M > 0. Similarly, if {Qq}Dq=1 are infinite observability Gramians according to

Definition 8, and assume that for all q ∈ {1, 2, . . . , D},
∑D
i=1,i6=qK

T
q,iQiKT

i,q is

strictly positive definite. Then there exists a constant M > 0 such that {Qq}Dq=1

satisfy (50) for a suitable constantM > 0. That is, under mild assumptions, infinite
reachability (resp. observability) Gramians are also M -relaxed reachability (resp.
observability) Gramians for a suitable constant M > 0. Note that the converse is
not necessarily true.

5 Main results

In this section, we will provide a collection of results that involve the new defined
infinite Gramians. In particular, these results will correspond to the more general
case with D discrete modes, as presented in Definition 7, 8 and 9. In this section,
we will assume the following.

Assumption 51 There exist M > 0 and positive definite matrices {Pq}Dq=1,

{Qq}Dq=1 such that they satisfy (49) – (50).

In particular, if Assumption 51 holds, then the sets of M -relaxed reachability and
observability Gramians are not empty. Moreover, in this case, all the linear subsys-
tems are stable, i.e. Assumption 21 holds. Finally, if there exists infinite reachabil-
ity and observability Gramians {Pq}Dq=1, {Qq}Dq=1, for which

∑D
i=1,i6=qKi,qPiK

T
i,q >

0,
∑D
i=1,i6=qK

T
q,iQiKT

i,q > 0, for all q = 1, 2, . . . , D, then by Remark 9 they satisfy
Assumption 51.

5.1 Energy bounds relating the input or output signals

First, we present the system theoretic interpretation approach; one can write upper
and lower bounds of the energy of observation and respectively, of the energy of
control in terms of the quantities Qi and Pi.
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5.1.1 Observability Gramians

Lemma 1 Consider an LSS Σ as defined in (1) which satisfies Assumption 51.
Consider the M-relaxed observability Gramians {Qq}Dq=1 from Assumption 51.
Then, there exists a dwell time µ > 0 such that for any switching signal in (2),
with ti > µ, ∀i > 1, and zero input u(t) = 0, the following holds

x(0)TQq1x(0) >
∫ t

0

yT (s)y(s)ds, ∀t > 0, (51)

where q1 ∈ Ω represents the index of the first discrete mode in which Σ operates.

Proof of Lemma 1. It is easy to see that KT
i,jQjKi,j , i, j = 1, . . . , D are positive

semi-definite, hence there scalars γi,j > 0 to satisfy the following inequalities
γi,jK

T
i,jQjKi,j < Qi. Introduce γ = min

i,j∈Ω, i 6=j
γi,j and M = min

i∈Ω
Mi. Choose the

minimal dwell times as µ = − ln γ
M . For any piecewise continuous switching signal

σ : R → Ω satisfying the conditions in (2) and with minimal dwell time µ, we
will prove the bound stated in (51). Recall that Qq satisfies (50). Let x(t) the
corresponding solution to (1), and also introduce the functions V,W : Rni → R as

V (x(t)) =

{
xT (t)Qq1x(t), t ∈ [0, t1)

xT (t)Qqix(t), t ∈ [Ti−1, Ti), i > 2
, (52)

W (x(t)) =

{
eMtx(t)TQq1x(t), t ∈ [0, t1)

eM(t−Ti−1)V (x(t)), t ∈ [Ti−1, Ti), i > 2
, (53)

where Ti =
∑i
`=1 t`. By considering the uncontrolled case, the input function is

considered to be u(t) = 0, ∀t. Using that dx(t)
dt = Aqix(t), write the derivative of

V (t) from (52) for t ∈ [Ti−1, Ti),

∂V (x(t))

∂t
=
dxT (t)

dt
Qqix(t) + xT (t)Qqi

dx(t)

dt
= xT (t)

(
AT
qiQqi +QqiAqi

)
x(t).

For t ∈ [Ti−1, Ti), compute the time derivative of W (x(t)) as defined in (3) in
terms of the one corresponding to V (x(t)), as

∂W (x(t))

∂t
= MeM(t−Ti−1)V (x(t)) + eM(t−Ti−1) ∂V (x(t))

∂t

= eM(t−Ti−1)
(
MV (x(t)) + xT (t)

(
AT
qiQqi +QqiAqi

)
x(t)

)
= eM(t−Ti−1)xT (t)

(
AT
qiQqi +QqiAqi +MQi

)
x(t). (54)

By substituting the inequality in (50) into the above relation (54), and using that
y(t) = Cix(t), t ∈ [Ti−1, Ti), it follows that

∂W (x(t))

∂t
6 −eM(t−Ti−1)y(t)Ty(t). (55)

Introduce the following notation

x(T+
i ) = lim

t↘Ti
x(t), V (x(T+

i )) = lim
t↘Ti

V (x(t)), W (x(T+
i )) = lim

t↘Ti
W (x(t)).

(56)
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By integrating the inequality (55) from Ti−1 to t ∈ [Ti−1, Ti), it follows that

W (x(t))−W (x(T+
i−1)) 6 −

t∫
Ti−1

eM(s−Ti−1)y(s)Ty(s)ds 6 −
t∫

Ti−1

y(s)Ty(s)ds.

(57)
From (52) and (53), it follows that

W (x(Ti)) = eM(Ti−Ti−1)V (x(Ti)) = eMtiV (x(Ti)), (58)

and additionally, using that x(T+
i ) = Kqi,qi+1x(Ti), write

W (x(T+
i )) = V (x(T+

i )) = xT (Ti)K
T
qi,qi+1

Qqi+1Kqi,qi+1x(Ti). (59)

From (??) and (59) and using that γ = min
i,j∈Ω, i 6=j

γi,j , write

W (x(T+
i )) 6

1

γ
x(Ti)

TQix(Ti) =
1

γ
V (x(Ti)). (60)

By combining (58) and (60), we can write

W (x(T+
i )) 6

e−Mti

γ
W (x(Ti)). (61)

Since switching signals σ with minimal dwell time µ are considered, it follows that

ti > µ ⇒ e−Mti

γ 6 e−Mµ

γ . Since, by definition µ = − ln γ
M , we get that e−Mti

γ 6 1.

Therefore, from (61), write

W (x(T+
i )) 6W (x(Ti)). (62)

Putting together the inequalities in (57) and (62), it follows that

W (x(Ti))−W (x(Ti−1)) 6 −
Ti∫

Ti−1

y(s)Ty(s)ds. (63)

Now using the convention T0 = 0 and adding all the inequalities in (63), we obtain

∑̀
i=1

W (x(Ti))−W (x(Ti−1)) 6 −
∑̀
i=1

Ti∫
Ti−1

y(s)Ty(s)ds

⇒W (x(T`))−W (x(0)) 6 −
T`∫
0

y(s)Ty(s)ds. (64)

Since W (x(T`)) = eMt`xT (T`)Qq`x(T`) > 0, from (64) it follows that,

W (x(0)) >

T`∫
0

y(s)Ty(s)ds, ∀ ` 6 0. (65)

Now using that W (x(0)) = x(0)TQq1x(0), the result in (51) is hence proven.
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5.1.2 Reachability Gramians

Lemma 2 Consider an LSS Σ as defined in (1) which satisfies Assumption 51
holds. Let {Pq}Dq=1 be the M-relaxed reachability Gramians from Assumption 51.
Then, there exists µ > 0 such that for any switching signal in (2), with minimal
dwell time µ (i.e. ti > µ) and x(0) = 0, the following bound holds

xT (T`)P−1
q` x(T`) 6

∫ T`

0

uT (s)u(s)ds. (66)

Proof of Lemma 2. Since for every i 6= j ∈ Ω, Kj,iP−1
j KT

j,i are positive semi-

definite, there exist scalars γi,j > 0, such that γi,jKj,iP−1
j KT

j,i < P−1
i . Introduce

γ = min
i,j∈Ω, i 6=j

γi,j and let µ = − ln γ
M . For any piecewise continuous switching signal

σ : R→ Ω satisfying the conditions in (2) and with minimal dwell time µ, we will
prove the bound stated in (66). Recall that Pq satisfies (49). By multiplying the
inequality (49) with P−1

i both to the left and to the right, we write

AT
i P−1

i + P−1
i Ai +MP−1

i + P−1
i BiB

T
i P−1

i 6 0. (67)

Let x(t) be the corresponding solution to (1), and also introduce the function
V : Rni → R as

V (x(t)) =

{
xT (t)P−1

q1 x(t), t ∈ [0, t1),

xT (t)P−1
qi x(t), t ∈ [Ti−1, Ti), i > 2

. (68)

Using that ẋ(t) = Aqix(t) + Bqiu(t) and the definition of V (x(t)) in (68), for
t ∈ [Ti−1, Ti), we have

∂V (x(t))

∂t
=
dxT (t)

dt
P−1
qi x(t) + xT (t)P−1

qi

dx(t)

dt
= xT (t)

(
AT
qiP
−1
qi + P−1

qi Aqi

)
x(t)

+ 2x(t)TP−1
qi Bqiu(t),

and by using the inequality in (67), it follows that

∂V (x(t))

∂t
+MV (x(t)) 6 −x(t)TP−1

qi BqiB
T
qiP
−1
qi x(t) + 2x(t)TP−1

qi Bqiu(t)

= −‖BT
qiP
−1
qi x(t)− u(t)‖22 + u(t)Tu(t). (69)

Hence, the following inequality holds as,

∂V (x(t))

∂t
+MV (x(t)) 6 u(t)Tu(t), t ∈ [Ti−1, Ti). (70)

By denoting W (x(t)) = eM(t−Ti)V (x(t)), for t ∈ [Ti−1, Ti), it follows that

∂W (x(t))

∂t
= eM(t−Ti)

(∂V (x(t))

∂t
+MV (x(t))

)
, (71)

and by combining (70) and (71) and integrating from Ti−1 to t, we obtain

W (x(t))−W (x(T+
i−1)) 6

t∫
Ti−1

eM(s−Ti)uT (s)u(s)ds. (72)
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Following the same line of thought as in Section 4.1.1, one can show thatW (x(T+
i )) 6

W (x(Ti)). By combining this statement with the inequality in (72), and by using
the fact that eM(s−Ti) 6 1, ∀s ∈ [Ti−1, Ti), one can write

W (x(Ti))−W (x(Ti−1)) 6

Ti∫
Ti−1

eM(s−Ti)uT (s)u(s)ds 6

Ti∫
Ti−1

uT (s)u(s)ds

since s− Ti 6 0⇒
∑̀
i=1

W (x(Ti))−W (x(Ti−1)) 6
∑̀
i=1

Ti∫
Ti−1

uT (s)u(s)ds

⇒W (x(T`))−W (x(0)) 6

T`∫
0

uT (s)u(s)ds. (73)

Since x(0) = 0, it follows that W (x(0)) = 0. Also, from the definition of the
function W, it is clear that W (x(T`)) = V (x(T`)) = xT (T`)P−1

` x(T`). Hence,
from (73), we directly conclude that

xT (T`)P−1
q` x(T`) 6

T`∫
0

uT (s)u(s)ds, ∀` > 1, (74)

which proves the result in (66).

5.2 Balancing transformation and truncation

In this section, we introduce the procedure for model order reduction by balanced
truncation, and we prove a bound of the approximation error.

Procedure 51 LetΣ = (n1, n2, . . . , nD, {(Aq,Bq,Cq)|q ∈ Ω}, {Kqi,qi+1 |qi, qi+1 ∈
Ω},x0) be a linear switched system. A balanced realization of Σ is denoted with
the similar notation Σ̄ = (n1, n2, . . . , nD, {(Āq, B̄q, C̄q)|q ∈ Ω}, {K̄qi,qi+1 |qi, qi+1 ∈
Ω},x0) and can be constructed as follows

1. Compute M -relaxed reachability {Pq > 0}Dq=1 Gramians which satisfy (49)

and M -relaxed observability Gramians {Qq > 0}Dq=1 which (50).

2. Find square factor matrices Uq so that Pq = UqU
T
q . Additionally, compute

the eigenvalue decomposition of the symmetric matrix UT
q QqUq, as

UT
q QqUq = VqΛ

2
qV

T
q ,

where Λq is a diagonal matrix with the real entries sorted in decreasing order.
3. Construct the transformation matrices Sq ∈ Rnq×nq as follows

Sq = Λ1/2
q VT

q U−1
q . (75)

4. The matrices corresponding to the balanced realization Σ̄ are computed in the
following way (for any q, q1, q2 ∈ Ω)

Āq = SqAqS
−1
q , B̄q = SqBq, C̄q = CqS

−1
q , K̄q1,q2 = Sq2Kq1,q2S

−1
q1 . (76)
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Proposition 7 Condsider the matrices P̄q = SqPqSTq , Q̄q =
(
S−1
q

)TQqS−1
q , q =

1, 2, . . . , D. Then for every q = 1, 2, . . . , D, P̄q = Λq = Q̄q, and {P̄q}Dq=1, {Q̄q}Dq=1

are M-relaxed reachability and observability Gramians respectively of Σ̄.

Proof To prove these results, proceed as follows

SqPqSTq =
(
Λ1/2
q VT

q U−1
q

)(
UqU

T
q

)(
Λ1/2
q VT

q U−1
q

)T
= Λ1/2

q VT
q VqΛ

1/2
q = Λq,

and similarly for the observability transformed Gramian. The following result holds
for any i ∈ Ω:

ĀiΛi +ΛiĀ
T
i +MΛi + B̄iB̄

T
i < 0,

D∑
j=1,i6=j

K̄j,iΛjK̄
T
j,i > 0, (77)

ĀT
i Λi +ΛiĀi +MΛi + C̄T

i C̄i < 0,
D∑

j=1, j 6=i

K̄T
i,jΛjK̄i,j > 0. (78)

We will prove only the first inequality since the proof for the second is similar. By
multiplying the equation in (49) corresponding to mode i with Si to the left and
with STi to the right, we write

SiAiPiSTi + SiPiAT
i STi +MSiPiSTi + SiBiB

T
i STi < 0⇒(

SiAiS
−1
i

)(
SiPiSTi

)
+
(
SiPiSTi

)(
(S−1
i )TAT

i STi
)

+MSiPiSTi + SiBiB
T
i STi < 0

⇒ ĀiΛi +ΛiĀ
T
i +MΛi + B̄iB̄

T
i < 0.

Finally, if we multiply
∑D
i=1,i6=j Kj,iPjK

T
j,i > 0 by Si in the left and by STi on

the right, it follows

Si

D∑
j=1,i6=j

Kj,iPjKT
j,iS

T
i > 0 =⇒

D∑
j=1,i 6=j

(SiKj,iS
−1
j )(SjPjSTj )((S−1

j )TKT
j,iS

T
i ) =

D∑
j=1,i6=j

K̄j,iΛjK̄
T
j,i > 0.

That is, (77) holds.

After the system is rewritten in the equivalent balanced realization, the next step
will be to construct a reduced order system by eliminating states similar as to the
linear case with no switching. One can partition the balanced realization of the
original LSS Σ in the following way

Āi =

[
Ā11
i Ā12

i

Ā21
i Ā22

i

]
, B̄i =

[
B̄1
i

B̄2
i

]
, C̄i =

[
C̄1
i C̄2

i

]
, K̄i,j =

[
K̄11
i,j K̄12

i,j

K̄21
i,j K̄22

i,j

]
, (79)

where Ā11
i ∈ Rri×ri , K̄11

i,jRrj×ri , B̄1
i ∈ Rri , C̄1

i ∈ R1×ri . The truncation orders
are chosen to be less than the dimensions of the subsystems, i.e. ri 6 ni.
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Definition 10 Consider as given an original LSS Σ and the balanced equivalent
system Σ̄ corresponding to Σ for which the system matrices are split as in (79).
Let Σ̂ = (r1, r2, . . . , rD, {(Âq, B̂q, Ĉq)|q ∈ Ω}, {K̂qi,qi+1 |qi, qi+1 ∈ Ω},x0), be a
reduced linear switched system for which the system matrices are written as follows

Âq = Ā11
q , B̂q = B̄1

i , Ĉq = C̄1
q, K̂q1,q2 = K̄11

q1,q2 , (80)

where rq 6 nq and q, q1, q2 ∈ Ω.

By writing the dynamics of both the original balanced system Σ̄ and the reduced
system Σ̂, as

˙̄x(t) = Āqi x̄(t) + B̄qiu(t), ˙̂x(t) = Âqi x̂(t) + B̂qiu(t), t ∈ (Ti−1, Ti], (81)

and continuing with the transition of the state variable from mode qi to mode qi+1

at time Ti again for both systems

x̄(T+
i ) = K̄qi,qi+1 x̄(Ti), x̂(T+

i ) = K̂qi,qi+1 x̂(Ti), (82)

we finally conclude that the original output and the one corresponding to the
reduced LSS are written as

ȳ(t) = C̄qi x̄(t) = Cqix(t) = y(t), ŷ(t) = Ĉqi x̂(t). (83)

We also partition the balanced Gramians corresponding to the system Σ̄ as

Λi =

[
Λ̂i 0
0 Λ̌i

]
, Λ̂i ∈ Rri , Λ̌i ∈ Rni−ri . (84)

By plugging in the matrices in (79) and (84), into the equation (77)–(78), it follows
that

ÂiΛ̂i + Λ̂iÂ
T
i +MΛ̂i + B̂iB̂

T
i < 0ri

D∑
j=1,i 6=j

K̂j,iΛ̂jK̂
T
j,i > 0ri (85)

ÂT
i Λ̂i + Λ̂iÂi +MΛ̂i + ĈT

i Ĉi < 0ri

D∑
j=1,i 6=j

K̂T
j,iΛ̂jK̂j,i > 0ri . (86)

Hence, the reduced-order diagonal matrices Λ̂i, i ∈ Ω are also M -relaxed reacha-
bility/observability Gramians of the reduced system Σ̂.

5.2.1 Error bound

In this section we present a bound on the L2 norm of the difference between
the observed outputs corresponding to the original LSS and to the reduced LSS.
We will show that this bound depends on the L2 norm of the chosen control
input and on the neglected elements of the balanced reduced Gramians. Some
of the derivations presented here are inspired from techniques used prior in the
dissertations [33,8] and in the more recent contribution [5], that provides a bound
for BT applied to stochastic systems.
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We assume that all pairs of the original Gramians (Pi,Qi), defined as the
solutions of the equations (45) and (46), are transformed through the correspond-
ing balanced transformations Vi, into (Λi,Λi) where Λi are diagonal matrices
(i ∈ Ω).

Recall the inequalities (77) and (78). By multiplying the firts inequality of (77)
with Λ−1 to the left and to the right, one can again write that

ĀT
i Λ
−1
i +Λ−1

i Āi +MΛ−1
i +Λ−1

i B̄iB̄
T
i Λ
−1
i < 0. (87)

From (87) and (78) it directly follows that the following relations hold for any
vectors z and v

2(Āiz + B̄iv)Λ−1
i x 6 ‖v‖22 −MzTΛ−1

i z, (88)

2zT ĀT
i Λiz 6 −‖C̄iz‖22 −MzTΛiz. (89)

Next, for all i ∈ {1, 2, . . . , D}, proceed to partition the transformed Gramians Λi

Λi =

[
Λ̂i 0
0 βi

]
, βi ∈ R. (90)

Let β = max
i∈Ω

βi. By splitting the state variable x̄(t) as x̄(t) =
[
x̄1(t) x̄2(t)

]T
, with

x̄1(t) ∈ Rn−1, x̄2(t) ∈ R, introduce real valued vectors

xo(t) =

[
x̄1(t)− x̂(t)

x̄2(t)

]
, xc(t) =

[
x̄1(t) + x̂(t)

x̄2(t)

]
. (91)

Note that the following holds:

y(t)− ŷ(t) = Cqixo(t), t ∈ (Ti−1, Ti].

Define the function V : Rn × Rn → R as follows

V (xo(t),xc(t)) = xo(t)
TΛqixo(t) + β2

qixc(t)
T (t)Λ−1

qi xc(t), t ∈ (Ti−1, Ti]. (92)

Lemma 3 The temporal derivative of the function V, as defined in (92), satisfies

∂V (xo(t),xc(t))

∂t
6 −MV (t) + 4β2‖u(t)‖22 − ‖y(t)− ŷ(t)‖22. (93)

Proof of Lemma 3. By putting together (79), (80) and (81) and by using the
notation in (91), we can write that

ẋo(t) = Aqixo(t) +

[
0

B2
qi(t)

]
u(t) +

[
0

A21
qi (t)

]
x̄(t), (94)

ẋc(t) = Aqixc(t) + 2B2
qiu(t)−

[
0

B2
qi(t)

]
u(t) +

[
0

A21
qi (t)

]
x̄(t). (95)

By using (94) and the inequality in (89), one can write that

d

dt
xo(t)

TΛqixo(t) = 2xTo (t)Λqixo(t) + 2
([ 0

B2
qi

u(t) + A21
qi

x̂(t)

]T
Λqixo(t)

)
6 −MxTo (t)Λqixo(t)− ‖Cqixo(t)‖

2
2 + 2αo = −MxTo (t)Λ−1

qi
xo(t)− ‖y(t)− ŷ(t)‖22 + 2αo,

(96)
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where

αo =

[
0

B2
qi

u(t) + A21
qi

x̂(t)

]T [
Λ̂qi 0
0 βqi

] [
x̄1(t)− x̂(t)

x̄2(t)

]
= βqi

(
B2
qi

u(t) + A21
qi

x̂(t)
)T

x̄2(t)

(97)

Similarly, by using (95) and the inequality in (88) for z = xc(t) and v = 2u(t) ,
one can show that

d

dt
xc(t)

TΛ−1
qi

xc(t) = 2
(
Aqixc(t) + Bqi2u(t)

)
Λ−1
qi

xo(t)− (98)

2
( [

0B2
qi

u(t) + Ā21
qi

x̂(t)
]T
Λ−1
qi

xc(t)
)
6 −MxTc (t)Λ−1

qi
xc(t) + 4‖u(t)‖22 − 2αc,

where

αc =

[
0

B2
qi

u(t) + A21
qi

x̄(t)

]T [
Λ̂
−1
qi

0

0 β−1
qi

] [
x̄1(t) + x̂(t)

x̄2(t)

]
= β−1

qi

(
B2
qi

u(t) + A21
qi

x̄(t)
)T

x̂2(t)

(99)

From (97) and (99), observe that αo = β2
qiαc. Hence, by adding the inequality in

(96) with the one in (98) multiplied by β2
qi , it follows that

d

dt
xo(t)

TΛqixo(t) + β2
qi

d

dt
xc(t)

TΛ−1
qi xc(t) 6 −M

(
xo(t)

TΛqixo(t)

+ β2
qixc(t)

TΛ−1
qi xc(t)

)
− ‖y(t)− ŷ(t)‖22 + 4β2

qi‖u(t)‖22,

and by using the definition of V (t) in (92), it automatically proves the result in
(93).

Introduce the concatenation of the state variables and of the coupling matrices
corresponding to the (balanced) original and reduced systems, t ∈ (T`−1, T`]

x̃(t) =

[
x̄(t)
x̂(t)

]
∈ R2nqi−1, K̃qi,qi+1 =

[
K̄qi,qi+1 0

0 K̂qi,qi+1

]
∈ R2nqi−1×2nqi−1.

(100)
From (82) and (100), it follows that x̃(T+

i ) = K̃qi,qi+1 x̃(Ti). Note that the function
V : Rn × Rn → R defined in (92), can also be written as a function of x̃(t), as

V (x̃(t)) = x̃(t)T R̃qi x̃(t) =

[
x̄(t)
x̂(t)

]T
R̃qi

[
x̄(t)
x̂(t)

]
, t ∈ (Ti−1, Ti], (101)

where the matrices R̃q ∈ R2nq−1×2nq−1 are defined for any q ∈ Ω, as

R̃q =

 Λ̂q 0 −Λ̂q
0 βq 0

−Λ̂q 0 Λ̂q

+ β2
q

 Λ̂
−1
q 0 Λ̂

−1
q

0 βq 0

Λ̂
−1
q 0 Λ̂

−1
q

 =

 Λ̂q + β2
q Λ̂
−1
q 0 −Λ̂q + β2

q Λ̂
−1
q

0 2βq 0

−Λ̂q + β2
q Λ̂
−1
q 0 Λ̂q + β2

q Λ̂
−1
q

 .
(102)

First, we present a result for one step reduction. The L2 norm of the output
error computed as the differences between the original output and the output
corresponding to the reduced system is bounded by the norm of the input.
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Theorem 1 Let Σ = (n1, n2, . . . , nD, {(Aq,Bq,Cq)|q ∈ Ω}, {Kqi,qi+1 |qi, qi+1 ∈
Ω},x0) be a linear switched system. Assume that Σ satisfies Assumption 51. Let
Σ̂ be a reduced order system obtained from Σ via the proposed balancing and
truncation procedure,

Σ̂ = (n1−1, n2−1, . . . , nD−1, {(Âq, B̂q, Ĉq)|q ∈ Ω}, {K̂qi,qi+1 |qi, qi+1 ∈ Ω}, x̂0).

Consider any control inputs u(t) ∈ L2(Rm) and denote with y(t) and ŷ(t) the
outputs of the systems Σ and, respectively Σ̂ for the zero state case (i.e., x(0) = 0).
Then, there exists µ > 0 such that for any switching signal with minimal dwell time
µ (i.e. ti > µ, ∀i), so that

‖y − ŷ‖2 6 2β‖u‖2. (103)

Proof of Theorem 1. Choose µ = − ln γ
M as the minimal dwell time for the

switching signal σ(t), where γ ∈ (0, 1) is such that γK̃T
q,q̂R̃q̂K̃q,q̂ < R̃q, q, q̂ ∈

{1, 2, . . . , D}. Such a constant γ > 0 exists, since the matrices R̃q are strictly
positive definite q = 1, . . . , D.

Introduce the function W (x̃(t)) = eM(t−Ti−1)V (x̃(t)), for t ∈ (Ti−1, Ti]. It
follows that

∂W (x̃(t))

∂t
= eM(t−Ti−1)

(∂V (x̃(t))

∂t
+MV (x̃(t))

)
. (104)

Let Θ(t) = 4β2‖u(t)‖22 − ‖y(t)− ȳ(t)‖22. From (93) and (104), we write that

∂W (x̃(t))

∂t
6 eM(t−Ti−1)Θ(t), t ∈ (Ti−1, Ti]. (105)

Repeating the reasoning from the proof of Lemma 2, it follows that

x̃T (T`)R̃q` x̃(T`) 6
∫ T`

0

Θ(s)ds, ∀` > 1. (106)

Since R̂q` > 0, then
∫ T`
0
Θ(s)ds > 0, ∀` > 1. By allowing T` → ∞ and by using

the definition of the function Θ, we can write

4β2

∫ ∞
0

‖u(s)‖22ds >
∫ ∞
0

‖y(s)− ŷ(s)‖22ds.

Hence, the result in (103) has been proven.

Remark 10 By partitioning the set of discrete modes in two disjoint subsets, as
Ω = {1, 2, . . . , D} = Ω1

⋃
Ω2, we emphasize two different cases when reducing the

system Σ{
q ∈ Ω1 ⇒ perform reduction by 1 of the LTI subsystem in mode q,

q ∈ Ω2 ⇒ do not change the LTI in mode q.

(107)
Next, introduce the balanced Gramians corresponding to the two subsets, as

Λ` =

[
Λ̂` 0
0 β`

]
, for ` ∈ Ω1, and Λ̂` = Λ`, for ` ∈ Ω2. (108)
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We conclude that the bound in (103) still holds for the setup that was introduced
in (107), as follows

‖y − ŷ‖2 6 2β‖u‖2, β = max
`∈Ω1

β`. (109)

Here, the selection of the scalar β is restricted only to diagonal Gramians cor-
responding to the discrete modes from Ω1. The proof is similar to the one just
presented and will be skipped for brevity reasons.

Next, we will present a more general result by extending Theorem 1 from
one step reduction to reduction to any dimension by allowing possibly different
reduction levels for each active mode q ∈ Ω. Consider that the diagonal Gramians
associated to the original and reduced systems can be written as

Λq =

σq,1 0
. . .

0 σq,nq

 ∈ Rnq×nq , Λ̂q =

σq,1 0
. . .

0 σq,rq

 ∈ Rrq×rq . (110)

for q ∈ {1, 2, . . . , D} and σq,1 > σq,2 > . . . > σq,rq > . . . σq,nq > 0. For ` ∈
{1, 2, . . . , ξ}, introduce the following diagonal matrices

`Λ̂q =

σq,1 0
. . .

0 σq,nq−i+1

 , if i 6 nq−rq, `Λ̂q =

σq,1 0
. . .

0 σq,rq

 , if i > nq−rq

(111)

Similarly, let `Âq ∈ Rrq,`×rq,` , `B̂q ∈ Rrq,`×mq , `Ĉq ∈ Rpq×rq,` , `K̂q1,q2 ∈
Rrq2,`×rq1,` , be the (1, 1) blocks of the matrices defined in (79);

Āq =

[
`Âq

]
, B̄q =

[
`B̂q

]
, C̄q =

[
`Ĉq

]
, K̄q1,q2 =

[
`K̂q1,q2

]
.

(112)

for rq,` =

{
nq − `, if ` 6 nq − rq

rq, if ` > nq − rq
.

Definition 11 Using the matrices introduced in (112), construct the family of
reduced linear switched systems {Σ̂` | 0 6 ` 6 ξ} with ξ = max

q∈Ω
(nq − rq), as

Σ̂` = (r1,`, r2,`, . . . , rD,`, {(`Âq,` B̂q,` Ĉq)|q ∈ Ω}, {`K̂qi,qi+1 |qi, qi+1 ∈ Ω}, x̂0).
(113)

Note that for ` = 0, the element Σ̄0 coincides to the original LSS in balanced
format, i.e. Σ̂0 = Σ̄. Moreover, when ` = ξ, it follows that Σ̂ξ = Σ̂, with Σ̂ as
introduced in Definition 13.

Proposition 8 If Σ satisfies Assumption 51, then so do {Σ̂` | 0 ≤ ` ≤ ξ}.

Proof From (85) – (86) it follows that Σ̂` has a non-empty set of M -relaxed
reachability and observability Gramians, since `Λ̂q, q = 1, 2, . . . , D are M -relaxed
reachability and observability Gramians of Σ̂`. Hence, Assumption 51 holds.
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Theorem 2 Let Σ = (n1, n2, . . . , nD, {(Aq,Bq,Cq)|q ∈ Ω}, {Kqi,qi+1 |qi, qi+1 ∈
Ω},x0) be a linear switched system and let Σ̂` be a reduced order system obtained
from Σ introduced in Definition . Assume that Σ satisfies Assumption 51. Con-
sider the control input u ∈ L2(Rm) and denote with y and ŷ the outputs of the
systems Σ and, respectively Σ̂ for the zero state case (i.e., x(0) = 0). Then, there
exists µ > 0 such that for any switching signal with minimal dwell time µ (i.e.
ti > µ, ∀i), so that

‖y − ŷ‖2 6 2β‖u‖2, (114)

where β =
ξ∑̀
=1

η`, η` = max
`6nq−rq, q∈Ω

σq,nq−`+1.

Proof of Theorem 2. We start by applying the result of Theorem 1 (for one
step reduction) as adapted in Remark 10 (allowing adjustable reduction levels for
different modes), to Σ̂`−1 and Σ̂` for all ` ∈ {1, 2, . . . , ξ}. Consider the following
two subsets of Ω,

Ω`1 = {q ∈ Ω |` 6 nq − rq}, Ω`2 = {q ∈ Ω |` > nq − rq}.

Note that Σ̂` is the result of a one-step reduction applied to Σ̂`−1 and by Propo-
sition 8 it satisfies Assumption 51. Next, denote with ŷ` and ŷ`−1 the outputs
corresponding to the systems Σ̂` and, respectively Σ̂`−1 for input u ∈ L2, switch-
ing signal σ(t) with minimal dwell time µ` and initial zero states. From (109), it
follows that

‖ŷ`−1 − ŷ`‖2 6 2η`‖u‖2. (115)

For ` = 0, the output ŷ0 coincides to the output of the original LSS in balanced
format, i.e. ŷ0 = y. Furthermore, when ` = ξ, it follows that ŷξ = ŷ, with ŷ as

in Section 4.3, i.e. the output of the reduced-order LSS Σ̂ from Definition 13. By
adding the inequalities in (115) for all values of ` in {1, . . . , ξ}, it follows that

ξ∑
`=1

‖ŷ`−1 − ŷ`‖2 6 2

ξ∑
`=1

η`‖u‖2 ⇒ ‖
ξ∑
`=1

(ŷ`−1 − ŷ`)‖2 6 2β‖u‖2

⇒ ‖ŷ0 − ŷξ‖2 6 2β‖u‖2,

which implies that the result in (114) is thus proven.

Example 1 To clarify the notation used in the proof of Theorem 2, we present a
simple example for D = 3, i.e. Ω = {1, 2, 3}. Assume nq = 3, ∀q ∈ Ω and the
choose reduction orders 1,3 and respectively, 2 for modes 1,2 and respectively, 3.
Also, note that ξ = max

q∈Ω
(nq − rq) = 2.

q 1 2 3

nq 3 3 3

rq 1 3 2

nq − rq 2 0 1

⇒


Ω0

1 = {1, 2, 3}, Ω0
2 = ∅

Ω1
1 = {1, 3}, Ω1

2 = {2}
Ω2

1 = {1}, Ω2
2 = {2, 3}

and

rq,` ` = 0 ` = 1 ` = 2

q = 1 3 2 1

q = 2 3 3 3

q = 3 3 2 2
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The values rq,` represent the intermediate reduction orders for each subsystem.

Moreover, the transition of the diagonal Gramians `Λ̂q for ` ∈ {0, 1, 2} is made as
follows:

Step ` = 0→ At this step, write the original balanced Gramians 0Λ̂q = Λq, q ∈ Ω.

0Λ̂1 =

σ1,1 0 0
0 σ1,2 0
0 0 σ1,3

 , 0Λ̂2 =

σ2,1 0 0
0 σ2,2 0
0 0 σ2,3

 , 0Λ̂3 =

σ3,1 0 0
0 σ3,2 0
0 0 σ3,3

 .
Step ` = 1→ Error bound: ‖ŷ0 − ŷ1‖2 6 2 max(σ1,3, σ3,3)‖u‖2.

1Λ̂1 =

[
σ1,1 0

0 σ1,2

]
, 1Λ̂2 =

σ2,1 0 0
0 σ2,2 0
0 0 σ2,3

 , 1Λ̂3 =

[
σ3,1 0

0 σ3,2

]
.

Step ` = 2→ Error bound: ‖ŷ1 − ŷ2‖2 6 2σ1,2‖u‖2.

2Λ̂1 = σ1,1, 2Λ̂2 =

σ2,1 0 0
0 σ2,2 0
0 0 σ2,3

 , 2Λ̂3 =

[
σ3,1 0

0 σ3,2

]
.

By combining the two inequalities from steps 1 and 2, it follows that

‖y − ŷ‖2 6 2
(

max(σ1,3, σ3,3) + σ1,2
)
‖u‖2.

Remark 11 (Choice of the model order) The idea behind the choice of the model
order of the reduced system is the following. After bringing the original model
to balanced form, as described in Procedure 1, we choose each integer rq in
such a manner that the diagonal elements σq,rq+1, . . . , σq,nq−rq are small, more

precisely, such that β =
ξ∑̀
=1

η`, η` = max
`6nq−rq, q∈Ω

σq,nq−`+1 is small, where

ξ = maxq∈Ω(nq − rq). The choice of the model order is not unique. First, it is
determined by how much approximation error we would like, and it represents
a trade-off between the order of each linear subsystem and the bound β of the
estimation error. However, even if we fix the approximation error, there are sev-
eral choices of the dimensions of the linear subsystems of the reduced model.
For example, assume for example that we are dealing with two modes D = 2,
n1 = 5, n2 = 3, σ1,1 = 20, σ1,2 = 10, σ1,3 = 5, σ1,4 = 0.08, σ1,5 = 0.02 and
σ2,1 = 30, σ2,2 = 0.9, σ2,3 = 0.1. Then, if we set r1 = 3 and r2 = 3, then ξ = 2, and
the guaranteed error bound is β = σ1,4 + σ1,5 = 0.1. However, we can achieve the
same error bound by choosing r1 = 5 and r2 = 2. That is, the same approximation
error can be achieved either by discarding 2 states in the linear system associated
with mode 1, or discarding 1 state in the linear system associated with mode 2.
However, if we are satisfied with an error bound β = 0.2, then we could take r1 = 3
and r2 = 2, i.e., we discard 2 states from the linear system associated with mode 1
and we discard 1 state from the linear system associated with mode 2. Indeed, in
this case then the analytical error bound will be β = σ1,4+σ1,5+σ2,3+σ2,2 = 0.2.
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5.2.2 Using Gramians instead of M-relaxed Gramians

Computing M -relaxed Gramians requires solving LMIs and it is computation-
ally demanding. Moreover, M -relaxed Gramians are not unqiue. Hence, instead of
using M -relaxed Gramians, it could be more advantegeous to use infinite reacha-
bility and observability Gramians defined in Definition 7–8. Note that by Remark
9, if {Pq}Dq=1, {Qq}Dq=1 are infinite reachability and observability Gramians and∑D
i=1,i6=qKi,qPiK

T
i,q > 0,

∑D
i=1,i 6=qK

T
q,iQiKT

i,q > 0, for all q = 1, 2, . . . , D, then
by Remark 9 the infinite reachability and observability Gramians are also M -
relaxed reachability and observability Gramians respectively. Hence, the balanced
truncation procedure presented in Subsection 5.2 can be applied to infinite reach-
ability and observability Gramians.
More precisely, let Σ = (n1, n2, . . . , nD, {(Aq,Bq,Cq)|q ∈ Ω}, {Kqi,qi+1 |qi, qi+1 ∈
Ω},x0) be an LSS, and let {Pq}Dq=1, {Qq}Dq=1 be infinite reachability and observ-

ability Gramians. Let us apply Procedure 51 to Σ using the Gramians {Pq}Dq=1,

{Qq}Dq=1. The balanced LSS S̄i is such that the matrices P̄q = SqPqSTq , Q̄q =(
S−1
q

)TQqS−1
q are diagonal and equal to Λq, q = 1, 2, . . . , D. Moreover, the matri-

ces Λq = P̄q, Q̄q are also infinite reachability and observability Gramians as they
satisfy

ĀiΛi +ΛiĀ
T
i +

D∑
j=1, j 6=i

K̄j,iΛjK̄
T
j,i + B̄iB̄

T
i = 0, (116)

ĀT
i Λi +ΛiĀi +

D∑
j=1, j 6=i

K̄T
i,jΛjK̄i,j + C̄T

i C̄i = 0. (117)

Let Σ̂ be the reduced LSS obtained according to the Definition 2, using the infi-
nite reachability and observability Gramians P̄q = Q̄q = Λq, q = 1, 2, . . . , D. Note
that the reduced Gramians Λ̂q, q = 1, 2, . . . , D are no longer infinite reachability
and observability Gramians. More precisely, they satisfy the following inequalities

ÂiΛ̂i + Λ̂iÂ
T
i +

D∑
j=1, j 6=i

K̂j,iΛ̂jK̂
T
j,i + B̂iB̂

T
i < 0ri (118)

ÂT
i Λ̂i + Λ̂iÂi +

D∑
j=1, j 6=i

K̂T
i,jΛ̂jK̂i,j + ĈT

i Ĉi < 0ri . (119)

However, even though the reduced Gramians Λ̂i are not infinite reachability and
observability Gramians of the reduced order LSS, the error bound of Theorem 2
still applies. In fact, this was exactly the motivation behind introducing relaxed
Gramians. Recall that the proof of the error bound in Theorem 2 relies on re-
peated application of Theorem 1 and on the fact that truncated LSS are also
balanced. The latter presents an error bound for the case when only one state
is discarded from each linear subsystem during the truncation step. Theorem 1
remains true even when the balanced truncation procedure is formulated only for
infinite reachability/observability Gramians instead of the relaxed ones. However,
if the balanced truncation was formulated only for infinite reachability and observ-
ability Gramians as opposed to relaxed reachability and observability Gramians,
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then the repeated application of Theorem 1 would no longer be possible, as the
truncated LSS would not be balanced (since the truncated matrices Λ̂q do not
satisfy the definition of infinite reachability/observability Gramians).

5.2.3 Stability preservation

Stability preservation is a very sought after property when devising MOR tech-
niques. As pointed out in [19], a switched system is stable if all individual subsys-
tems are stable and the switching is sufficiently slow to permit the transient effects
to vanish after each switching time. In this book, Chapter 3.2 presents stability
under slow switching with multiple Lyapunov functions.

We present a definition of stability in a uniformly exponentially sense and
with imposing again the condition of a minimal dwell time µ. This definition
was initially introduced in [19]. Moreover, we will show that the reduced order
models constructed through the proposed balancing reduction technique, satisfy
the conditions of this particular type of stability.

Definition 12 A linear switched system Σ as described in (1), is uniformly ex-
ponentially stable with dwell time µ if there exist constants K,M > 0 such that
for any solution (x,u, σ,y), the inequality holds for any t > 0,

‖x(t)‖2 6 Ke−αt‖x(0)‖2. (120)

for a control input considered to be zero (i.e. u = 0) and the switching signal σ(t)
having minimum dwell time µ > 0.

Lemma 4 Consider an LSS Σ which satisfies Assumption 51. There exists a
constant µ > 0 such that Σ is uniformly exponentially stable with some dwell time
µ.

Proof of Lemma 4. Let γ be such that γKT
q1,q2Qq2Kq1,q2 < Qq1 for all q1, q2 ∈

{1, 2, . . . , D}. Since by Assumption 51 KT
q1,q2Qq2Kq1,q2 > 0, such a constant γ > 0

exists. Let µ = − lnγ
2M , and hence

e−0.5MµKT
q1,q2Qq2Kq1,q2 < Qq1 . (121)

Let (x,u, σ,y) be a solution of the LSS with u = 0 and switching signal σ =
(q1, t1)(q2, t2) . . . with minimum dwell time µ > 0 (i.e. ti > µ, ∀i). Again, set
V(x(t)) = xT (t)Qqix(t), ∀t ∈ (Ti−1, Ti]. From (50), it directly follows that
∂V (x(t))

∂t 6 −MV (x(t)). Next, introduce the function

W (x(t)) = eM(t−Ti−1)V (x(t)) = eM(t−Ti−1)xT (t)Qqix(t), ∀t ∈ [Ti−1, Ti),

and hence, the inequality ∂W (x(t))
∂t 6 0 holds. Using the same notations as in (56),

we get that W (x(t)) 6W (x(T+
i−1))⇒ eM(t−Ti−1)V (x(t)) 6 V (x(T+

i−1)). Then

V (x(t)) 6 e−M(t−Ti−1)V (x(T+
i−1)), ∀t ∈ (Ti−1, Ti]. (122)

Now using that x(T+
i−1) = Kqi−1,qix(Ti−1), write

V (x(T+
i−1)) = xT (Ti−1)KT

qi−1,qiQqiKqi−1,qix(Ti−1). (123)
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From (121) and (123), we get that

V (x(T+
i−1)) 6 e0.5MµxT (Ti−1)Qi−1x(Ti−1) = e0.5MµV (x(Ti−1)). (124)

By plugging in t = Ti in (122) and using (124), it follows that

V (x(Ti)) 6 e−Mti+0.5MµV (x(Ti−1)). (125)

By putting all the relations in (125) together (k ∈ {1, 2, . . . , i}), write that

V (x(Ti)) 6 e−M(ti−0.5µ)V (x(Ti−1)) 6 e−M(ti+ti−1−µ)V (x(Ti−2))

6 . . . 6 e−M(Ti−0.5iµ)V (x(0)). (126)

Since t > Ti−1 =
∑i−1
k=1 tk and by using the fact that the system has minimum

dwell time µ in each operational mode, i.e. tk > µ, it follows that t > (i − 1)µ.
Furthermore, by putting together (122), (124) and (126), the results hold ∀t ∈
[Ti−1, Ti),

V (x(t)) 6 e−M(t−Ti−1)e0.5Mµe−M(Ti−1−(0.5i−1)µ)V (x(0))

= e−M(t−0.5(i−1)µ)V (x(0)) = e−Mte0.5M(i−1)µV (x(0)) =

6 e−Mte0.5MtV (x(0)) =e−0.5MtV (x(0)). (127)

In the last step, we used that t ≥ 0.5(i − 1)µ. Choose ε, φ > 0 such that for all
q ∈ {1, 2, . . . , D}, the following inequality holds for

ε2Qq 6 Inq 6 φ2Qq. (128)

Since Qq > 0, such a choice of ε, φ always exists. From (127) and (128), it follows
that for all t ∈ (Ti−1, Ti]

‖x(t)‖22 = x(t)Tx(t) 6 φ2x(t)TQqix(t) = φ2V (x(t)) 6 φ2e−0.5MtV (x(0))

= φ2e−0.5Mtx(0)TQq1x(0) 6
φ2

ε2
e−0.5Mt‖x(0)‖22.

By choosing K = φ2

ε2 , α = 0.5M the result of Lemma 4 is proven (from Definition
15).

From Proposition 8 and Lemma 4 we can conclude the following.

Corollary 1 If Assumptions 51 hold for the original LSS model Σ, then Σ is
exponentially stable with dwell time µ > 0, and the reduced-order LSS model Σ̄,
defined Defininition 2, is also exponentially stable with the same dwell time µ.



36 I.V. Gosea et al.

6 Numerical Examples

6.1 First example - a small system with 3 modes

Consider the case for which D = 3. The reachability grammmians Pi, i ∈ {1, 2, 3},
satisfy the following equations

A1P1 + P1A
T
1 + K2,1P2K

T
2,1 + K3,1P3K

T
3,1 + B1B

T
1 = 0,

A2P2 + P2A
T
2 + K1,2P1K

T
1,2 + K3,2P3K

T
3,2 + B2B

T
2 = 0,

A3P3 + P3A
T
3 + K1,3P1K

T
1,3 + K2,3P2K

T
2,3 + B3B

T
3 = 0.

which can be compactly written as

ADPD + PDAT
D + K D1PDKT

D1 + K D2PDKT
D2 + BDBT

D = 0, (129)

where AD,BD and PD are as in (26) and also

K D1 =

 0 K2,1 0
0 0 K3,2

K1,3 0 0

 , K D2 =

 0 0 K3,1

K1,2 0 0
0 K2,3 0

 . (130)

Similarly, the observability grammmians Qi, i ∈ {1, 2, 3}, satisfy the following
equations

AT
1Q1 +Q1A1 + KT

1,2Q2K1,2 + KT
3,1Q3K

T
3,1 + CT

1 C1 = 0,

AT
2Q2 +Q2A2 + KT

2,1Q1K1,2 + KT
2,3Q3K2,3 + CT

2 C2 = 0,

AT
3Q3 +Q3A3 + KT

3,1Q1K3,1 + KT
3,2Q2K3,2 + CT

3 C3 = 0,

which can also be compactly written as

AT
DQD + QDAD + KT

D1QDK D1 + KT
D2QDK D2 + CT

DCD = 0, (131)

where AD, CD and QD are block diagonal as in (43) and K Di as in (130) for
i ∈ {1, 2}. Choose the following system matrices for Σ, as

A1 =

−1 0 0
0 −8 0
0 0 −5

 , A2 =

−2 0 0
0 −9 0
0 0 −6

 , A3 =

−4 0 0
0 −3 0
0 0 −7

 ,

B1 =

 1
2
−1

 , B2 =

 1
−1
3
2

 , B3 =

−1
2
−2
1

 ,


C1 =
[
−1 1 5

2

]
,

C2 =
[

1 2 −7
2

]
,

C3 =
[
−3

2 1 −1
2

]
,

M =

 1 −1 0
0 2 −3
1 0 1

2

 , N =

 0 2 − 1
2

1 1 −1
0 0 −3

 ,
K1,2 = M/7, K2,3 = M/4, K3,1 = M/6,

K2,1 = N/5, K3,2 = N/3, K1,3 = N/2.

Next, compute the balanced diagonal Gramians Λi as,

Λ1 =

 0.6174 0 0
0 0.0816 0
0 0 0.0419

 ,Λ2 =

 0.4183 0 0
0 0.1514 0
0 0 0.0138

 ,Λ3 =

 0.3311 0 0
0 0.0948 0
0 0 0.0172

 .
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As for Example 4.1, consider the values of the reduced orders for the three sub-
systems, as r1 = 1, r2 = 3 and r3 = 2. We recover the system matrices of the
reduced LSS Σ̂ as,

Â1 = −1.4152, Â2 =

−7.7330 −2.9578 −1.4537
1.6867 −0.9066 −0.5297
−0.5775 1.1507 −8.3605

 , Â3 = −
[

2.9416 0.7103
1.0000 5.0427

]
, ,

B̂1 = −1.3006, B̂2 =

−2.4972
0.0221
−0.0636

 , B̂3 =

[
1.2816
0.2190

]
, Ĉ1 = 1.2875, Ĉ2 =

 2.4992
0.3182
0.2538

T ,
Ĉ3 =

[
−1.2857 −0.5313

]
, K̂2,3 =

[
−0.6887 −0.5866 −0.1771
−0.2778 −0.5806 −0.0555

]
, K̂3,1 =

[
−0.3449 0.1360

]
.

From Example 4.1, it follows that the following bound holds, i.e. ‖y − ŷ‖2 6
2
(

max(σ1,3, σ3,3) + σ1,2
)
‖u‖2 = 2(0.0816 + 0.0419) = 0.2471‖u‖2.

Consider the switching signal σ(t) depicted in Fig. 1, which is characterized by
the sequence of elements (1, t1)(3, t2)(1, t3)(2, t4) . . . (2, t9)(3, t10) with dwell times
t0 = 0s and t10 = 15s. By choosing the control input as u(t) = 1/2 sin(20t)e−t/2 +
1/20e−t/2, and performing a time domain simulation, we display in Fig. 1, the
outputs of the original and reduced systems Σ and Σ̂.

0 5 10 15
1

2

3

Switching signal σ(t)

0 5 10 15
−0.1

0

0.1

Times (sec)

Time domain simulation: the output signals

Original LSS
Reduced LSS − BT

Fig. 1 Switching signal σ(t) and output y(t) corresponding to both Σ and Σ̂

The absolute value of the difference between the two outputs is presented in Fig. 2.

0 5 10 15

10
−8

10
−6

10
−4

Output error between the original LSS and the reduced one

Time(t)

E
rr
or

Fig. 2 Absolute value of the output error: |y − ŷ|
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6.2 Second example - a CD player example

For the next experiment, consider the CD player system from the SLICOT bench-
mark examples for MOR (see [12]). This linear system of order 120 has two inputs
and two outputs. We consider that, at any given instance of time, only one input
and one output are active (the others are not functional due to mechanical failure).
For instance, consider mode j to be activated whenever the jth input and the jth

output are simultaneously failing (where j ∈ {1, 2}).
In this way, we construct an LSS system with two operational modes. Both

subsystems are stable SISO linear systems of order 120, i.e. we can write n1 =
n2 = 120. This initial linear switched system (which will be denoted with Σ) is
reduced by means of the new balanced truncation procedure (which we refer to in

the following as BT1) to obtain Σ̂
BT1

and also by means of the balancing method

proposed in [22] (which we refer to in the following as BT2) to obtain Σ̂
BT2

.
In the later reference, it has been shown that, if certain conditions are satisfied
(see Corollary IV.3 in [22]), a simultaneous balanced truncation technique can be
applied to LSS. In most practical examples, the existence of a global transformation
matrix is not guaranteed. Hence, in [22], the authors propose instead a method
of balancing the so-called average Gramians, i.e. Pavg = 1

D

∑D
i=1 Pi and Qavg =

1
D

∑D
i=1Qi.

We first proceed with a frequency domain simulation. By varying the fre-
quency variable ω in the interval [100, 106]rad/sec, we compute the frequency
response corresponding to mode j ∈ {1, 2}, i.e. the magnitude of the function
Hj = Cj(ωInj − Aj)

−1Bj , in the specified frequency range. The frequency re-
sponse of the two original subsystems is depicted in Fig. 3.

100 101 102 103 104 105 106

Frequency(ω)

10-10

10-5

100

Frequency response of the original LSS

Ist subsystem

IInd subsystem

Fig. 3 Frequency response of the original subsystems

Next, we compute reduced order models using both of the reduction methods
discussed above, i.e. BT1 and BT2. The truncation orders for the reduced systems
are chosen to be the same for each mode, i.e k1 = k2 = 33. In Fig. 2, we depict
the magnitude of the frequency domain approximation error between the original

system Σ and the reduced ones, i.e. Σ̂
BT1

and Σ̂
BT2

. The figure presents the error
for each mode, separately.

Let Σj be the subsystem of the LSS Σ that corresponds to mode j ∈ {1, 2},
as introduced in (7). The same applies for the notations Σ̂

BT1
j and Σ̂

BT2
j which
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100 101 102 103 104 105 106

Frequency(ω)

10-8

10-6

10-4
Error in frequency domain - mode 1 BT1

BT2

100 101 102 103 104 105 106

Frequency(ω)

10-10
10-8
10-6

Error in frequency domain - mode 2 BT1
BT2

Fig. 4 Approximation error in frequency domain

denote the mode j subsystem corresponding to the LSS Σ̂
BT1

and, respectively,

to the LSS Σ̂
BT2

.

Next, for both reduction methods, we compute the relative approximation
errors for both modes. This is performed with respect to the Hκ norm, where

κ ∈ {2,∞}. More specifically, the value of ‖Σ̂BT1
j −Σj‖Hκ/‖Σj‖Hκ is calculated

for the BT1 method, while ‖Σ̂BT2
j − Σj‖Hκ/‖Σj‖Hκ is calculated for the BT2

method.

The numerical results are presented in Tab. 1. Note that, for both types of
norms and for each of the two operational modes, the balanced truncation method
we propose produces lower errors than those of the one introduced in [22].

H2 BT1 BT2

Mode 1 5.6988 · 10−6 1.1934 · 10−5

Mode 2 6.0980 · 10−7 1.4349 · 10−5

H∞ BT1 BT2

Mode 1 5.0901 · 10−7 2.8864 · 10−6

Mode 2 3.3007 · 10−8 3.0832 · 10−7

Table 1 Relative approximation error for the two modes in the H2 and H∞ norms

As for the first example, we compare the time domain response of the original
linear switched system with the ones corresponding to the two reduced models. We
use the same signal as in Section 5.1 as control input, i.e. u(t) = 1/2 sin(20t)e−t/2+
1/20e−t/2. The switching times ti are randomly chosen within [0,10]sec so that
ti > 0.5sec, ∀i.

The switching signal σ is depicted in the upper part of Fig. 5, while in the lower
part of Fig. 5, the outputs of the three LSS (original one and the two reduced ones)
are displayed.

Notice that the output of the original system Σ is well approximated when
using any of the two MOR methods.

Finally, by inspecting the time domain error between the original response and
the one corresponding to the two reduced models (depicted in Fig. 6), observe
that the new proposed method generally produces better results. The error curve
corresponding to the BT1 method is below the error curve corresponding to the
BT2 method for most of the points on the time axis.

We conclude that the new proposed balancing method produces better results
than the one proposed in [22], in the sense that the original output is better
approximated for this particular choice of LSS and control input. Moreover, our
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Fig. 6 Time domain approximation error

method can be applied to LSS with subsystems having different dimensions ni, i ∈
Ω and provide reduced order models again with possibly different dimensions ri, i ∈
Ω in different modes. The other method is constrained to having n1 = . . . = nD
so that the computation of the average Gramians Pav and Qav is possible. Also,
for BT2 it is assumed that a common Lyapunov function exists, which is arguably
restrictive. Moreover, another advantage is that one can derive an error bound of
the output error for the new proposed method, as presented in Section 4.2.1. This
is also true for the second method proposed in [22].

7 Conclusion

In the current work, we have proposed a balanced truncation procedure for the
class of linear switched systems which is based on the computation of infinite
energy Gramians. These special matrices can be computed by solving generalized
Lyapunov equations instead of solving systems of LMIs. The new balancing method
has several advantages.

We provided connections between the new Gramians and system theoreti-
cal quantities (observation and controlling energy), by means of lower or upper
bounds. Moreover, it turned out that an error bound involving the inputs, outputs
and the truncated entries of the Gramians, could be derived. Finally, by applying
the proposed procedure, the reduced order LSS can be proven to be uniformly
exponentially stable with certain minimum dwell time, given that the original LSS
also had this property.
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