
HAL Id: hal-01945042
https://hal.science/hal-01945042

Submitted on 5 Dec 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Relational Database Schema Evolution: An Industrial
Case Study

Julien Delplanque, Anne Etien, Nicolas Anquetil, Olivier Auverlot

To cite this version:
Julien Delplanque, Anne Etien, Nicolas Anquetil, Olivier Auverlot. Relational Database Schema
Evolution: An Industrial Case Study. ICSME 2018 - 34th IEEE International Conference on Software
Maintenance and Evolution, Sep 2018, Madrid, Spain. �10.1109/ICSME.2018.00073�. �hal-01945042�

https://hal.science/hal-01945042
https://hal.archives-ouvertes.fr

Relational Database Schema Evolution:
An Industrial Case Study

Julien Delplanque, Anne Etien, Nicolas Anquetil and Olivier Auverlot
Université de Lille, CRIStAL, CNRS, UMR 9189,

RMoD Team, Inria Lille Nord Europe
Lille, France

{firstname}.{lastname}@inria.fr, olivier.auverlot@univ-lille1.fr

Abstract—Modern relational database management systems
provide advanced features allowing, for example, to include
behaviour directly inside the database (stored procedures). These
features raise new difficulties when a database needs to evolve
(e.g. adding a new table). To get a better understanding of these
difficulties, we recorded and studied the actions of a database
architect during a complex evolution of the database at the core
of a software system. From our analysis, problems faced by
the database architect are extracted, generalized and explored
through the prism of software engineering. Six problems are
identified: (1) difficulty in analysing and visualising dependencies
between database’s entities, (2) difficulty in evaluating the impact
of a modification on the database, (3) replicating the evolution
of the database schema on other instances of the database,
(4) difficulty in testing database’s functionalities, (5) lack of
synchronization between the IDE’s internal model of the database
and the database actual state and (6) absence of an integrated tool
enabling the architect to search for dependencies between entities,
generate a patch or access up to date PostgreSQL documentation.
We suggest that techniques developed by the software engineering
community could be adapted to help in the development and
evolution of relational databases.

Index Terms—relational database, software engineering, evo-
lution

I. INTRODUCTION

Relational Database Management Systems (RDBMS) are
used in many information systems around the world. Since
the first implementation of the relational model introduced by
Codd in 1970 [6], implementations of RDBMS continue to
evolve introducing new features to make data management
easier. These features are complementary to the original tables,
columns, primary key constraints and foreign constraints of
the relational model. Views allow to store a SELECT query
inside a database and to refer to it using its name. Essentially,
a view allows to reuse a query without having to duplicate
its source code. Check constraints allow to run a developer-
defined expression to validate or invalidate a row to be inserted
or updated in a table. Stored functions allow the database
to store potentially complex behaviour and can be used by
entities of the database as well as by client software. For
example, in PostgreSQL, it is possible to call one or many
stored function(s) returning a boolean from the expression
defining a check constraint.

If these, more or less complex, and more or less standard,
extensions, allow more expressive data models, they may also

introduce new complexity in the management of the databases.
We were asked by a database architect in our university to look
at the matter and see if we could propose solutions to help him
evolve a large PostgreSQL database (95 tables). This database
has some characteristics that make it difficult to evolve:

• It has many views (62). In PostgreSQL, modifying a table
used by a view might requires deleting the view first, then
modifying the table and finally recreating the view. If this
view itself is used by another view, the other one also has
to be removed and recreated (in cascade).

• It has many stored functions (64). In PostgreSQL, stored
functions are just text, so if a stored function accesses
a table (or view) that has been modified, there is no
check or warning from the RDBMS. The validity of the
function must be verified by actually calling it and see if
it produces a runtime error.

• The same database schema is used in other laboratories
and any update on one instance must be made in the form
of a SQL script (a “patch”) that can be run on the other
instances.

The database architect complained that evolutions are made
difficult because of these various cross-dependencies within
the database and between the databases schemas, and he found
no tools that could help him in this task. As a software
engineering research group we proposed to see the problem
not as a database one, but as a software evolution one. We want
to see whether and how the tools that the software evolution
community developped over the years could be adapted to this
particular context of database schema evolution.

In this paper, we report our first evaluation of the problem
as we analysed the actions of the database architect on a real
example of a large schema evolution that he had to perform
on one database. We identified some concrete problems he
encountered and, based on our experience in software evolu-
tion, propose tools that should be created to help him better
handle these problems. Although this report focuses on one
particular evolution of one particular PostgreSQL database,
our conclusions apply to a larger range of databases including
with other RDBMS than PostgreSQL.

The remainder of the paper is organized as follows. Section
II presents the case study from which we observe problems
encountered by the database architect while evolving the

database schema. Section III presents the context of the ex-
periment. Section IV presents data extracted from experiment
and their qualitative and quantitative analyses. Section V lists
problems gathered during the observations made in Section
III and IV and tries to motivate the proximity of these
problems with problems addressed by Software Engineering
researches. Section VI presents related works attempting to
apply Software Engineering methods to help in database
development and position the problems listed in this paper
against them. Finally, Section VII concludes this paper and
discusses possible future works suggested by the problems
listed in Section V.

II. INDUSTRIAL CASE STUDY

We present first the database that we analyzed in this case
study. We list some of its characteristics and their justifica-
tions. After that, we present a rather large evolution of the
database schema that is studied in detail to understand what
kind of difficulties the database architect was experiencing.

A. The AppSI Database

AppSI is a PostgreSQL database used for managing mem-
bers, teams, funding support, etc. in laboratories of our univer-
sity. It is a proprietary database developed by a single database
architect. This database has the particularity to be used by
software systems written in different programming languages.
Because of that, the database architect decided to implement
as much as possible the behaviour of clients directly inside
the database (as stored functions). This decision aims to avoid
the duplication of behaviour implementation across multiple
programming languages but also to ensure consistency of
all client applications. As an illustration of AppSI database
features, Table I shows the number of entities for each type of
entity in the database schema. The median number of columns
per table is 10.

TABLE I: Number of entities for each type of entity in the
database schema.

Entity type Count
Table 95
Column 515
Primary key constraint 93
Foreign key constraint 125
Unique constraint 6
Check constraint 10
Default value constraint 102
View 62
Trigger 20
Function 64
Trigger function 19
Aggregate function 3

Another particularity of AppSI is that the schema is used in
multiple laboratories at the university. Each instance evolves
independently. Nevertheless, when the original database archi-
tect implements new features on the “main” AppSI instance, he
has to patch the other instances running in other laboratories.
In order to do that, modifications are stored as SQL evolution
scripts and run on the other instances of AppSI.

B. An Evolution of AppSI

The database architect of AppSI has to perform a mod-
ification of the database’s schema. Before the modification,
the person table which holds the list of persons working
for the laboratory had a primary key (id) of type serial
(i.e. autoincremented integer). This table stores the LDAP
identifiers in the uid column. This data is used as the login
of the users for the web applications using AppSI database.

The LDAP schema has evolved to enable users to have mul-
tiple identifiers. In the new version of the LDAP schema, the
uid attribute has been renamed into login. This semantic
evolution necessitates to similarly rename the uid column
of the person table into login. This column contains the
main identifier of the person. Such an induced evolution aims
to ease the understanding and the maintenance of the database
and their client applications.

To allow users to have multiple identifiers, a new table
named account_alias is created. It gathers all the sec-
ondary identifiers of a person in the login_alias column.
The id_person column is a foreign key to the id primary
key of the person table.

Before this evolution, it was possible to find the id of a
person from her LDAP identifier. After the evolution, since
the person may have several identifiers, it is necessary to use
a stored function to find the id of a person from one of her
identifier (the main or a secondary one). For this purpose, a
view has been created to ease correspondence between one of
the identifiers of a person and him/her primary key.

Of course, once this modification is integrated, entities of
the database using the uid column of the person table
have to be adapted in order either to use the new login
column, or to use the new account_alias table with its
login_alias column and a join with the person table.
Figure 1 provides a simplified view of this evolution.

person
id : serial (PK)
uid : varchar
email : varchar

...

person
id : serial (PK)
login : varchar
email : varchar

...

account_alias
id : serial (PK)
id_person : integer REFERENCES person.id
login_alias : varchar

Evolution

Fig. 1: Summary of the evolution to be achieved by the
database architect.

Although this evolution is rather simple to understand
abstractly, it involves quite a few steps. To help him in this
evolution, the database architect had established a roadmap of
what he needed to do. During the whole evolution, he uses
this roadmap to keep track of what has been done and what
remains. The roadmap was also updated when the database
architect discovered he had forgotten something or when some
step turned out to be more complex than originally planned.

To give a bird’s eye view of the whole evolution, we provide
the roadmap here:

• Copy database (to set up a realistic, up to date, develop-
ment environment);

• Create a dump of the schema (i.e. the structure of the
database, tables, views, stored functions, etc. are serial-
ized as a SQL script from which the database can be
rebuilt from scratch);

• Rename uid column as login.
• Search for occurrences of uid in stored functions signa-

tures and source code, rename foreign key constraints and
indexes. This step is not only about replacing references
to uid columns in the source code embedded in the
database, it also consists in modifying entities for which
the name contains uid that can be semantically related;

• Add account_alias table;
• Create a view to manage main and secondary identifiers;
• Create a stored function returning the main login accord-

ing to the account given as parameter;
• Modify key_for_login(login) stored function to

return the primary key of a person whatever the identifier
used;

• Add entry in configuration table (this is a table con-
taining configuration parameters for applications using
the database);

• Add mail(account) stored function to determine the
email address based on the main login.

• Compute email address in logins view.
• Apply required changes on SQL patch (addition of

queries written in the preceding steps into the patch);
• Execute patch on a copy of the database.
• Verify reports and, if necessary, replace uid by login.
• For each client application, look for uid references and

replace them by login.
The last two tasks concern the update of applications using

AppSI database. They do not fall within the scope of this
paper.

Because the database schema is replicated in other databases
(in other university departments), the whole evolution is ma-
terialized into a SQL patch that should be replicated on the
other database instances. One can see this patch as the SQL
implementation of the roadmap.

III. CONDITIONS OF THE CASE STUDY

For practical reasons, we could not be present when the
database architect performed the evolution, and it was not
possible to postpone it. The architect consented to record his
screen during the whole task. The result consists in three
recordings of about 1 hour each (see Table II). Unfortunately
for confidentiality reasons (personal data of university employ-
ees appearing at different moments of the videos), the videos
can not be made publicly available.

We later analysed the recordings with the help of the
database architect. In this analysis, we could also rely on the
roadmap of what he wanted to do that he had established (see
above).

For the analysis, we first transcribed the video into a list
of entries corresponding to changes in the screen display,

for example when the database architect switched from one
tool to another (e.g. text editor, shell terminal, or a database
development tool), or from one tab of a tool to another
tab (e.g. multiple files in a text editor). These entries are
recorded with their time stamps from which we computed their
duration. The full transcript is available at https://github.com/
juliendelplanque/icsme2018data.

The entries were then generalized into actions. We found 18
of these actions (see Table III). We also studied how actions
follow each others and whether we could find patterns in their
succession.

We present in Section IV a first analysis of the actions
performed. Then, in Section V, we identify specific problems
that were encountered and we propose tools that should be
developed to answer these difficulties.

IV. ANALYSIS

Table II gathers general information about the videos. There
is close to 3.5 hours of screen recording. Actions lasted for
30 to 40 seconds on average.

TABLE II: General information about the videos.

Video # Total Time Number of entries
1 1h15mn30s 102
2 1h19mn17s 114
3 52mn41s 96

A. Decomposing the Evolution

We abstracted all entries in a list of 18 actions listed in
Table III.

• The evolution is first performed on a development version
of the database and then made effective on the production
version. It is thus important to synchronise the two
versions (action 1).

• Actions 2, 3, and 14 correspond to moments where the
document manipulated (e.g. the evolution roadmap, the
database schema dump, the resulting SQL patch) are
observed. That is to say that the corresponding windows
are put in the forefront on the screen, but eventually no
interaction is visible in the video.

• Searches can been performed in the database schema
dump either to identify an impacted entity (action 4) or to
copy a query syntax like a SQL CREATE TABLE query
(action 5).

• Action 13 occurs in case a less common query has to
be created (for example an ALTER TABLE to change a
constraint) and no example of the required syntax can be
found in the database schema dump.

• The schema is modified in the Navicat database manage-
ment tool either using a dedicated UI (action 8), or in a
text format through a query builder tool (action 9). Using
the query builder tool allows the database architect to just
copy/paste the query in the database schema dump when
it is considered valid.

• To verify the validity of the queries modifying the
schema, the architect checks that the evolutions have

been performed (action 11), executes SELECT queries
to check the form of data stored in tables or re-
turned by views and stored functions (action 6), executes
INSERT/UPDATE/DELETE queries to check constraints
applied on the data (action 7), or runs unit tests written
in an external language (action 16).

• Action 15 occurs when a change is considered invalid,
whatever the reason, and the architect modifies it.

• The patch is regularly modified (action 10) to inte-
grate the Data Description Language (DDL) queries (i.e.
CREATE, ALTER and DROP commands) and the evolu-
tion roadmap is updated (action 12).

• Finally, “action” 17 corresponds to moments where we
concluded that the database architect was not directly
working on the evolution. These moments are different
from actions 2, 3, or 14. To distinguish inactivity from
actions 2, 3 or 14, we used the two following criteria: i.
the screen shows absolutely no activity (e.g. no mouse
movement, no scrolling, etc...) and ii. this absence of
activity last for at least 20 seconds (we classified 1 entry
that did not correspond to this criteria and last for 9
seconds but it looked clear to us that it was a short
inactivity period). Minimum activity duration measured is
9 seconds, maximum is 6 minutes 14 seconds and median
is 2 minutes 14 seconds.

TABLE III: List of actions during AppSI evolution

action
#

Description

0 Other.
1 Synchronise development database with production database.
2 Observe patch.
3 Observe DB entities.
4 Search in database schema dump.
5 Syntax search in database schema dump.
6 Execute SELECT query from IDE.
7 Execute INSERT/UPDATE/DELETE query from IDE.
8 Execute DDL query from IDE’s UI.
9 Execute DDL query from IDE.
10 Modify patch.
11 Change application verification.
12 Update evolution roadmap.
13 Check PostgreSQL documentation.
14 Check evolution roadmap.
15 Modify source code in query builder.
16 Run unit tests written in an external language.
17 Inactivity.

B. An Informal Process
While analyzing the video we observed repetitions and

regularities in the actions taken. We formalized a small process
from these regularities. This process is illustrated in Figure 2.

The activities of the process are:
i) The process is applied for each schema evolution;

ii) The queries required by the roadmap step are coded
in the DB development tool and/or the SQL patch. If
queries are written in the development tool, the architect
tends to work iteratively. That is to say, he starts with
a small, simple query and iteratively complicates it to
reach the desired result ;

iii) These queries are executed (on the development
database) mostly wrapped in a transaction that will
be rollbacked (i.e. between BEGIN and ROLLBACK
commands). Using a transaction enables the architect
to test or validate an SQL syntax, check the result is
correct and eventually undo the whole part of the patch
under test if one of the query fails during execution.

iv) In case of errors, the queries are modified. In this case,
the architects returns to activity (iii). This is a first inter-
esting loop in the process (loop A). It is executed until
no more error can be detected in the queries execution.
At this level, issues come from either syntax errors or,
more often, nonexistent referred entities. Entities may
be nonexistent if they have been renamed, removed, or
not yet created.

v) Once there are no more errors in the queries, they
are made effective through execution in a transaction
that is committed (i.e. between BEGIN and COMMIT
commands).

vi) But even if the queries do not produce errors, their result
might not be the expected one. To check whether this
is the case, some observations or tests are manually
performed on specific data known by the architect. These
tests can be performed as the execution of SELECT
queries, modifications on the data stored in the database
and/or simply looking at the database structure from the
development tool UI.
If the tests fail, the queries have to be corrected by
returning to activity iv. This is the second interesting
loop in the process (loop B). At this level, issues come
from deeper causes than syntax errors (semantic causes).
In “traditional” software development, they would be
caught by a test.

vii) Finally, if the tests succeed, the change is considered
valid and the architect goes to the next step in the
evolution roadmap, possibly updating it.

Each step can involve one or several actions. Table IV
summarizes the mapping between the process activities and
the observed actions in the video.

TABLE IV: Relations between actions and steps in the ob-
served process.

Activity Actions
(i) 14
(ii) 2, 3, 4, 5, 10 or 13
(iii) 9
(iv) 2, 3, 4, 5, 8, 10, 13 or 15
(v) 9
(vi) 3, 6, 7, 11 or 16
(vii) 12

We note that in “traditional” software development, loop
A rarely occurs nowadays because modern IDEs highlight in
the code, syntax errors, or simple errors like referencing a
nonexistent entity. This is not the case with the tools used by
the database architect.

Similarly, in “traditional” software development, loop B

Read step in
migration plan

Implement changes
into queries

Execute queries in a
transaction and

rollback

Modify not working
queries

Execute queries in a
transaction and

commit
Test changes
implemented

No error Error

A test fails

No test
fail

Update migration
plan

i ii iii

ivvvivii

loop A

loop B

Fig. 2: Process formalized from the database architect actions

would be helped by testing platforms. Here, the tests were
manually performed by the architect. They may not even be
saved for later use because they may involve employees’ data.
The tests thus rely on the architect’s knowledge and memory
of the database schema and its data. We noticed that sometimes
tests are reduced to schema or data observations.

C. Quantitative Analysis of Architect’s Activities

From videos studies, we analysed some quantitative aspects
of database architect’s actions. First of all, we analysed the
time spent on each action identified previously in Table III.
Then, from the process followed by the database architect
during the development, we analyse the time spent in each
sub-process loop (A and B in Figure 2). Finally, we looked at
the time spent using each tool during the development.

1) Time Spent per Action: Actions 0 (others) and 17
(inactivity), corresponding to 40 and 30 minutes respectively,
are let on the side for the analysis. Thus only 242 minutes are
analyzed.

Action 10 corresponding to the modification of the patch
is the one taking the most of time (45 minutes and around
18.45% of the useful time). In term of occurrences, it is also
the most frequent action (63). In fact this action corresponds
both to the design and the writing of the queries modifying the
schema. It is difficult to evaluate this reflection time. Moreover,
the architect mostly writes the queries to modify the schema
directly in the patch before executing them in the query builder
of the DB management tool. Three reasons explain this choice.
First, the architect needs to keep track of the changes in a
patch to apply them on the database of another laboratory
later. Second, he may have up to 16 queries to apply together
due to the fact that an entity referenced by another one can
not be dropped. It is easier to manage them all together or to
take care of their order in the text editor. Third, the architect
considers the patch as the reference document in comparison to
the query builder. Nevertheless, this action also includes when
the architect modifies the patch after correcting an erroneous
query in the query builder.

Action 9 is only the third action in term of time spent
(around 11.5 minutes) but the second one in term of occur-
rences (45). This action completes action 10, since it executes
the queries copied from the patch to the query builder. The
corrected version is then copied back to the patch. The fact
that this action has a lot of occurrences but lasts only 11.5
minutes is explained by the fact that executing SQL code is
nearly immediate. Modifications of the queries are caught by
other actions (10 or 15).

Action 6 lasts around 13 minutes and occurs 28 times. The
frequency of the action is due to the fact that it corresponds
to an execution of a SELECT query. Such queries are used to
check that the schema evolution has correctly been done, i.e.
provides the expected result.

Action 3 last 10.5 minutes and occurs 21 times. The
frequency of this action comes from the fact that even if the
architect knows pretty well the database, he needs to observe
some entities while writing queries.

Only these four actions represent more than 10 minutes and
correspond each to more than 4.1%. However, if we have a
look at the number of occurrences, actions 2 and 4 occurred
more than 20 times (each 22 times) even if they last 7.3
minutes and 8.3 minutes. Action 4 is very short in term of time,
only few seconds each time, in average 22 seconds. However
this action is very relevant since it corresponds to the research
of entities in the dump through a simple textual text search
to identify dependencies between entities. Action 2 is a bit
comparable to action 3. It corresponds to an observation of
the dump before or while writing queries.

It has to be noticed that the database has been designed and
developed by a single architect the one doing the evolution.
He knows pretty well the database. For this reason, time of
search and understanding is very low.

The other actions last and occur less time. They occur
between 2 times (for actions 1, 7 and 16) and 13 times (for
action 15). Action 15 corresponds to the modification of the
query in the query builder, meaning that 13 times, the architect
had to modify the query he wrote whatever the reason.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Action type #

0

10

20

30

40

50

60

m

in
ut

es
 sp

en
t

0

10

20

30

40

50

60

oc

cu
re

nc
es

Fig. 3: Time spent in each action during the evolution (dark
gray) and number of occurrences (light gray).

2) Time Spent in Sub-Loops of the database architect’s
process: As introduced in Subsection IV-B, additionally to
the main loop making the process followed by the database
architect during the development, we distinguished two sub-
loops.

• loop A concerns the resolution of syntax errors and errors
raised because of reference to nonexitent entities. The
latest is interesting because it can be caused by a wrong
order of the queries to execute (e.g. a table creation
executed after a the creation of a view referencing the
table in its query).

• loop B concerns the resolution of semantic errors. That
is to say, the source code is correct and did not raise an
error at execution but what it implements does not answer
the requirements of the database architect.

• main loop concerns a complete implementation of a
feature. Such loop might include multiple iterations on
loop A and/or loop B.

We tagged entries of our dataset according to the loop they
belong to (when possible, entries that do not belong to one of
these loops are not tagged).

Table V and Table VI respectively present data from main
loops and sub-loops. In both tables, “Begin time” is the
timestamp of the beginning of the loop, “Duration” is the time
spent in the loop in minutes (inactivity periods are counted
in the duration time) and “Actions” is the number of actions
realised during the loop.

Additionally, Table V has a “Video #” allowing to know in
which video the loop happens.

Table VI has a “Sub-loop type” column which attach the
sub-loop to the main loop to which it belongs (see Table V).

From these two tables, we can observe that:
• Some main loops do not have iterations on sub-loops (3,

6 and 8);
• Sub-loop B happens less (6 times) than sub-loop A (9

times);
• In main loop 1, sub-loop A appears more than in other

main loops (5 times). This observation can be explained

Id Begin
time

Duration
(minutes)

Video # Actions

1 00:12:59 62.50 1 100
2 00:11:22 22.73 2 27
3 00:34:07 4.13 2 8
4 00:38:16 9.45 2 22
5 00:47:44 18.33 2 41
6 01:06:05 13.20 2 8
7 00:00:00 8.35 3 36
8 00:08:22 16.01 3 23
9 00:24:24 28.28 3 41

TABLE V: Main loops begin/end times and duration.

Id Main
loop id

Sub-loop
type

Begin
time

Duration
(minutes)

Actions

1 1 A 00:57:37 2.46 5
2 1 A 01:00:06 0.65 2
3 1 A 01:00:46 2.81 2
4 1 A 01:03:36 6.68 14
5 1 A 01:10:18 4.36 10
6 1 B 01:14:41 0.38 3
7 2 B 00:33:06 1.00 3
8 4 B 00:41:39 0.48 2
9 4 B 00:42:13 0.96 1
10 4 B 00:43:12 1.01 4
11 4 A 00:44:14 3.48 7
12 5 B 01:03:29 0.96 3
13 5 A 01:04:28 1.60 7
14 7 A 00:02:56 5.41 19
15 9 A 00:47:30 5.18 9

TABLE VI: A and B sub-loops begin/end times and duration.

by the fact that in this main loop, up to 16 queries are
run at the same time. Thus, it seems normal to have a lot
syntax errors;

• Sometimes, sub-loop B can be short (6 and 8) because
what is done to “test” the changes is simply observating
entities of the database from the IDE;

• Sub-loop 10 of type B is interesting because it is followed
by a sub-loop of type A without starting a new main
loop. It happened during the video because in order to
fix a semantic problem (loop B), a modification on the
structure of the schema had to be done. However, the
queries written in order to implement this modification
were incorrect syntactically.

• Sub-loop 12 of type B is followed by a sub-loop of
type A without starting a new main loop as well but
for a different reason. Indeed, a stored function has
been previously created without syntax error. Nonethe-
less, when this stored function is tested by the DBA in
order to ensure it works as expected, a syntax error is
raised. The particularity here is that this error comes
from the procedural language used in stored function
body. This observation shows an intersting particularity
of PostgreSQL stored functions: it is possible that a
stored function hold syntactically invalid source code in
a database. Such invalid stored procedures will only be
discovered once they get executed.

Although the architect confirmed us that the process we
observed and formalized is the objective he wants to reach, it
is important to notice that it is not always possible for him to

follow the process strictely. For example when the architect is
interrupted during the process he might not be able to restart
from the right activity. Thus, it is possible to observe that some
activity are missed in the videos.

3) Time Spent per Tool: For each entry in the data extracted
from the video, we assigned the tool used by the database
architect. Six tools and their usage are identified below:

• Text editor: The text editor, used to browse the dump of
the database, browse and modify the patch.

• Navicat: The database browser providing a set of tool to
modify the database. Similar to an Integrated Develop-
ment Environment (IDE) but for databases.

• Web browser: The web browser, mainly used to search
in PostgreSQL documentation.

• Roadmap: The text editor open on the text file containing
the evolution roadmap.

• Terminal: The shell allowing to interact with the operating
system, manipulate files, interact with PostgreSQL, etc...

Figure 4 shows the time spent on each tool in minutes.
Navicat is not the first tool used in terms of time (∼ 52.5
minutes) but the second after the text editor (∼ 79.3 minutes).
Though it is a bit surprising to find the text editor used more
often than the IDE, it is explained by the fact that the database
architect has to store its changes in a patch file and also, as
previously said, because up to 16 queries are run at the same
time to perform an evolution. The text editor is thus found as
a good tool to develop the patch by the architect. However,
the main drawback is that the content of the patch has to be
copy/pasted into the query builder in order to be tested. The
process induced by the usage of the text editor to develop the
patch: 1. write SQL queries in the patch in the text editor, 2.
copy/paste the queries written in 1. and 3. execute these queries
in the query builder is not always strictly followed during the
video. When the part of the patch pasted in the query builder
raises an error, instead of coming back to the text editor and
modifying the problematic query from there, it happens that
the architect modifies the problematic query directly from the
query builder. Because of that, the patch opened in the text
editor has to be re-synchronised with the query builder which
becomes the reference for the implementation.

Patch development is done in a text editor also because the
IDE does not generate a patch after a full schema evolution
for purposes of applying the changes on the production DB
or other instances.

The terminal is used during a significant amount of time
(∼ 28.76 minutes) to send administration command to Post-
greSQL (e.g. create a dump of the database), to use grep1 to
perform textual search in the dump or in the patch and to edit
configuration files on the operating system.

V. OBSERVED PROBLEMS

Problems seems to appear during the evolution of AppSI.
The analysed videos allow us to present, discuss and generalize
five problems identified using previous section analysis.

1https://www.gnu.org/software/grep/

Te
xt

ed
ito

r
Na

vic
at

W
eb

br
ow

se
r

Ro
ad

map
Te

rm
ina

l0

20

40

60

80

m

in
ut

es
 o

f u
sa

ge

Fig. 4: Time spent using each tool during the 3 development
sessions. Periods of inactivity are removed from the plot since
no tool is used during those.

A. Analysing and Visualising Dependencies Between
Database’s Entities

From the video analysis, we can observe that the database
architect has to search for dependencies between database’s
entities by hand. That is to say, using regular expression search
in the dump of the database (action 4) combined with searches
in the IDE’s tools to browse the database (action 3). At some
point in the videos, the architect writes explicitly the results of
its “hand-made dependency analysis” in a separated text editor.
Moreover, the dependencies may be in cascade, one entity
on which changes are performed depending on others that
may need to be consequently modified and so on in cascade.
However, this task is error prone because some dependencies
may not be found using text search.

This evidence suggests that being able to list the dependency
relations an entity sustain with other entities of the database is
helpful in database development. Some tools used to develop
database systems provide a visual overview of databases and
their entities (e.g. Navicat2) but often, some entities are not
taken into account (e.g. Navicat provides in its graphical
representation relationships between table and views. Stored
functions are only displayed in a code editor without links
to other entities). Worst, some dependencies are invisible to
IDEs because of the difficulty to analyse dependencies inside
the source code of stored functions.

B. Evaluating the Impact of a Modification on the Database

Identifying dependencies between entities is a first step in
the propagation of a change in the database in order to let
it in a correct state after evolution. However, the architect
still has to think about what are the induced changes. No
recommendation is provided to help him in the evolution
process, contrarily to what happens in software engineering.
For example, with modern IDEs, when a method is renamed
through a refactoring, all its invocations are automatically
replaced with the new name. In databases, as observed in the

2https://www.navicat.com

video, when a column is renamed, its references in queries
stored in views or functions are not automatically updated. For
lot of other small changes, recommendations may be provided
taking into account not only the tables, but also the stored
functions and views.

If the previous problem highlights that the architect has to
identify all the impacted entities induced by an initial change,
this problem shows that the architect has to evaluate by himself
the induced modifications.

C. Managing co-Evolution of Multiple Instances of a
Database Schema

A DB schema may be used as a basis for multiple software
projects, each one adapting the schema to its needs. For
example, AppSI’s schema is shared with another laboratory,
together with all the applications using the DB. Each labora-
tory has its own DB based on the initial schema. However,
the IT team of the other laboratory modifies its version of
the database to adapt it to the specific needs of its users. The
laboratory that adopted the tool also benefits from maintenance
to accommodate new features and bug fixes. Each change in
the original DB needs to be ported to the forked DB with the
risk that both DB continue to evolve separately, thus drifting
further apart.

Echoing changes made on the original database to its fork
comes with more technical constraints. Indeed, contrarily to
what usually happens to merge between git branches for
example, modifications made on the original databases are not
quickly applied on its fork. A whole year may elapse between
two changes sets applications. Meanwhile, changes made on
the original database should somehow be stored, waiting to
be applied on the fork. As observed in the video, the solution
found by the database architect of our laboratory is to store
queries applied to modify the original database as plain text in
what he calls “a patch”. The database architect concatenates
the scripts used to modify the original database in this patch
file. This process can generate errors in the patch because of
a poor tool support to perform this activity combined with
human errors. For example, some queries used to modify the
original database can be omitted.

A diff tool is not enough since the forked DB went through
evolutions that need to be merged with those of the original
DB.

D. Testing Database’s Functionalities

Each time a modification is applied on a software system,
a good practice is to run tests to ensure it continues to satisfy
its requirements. This is the same for databases. A particular
challenge in the case of databases’ tests comes from the fact
that tests are highly dependent of data present in the database.
After some discussion with the database architect of AppSI,
it appears that when he wants to test a new functionality he
implemented, he runs queries implying data from adequate
cases he knows in the database. Nevertheless, this approach is
not automated and these adequate cases of data the database

architect knows might not be enough to ensure that the
database operates accurately.

Furthermore, additionally to tests concerning features im-
plemented, it appears that there is a need to check that
modifications on the structure of a database had the desired
effect. Indeed, in the videos, the database architect often
perform structural checks after modifying the structure of the
DB. These structural checks take the form of browsing the DB
entities from the IDE and look if they are in a correct state.

E. Synchronisation of IDE’s Internal State according to
Database Architect’s Actions

During the development session recorded, we observed
multiple desynchronizations between the model of database
shown to the database architect by the IDE and the real
state of the database. Each time the database architect realize
it happened, he had to manually reload the model. These
desynchronizations can be really harmful to the development
process of the database. Indeed, if the hypotheses made by the
database architect while developing the database are wrong
it is possible that, in the best case, queries performed while
developing the database fail and in the worst case, queries are
executed correctly but the database does not answer correctly
its requirements anymore.

F. No Integrated Solution

Through the evolution process, the architect uses multiple
separated tools unable to communicate together. The dump
gathers the full database schema before the evolution. It is used
only to observe or search for entities and is never modified. It
is used through text editor, since no existing tool enables to
perform these actions when entities are different from tables.
The patch is also manipulated through a text editor, because
first some changes involve numerous queries and second no
tool is able to create such a patch gathering all the changes
performed for a given evolution. Generating a patch also
requires to take care of the order of the queries induced by
dependencies between entities. Queries need to be executed,
for example to modify the schema or to check results of these
evolutions. For this purpose, in the presented case study, the
architect uses Navicat. It has to be noticed that this tool is
also used for other purposes, but the main one is for query
execution. Due to this ability, Navicat or any other database
management tool should be the main tool. But because, lot
of other functionalities are not provided, it does not occupy
this place. Web browser is used to access the PostgreSQL
documentation because it is not reachable from the database
management tool as JavaDoc can be in modern IDE. When
they are automated, tests are externalised in another language.
Indeed, since there is no facility to manage them, it is easier
to implement them in a separated language.

The usage of not interfaced tools can induce a loss of
time during the DB development. Indeed, the architect has to
copy/paste part of the patch developed into the query builder
what is a time loss in itself but the errors it can generate are
even worst.

We believe that with a better integration of all the tools
needed for database evolution (a text editor allowing to eval-
uate queries in a sandbox, an utility to perform different kind
of search (text, on entities properties, etc...) and a tool to list
dependencies of an entity), a significant amount of time could
be saved.

VI. RELATED WORKS

Software change impact analysis as defined by Arnold
and Bohnert [2] has already been widely investigated by the
scientific community as illustrated by Lehnert’s meta-analysis
[15]. This research field is related to the work presented in
this paper. The dependency analysis challenge observed in the
databases context may be solved by applying and adapting
existing techniques in software engineering. Some work has
already been done to estimate the impact of a database’s
change on clients of this database [8], [11], [12] and [16]
as well as to estimate the impact of a change directly inside
a database [1], [7] and [14]. Problem presented in Sub-
section V-A is related to the impact of change inside database.
However, it can be distinguished from existing work in the
literature on the fact that the impact analysis needs support
for behavioural entities (i.e. stored functions, triggers or views)
and to deal with complicated dependency relations that arise
from the usage of these behavioural entities.

We found no article in the literature concerning the manage-
ment of multiple instances of a database schema. The prob-
lem developed in Subsection V-C is different from database
integration [3] or schema merging [4] which, from a set of
independent database schemas, aim to provide techniques to
merge them into a single schema. Nevertheless, this problem
seems similar to software merging [17]. Indeed, from the
example in Subsection V-C, there is a need to merge changes
on AppSI original database schema into the schema of the
other laboratory’s database.

A few articles in the literature tackle the problem of testing
databases’ functionalities. For example, Emer et al. [9] present
a fault-based testing approach for database schemas. Some
work has been done concerning databases’ applications testing
[5], [13], [10]. Notably, Chays et al. [5] developed a set of
tools to facilitate the testing of database application named
AGENDA. From the application source code, the DB schema,
sample-values files and a test heuristic it 1. populates the
database, 2. generates inputs to the application, 3. executes
the application on generated inputs and 4. checks aspects of
the resulting state in the database. This approach takes into
account the source code of the client application and not the
source code embedded in relational databases.

VII. CONCLUSION

In this article, we address the problem of database evolution
including the complexity induced by behaviour embedded. To
do so, we presented an industrial database named AppSI used
in multiple laboratories of our university. Then, we made a
first evaluation of the problem by analysing actions of the

database architect while implementing an evolution on the
AppSI database.

The evaluation has been performed by: 1. transcribing the
videos into a list of entries corresponding to changes in the
screen display, 2. abstracting these entries into 18 distinct
actions, 3. formalizing the intuitive process followed by the
database architect during evolution as an activity diagram and
4. analysing quantitatively data extracted from steps 2 and 3.

The result of this evaluation allowed us to identify six
problems encountered by the database architect during the
evolution. i. analysing and visualizing dependencies between
entities is currently done “by hand” using a textual search
in a text editor because such functionality taken into account
trigger or stored function is not provided by database manage-
ment tools; ii. no tool is shipped with the IDE to help in the
evaluation of the impact of a modification on a the database
by for example providing recommendation of evolution to
performed on related entities after a change; iii. replicating
changes made on the instance of a database schema in another
instance is managed using a simple text editor again because of
a lack of tool to help in this task; iv. the facilities to test source
code in traditional software IDE (such as ease to create a unit
test or the IDE proposing to re-run the unit test associated
with a modified method) is absent from the database IDE
which induces a non-automated nor regular process of testing;
v. the IDE internal state often get desynchronized with the
real state of the database being modified which can confuse
the database architect; and vi. to remedy to the IDE problems
listed above, the architect uses multiple independent tools. The
usage of those independent tools can itself be error prone as
we observed in the videos.

As future work, in a short term, we plan to apply software
engineering techniques to database management to solve some
of these observed problems. For example, we plan to adopt a
model based analysis to identify dependencies between entities
(table, view, stored functions, index, etc.). As previously
explained, identifying dependencies is a good starting point
but providing a recommendation tool which would suggest
changes on impacted entities would be better. Once these
solutions developed, we plan to evaluate them on several
databases and evolutions, because we are convinced that the
problems observed in this evolution in the case of AppSI are
largely spread even if it is difficult to catch them on the fly
like in these videos.

In a longer term, we plan to work on test solutions for
database management and on patch generation including all
the changes performed in an evolution taking into account
queries order.

REFERENCES

[1] Jos Andany, Michel Lonard, and Carole Palisser. Management Of
Schema Evolution In Databases. In VLDB, pages 161–170, 1991.

[2] Robert S Arnold. Software change impact analysis. IEEE Computer
Society Press, 1996.

[3] Carlo Batini, Maurizio Lenzerini, and Shamkant B. Navathe. A compar-
ative analysis of methodologies for database schema integration. ACM
computing surveys (CSUR), 18(4):323–364, 1986.

[4] Peter Buneman, Susan Davidson, and Anthony Kosky. Theoretical
aspects of schema merging. In International Conference on Extending
Database Technology, pages 152–167. Springer, 1992.

[5] David Chays, Yuetang Deng, Phyllis G Frankl, Saikat Dan, Filippos I
Vokolos, and Elaine J Weyuker. An AGENDA for testing relational
database applications. Software Testing, verification and reliability,
14(1):17–44, 2004.

[6] Edgar F Codd. A relational model of data for large shared data banks.
Communications of the ACM, 13(6):377–387, 1970.

[7] Carlo A Curino, Hyun J Moon, and Carlo Zaniolo. Graceful database
schema evolution: the prism workbench. Proceedings of the VLDB
Endowment, 1(1):761–772, 2008.

[8] L Deruelle, M Bouneffa, N Melab, and H Basson. A change propagation
model and platform for multi-database applications. In Proceedings of
the IEEE International Conference on Software Maintenance (ICSM’01),
page 42. IEEE Computer Society, 2001.

[9] Maria Cludia Figueiredo Pereira Emer, Silvia Regina Vergilio, and Mario
Jino. Testing Relational Database Schemas with Alternative Instance
Analysis. In SEKE, pages 357–362, 2008.

[10] Michael Emmi, Rupak Majumdar, and Koushik Sen. Dynamic test
input generation for database applications. In Proceedings of the 2007
international symposium on Software testing and analysis, pages 151–
162. ACM, 2007.

[11] Spyridon K Gardikiotis and Nicos Malevris. DaSIAn: A Tool for
Estimating the Impact of Database Schema Modifications on WEB
Applications. In Computer Systems and Applications, 2006. IEEE
International Conference on., pages 188–195. IEEE, 2006.

[12] Spyridon K Gardikiotis and Nicos Malevris. A two-folded impact
analysis of schema changes on database applications. International
Journal of Automation and Computing, 6(2):109–123, 2009.

[13] Florian Haftmann, Donald Kossmann, and Eric Lo. A framework for
efficient regression tests on database applications. The VLDB JournalThe
International Journal on Very Large Data Bases, 16(1):145–164, 2007.

[14] Jiratchaya Jainae and Taratip Suwannasart. A framework for test
case impact analysis of database schema changes using use cases.
International Journal of Engineering and Technology, 6(3):186, 2014.

[15] Steffen Lehnert. A taxonomy for software change impact analysis.
In Proceedings of the 12th International Workshop on Principles of
Software Evolution and the 7th annual ERCIM Workshop on Software
Evolution, pages 41–50. ACM, 2011.

[16] Andy Maule. Impact analysis of database schema changes. PhD Thesis,
UCL (University College London), 2010.

[17] Tom Mens. A state-of-the-art survey on software merging. IEEE
transactions on software engineering, 28(5):449–462, 2002.

