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ABSTRACT
User-space programs rely on memory allocation primitives when

they need to construct dynamic structures such as lists or trees.

However, low-level OS kernel services and embedded device drivers

typically avoid resorting to an external memory allocator in such

cases, and store structure elements in contiguous arrays instead.

This programming pattern leads to very complex code, based on

data-structures that can be viewed and accessed either as arrays or

as chained dynamic structures. The code correctness then depends

on intricate invariants mixing both aspects. We propose a static

analysis that is able to verify such programs. It relies on the com-

bination of abstractions of the allocator array and of the dynamic

structures built inside it. This approach allows to integrate program

reasoning steps inherent in the array and in the chained structure

into a single abstract interpretation. We report on the successful

verification of several embedded OS kernel services and drivers.

1 INTRODUCTION
While user-space programs usually rely onmemory allocation prim-

itives provided by the OS to manage dynamic memory, low-level

codes such as embedded device drivers or low-level OS services typ-

ically manage their own memory using a custom allocation scheme.

The most common way to achieve this is to create a static array,

and use it as a pool of memory cells, which can be used directly in

order to create dynamic structures, like lists or trees. This pattern is

much more complex and harder to get correct than using a regular

memory allocator, due to the intricacy of the underlying invariants.

In essence, it embeds the memory manager into the user code.

We show an instance of this pattern in Figure 1, that consists of

a task manager taken from a proprietary real-time embedded OS

designed for aerospace (that we later refer to as AOS). This task

manager maintains three disjoint sets of tasks, that are respectively

ready, sleeping, and suspended. Each group of tasks corresponds to

a singly linked list, and the three corresponding lists are stored in a

single array, which serves as a memory cells pool. Three variables

ready, sleep, and suspend store the index of the first element of

each list. Moreover, each list element stores a reference to the next

element defined as its index in the array in field next. Tasks in state

ready are ordered by their order of priority, which is stored in field

prio. The declaration is shown in Figure 1(a), and an example state

is depicted in Figure 1(b). Moreover, the task manager implements

system calls (not shown), that operate on this structure, including

init (initialization of the array and variables), create (search of a

s t ruc t {

in t used ;

in t next ;

in t prio ;

} a [ 1 0 0 ] ;

in t ready ;

in t sleep ;

in t suspend ;

(a) Declaration

ready = 0 sleep = 1 suspend = 2

[0] :

[1] :

[2] :

[3] :

used = 1

used = 1

used = 1

used = 0

next = 96

next = 50

next = 30

prio = 1

[96] :

[97] :

[98] :

[99] :

used = 1

used = 0

used = 1

used = 0

next = 98

next = −1

prio = 2

prio = 3

(b) Concrete memory state

Figure 1: Process tables in a proprietary embedded OS

free slot in the array, and insertion in the list of tasks that are ready),

stop (removal of a task —the corresponding cell becomes free), and

schedule (move of a task from one list to another). Similar code

can be found in many OS services that need to manage tasks, or in

device drivers that need to manage resources. It is also common in

low-level embedded codes, as it alleviates the need for a separate

memory allocator. On the other hand, it makes the code of the

operations on the table (that we later refer as primitive operations,
or for short, primitives) very complex, and hard to get right. Indeed,

the operations over the pool of cells mix direct array cell accesses,

or accesses following chains of pointers to list elements encoded

as indexes. They also involve tricky side conditions, such as cases

where any of the lists is or becomes empty. Moreover, they need to

preserve sophisticated invariants, such as the well-formedness and

the disjointness of the lists of tasks. In the context of embedded

systems or critical softwares, such programming patterns induce

serious safety concerns. To guarantee the correct behavior of com-

ponents such as the task manager described above, we need to

verify not only memory safety but also the preservation of complex

structural invariants by all the primitive operations. For example,

the process table of Figure 1 should be consistent at all times, which

means the three lists should be well-formed, acyclic and disjoint,

and variables should point to the head of each list. If either of these

conditions ever gets broken, the task manager will not be able to

operate correctly anymore, and will lose or ignore some tasks.

The verification of the task manager boils down to checking that

all calls preserve the structural invariant of the cells pool: if any of

these is called in a state that satisfies the structural invariants, it
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should return into a state that satisfies it as well. Due to the numbers

of possible memory states and of execution paths in each primitive,

verification by exhaustive testing does not appear feasible. Static

analysis by abstract interpretation [7] aims at computing automat-

ically sound program invariants, and avoids this path explosion

issue. Applying this approach to the AOS case of Figure 1 requires

the choice of an abstract domain, that is a set of abstract predicates
supporting automatic analysis operations, and which can express

all the properties that a manual proof would manipulate.

In the case of structural properties such as the internal state of

Figure 1, a static analysis would need to describe both the lists and

the array structure, and the relation between them. The structure

of the task lists is highly dynamic since their size, topology and

order vary. Thus describing these structures requires to summarize
them, that is, to abstract them in a way independent from their

size, topology and order. Shape analysis tools [5, 6, 23, 27] utilize

abstract domains to compactly summarize inductive data-structures

such as lists or trees, and can compute precise structural invariants.

However, the structure shown in Figure 1 is beyond the scope of

these tools, as it also heavily relies on the array structure, and prim-

itives manipulate both array indexes and pointers. Array abstract

domains [8, 12, 21] are designed to dynamically segment arrays into

groups of cells with similar properties, and that can be abstracted

together. While they could deal with pure value properties, they

are unable to handle inductive dynamic structures like the lists of

tasks of Figure 1. Thus, neither of these two classes of analyses can

cope both with the array structure and with the nested lists.

In this paper, we propose a novel memory abstraction technique,

which ties summary predicates of two very different forms through-

out the analysis. It partitions the array into groups of cells that

respectively correspond to each of the three lists of tasks, and to

the free cells. Moreover, it ties to each group a composite summary

predicate, that describes it both as a set of array cells, and as an

inductive structure. An abstract state can be seen as a separating

conjunction [22] of summary predicates. Furthermore, it allows to

combine in a systematic manner the automatic analysis operations

that handle both the array and the nested structures. It makes it

possible to re-utilize most components of existing array and shape

analyses, and turn them into a single, automatic analysis, able to

cope with structures as shown in Figure 1. Due to this tight combi-

nation, we call this abstraction a coalescing of the underlying array

and shape abstractions.

We make the following contributions: (1) we introduce (Sec-

tion 2) and formalize (Section 3) memory abstraction coalescing,

and construct a parametric abstraction for memory cells pools, (2)

we present automatic static analysis algorithms to verify programs

using pools of memory cells (Section 4), and (3) we report on the ver-

ification of a series of programs that manipulate pools of memory

cells in OSes, drivers and embedded components (Section 5).

2 OVERVIEW
In this section, we describe the main principles of the coalescing

abstraction, and show how it supports the verification of primitives

manipulating memory pools. We focus on the structure displayed

in Figure 1, and study the verification of the primitive in charge of

the task creation system call, that is shown in Figure 2.

1 void create ( in t priority ) {

2 in t i = 0 ;

3 while ( i < 100 ) {

4 i f ( a [ i ] . used == 0 ) {

5 a [ i ] . used = 1 ;

6 a [ i ] . prio = priority ;

7 break ;

8 }

9 i ++;

10 }

11 /* ... */ // insert a[i] into the "ready" list

12 }

Figure 2: Excerpt from the task creation system call (create)

Structural correctness property and verification. Before we discuss
the verification itself, we summarize the structural consistency that

should hold at all times, between calls to primitives. We note C the

conjunction of the three properties:

(C0) variables ready, sleep and suspend should point to the

heads of three disjoint, well-formed acyclic singly-linked

lists stored in the array, and such that the next element

reference is stored as an index, in the next field of each cell,

and that the end-of-list is encoded by index −1; the used
field of all these elements should store value 1;

(C1) the set of array cells that appear in none of these three lists

form the set of free slots; the used field of all these elements

should store value 0;

(C2) the list with head ready is sorted with respect to the values

in field prio.
Thus the array should be divided into four groups (three lists of

current tasks and a set of free slots). We note that the regions that

correspond to each of these four groups are non-contiguous in

general. The overall layout of this structure is shown in Figure 3(a),

with the convention that jagged lines delimit the boarder of non

necessarily contiguous groups of cells. Each group of tasks is de-

scribed by a set of array indexes, and is tied to specific content

properties. For instance, ready tasks are described by Gr, which
stores a sorted list, and each cell in this group has a field used equal
to 1, and ready stores the index of the first element of this list.

It is expected that the consistency property C gets temporarily

broken in the middle of a primitive call, however, upon primitive

completion, the property should hold again. Besides preserving C,

primitives also typically have additional input/output requirements.

As an example, when create is called in a state where there is at

least one free slot, it will return in a state where a new task was

created. Using a Hoare triple notation, the correctness of this primi-

tive writes down as {C ∧ P }create(n){C ∧ Q }. The verification of

this triple by static analysis boils down to: (1) specifying an abstract

state that soundly over-approximates the pre-condition C ∧ P ; (2)
letting the analysis compute a sound abstract post-condition, and

letting it check that it entails the post-condition C ∧ Q .

Coalescing abstraction. To carry out this automatic verification,

we first need to identify an abstraction that is able to express the con-

sistency property C, and all the properties that the analysis should

manipulate. To make the specification of C simple, the abstraction
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Gr Gu Gs Gf
sorted list list list

used = 1 used = 1 used = 1 used = 0

ready head of Gr
sleep head of Gs
suspend head of Gu

(a) High-level structure layout

Gr Gu Gs Gf
slist(αr,−1) list(αs,−1) list(αu,−1) true
V used
r = 1 V used

s = 1 V used
u = 1 V used

f = 0

Sr ∈ [0, 99] Ss ∈ [0, 99] Su ∈ [0, 99] Sf ∈ [0, 99]

ready = αr ∈ Gr sleep = αs ∈ Gs suspend = αu ∈ Gu

Groups of array cells

Structural predicates

Numerical predicates

(b) Abstract state

Gr Gu Gs Gn Gf
slist(αr,−1) list(αs,−1) list(αu,−1) true true
V used
r = 1 V used

s = 1 V used
u = 1 V used

n = 0 V used
f = 0

Sr ∈ [0, 98] Ss ∈ [0, 98] Su ∈ [0, 98] Sf ∈ [0, 98]Sn = 1

ready = αr ∈ Gr sleep = αs ∈ Gs suspend = αu ∈ Gu i ∈ Gn

Groups

Struct.

Num.

(c) Analysis intermediate state

Gr Gu Gs Gn Gf
slist(αr,−1) list(αs,−1) list(αu,−1) true true
V used
r = 1 V used

s = 1 V used
u = 1 V used

n = 1 V used
f = 0

Sr ∈ [0, 98] Ss ∈ [0, 98] Su ∈ [0, 98] Sf ∈ [0, 98]V next
n = αr

sleep = αs ∈ Gs suspend = αu ∈ Guready ∈ Gn i ∈ Gn

Groups

Struct.

Num.

(d) Analysis exit state

Figure 3: Abstraction of a memory pool state and analysis

should follow the high-level layout of Figure 3(a). Moreover, to be

effective, it should build on top of the existing memory abstractions

used in shape analysis and array analyses, so as to reuse existing

predicates and algorithms.

First, the array can be divided into four disjoint areas, which

naturally invites to use separation logic [22]. Thus, we describe

the state with a formula of the form Gr ∗ Gs ∗ Gu ∗ Gf, where
Gr,Gs,Gu and Gf denote memory predicates representing regions

in the array and ∗ is the separating conjunction and asserts that

these four terms describe pairwise disjoint memory regions. This

abstract state is represented graphically in Figure 3(b). Array anal-

yses such as [8, 14] build upon abstract states that partition arrays

in this manner, and [21] proposed an abstraction able to deal with

non-contiguous regions, as found in Figure 3(a). These analyses

describe the value of numerical fields using summary numerical

dimensions [12], that is, abstract variables, which may describe

several concrete cells. We follow this convention here, and letV used
r

denote a numerical dimension describing the values stored in the

field used of the elements of Gr. In our case, V used
r is equal to 1,

as shown in Figure 3(b). Similarly,V used
s ,V used

u andV used
f describe

the value of this field in the other groups. We also note the number

of elements of each group can be bounded. For instance, we have

Sr ∈ [0, 99], where Sr is the size of group Gr.
Secondly, the structures of the task lists can be described using

inductive predicates in separation logic. As an example, if α ,α ′

denote symbolic addresses, a segment of a singly linked list starting

at address α and ending at address α ′ can be described as follows

(for the sake of concision, we do not expand all the fields):

list(α ,α ′) ::= emp ∧ α = α ′ ∨ ∃α ′′, α · next 7→ α ′′ ∗ list(α ′′,α ′)

Therefore, the formula list(αs,−1) (where sleep = αs) describes
the structure of the list of sleeping tasks in Gs. Similar formulas

describe the structure of Gr and of Gu (note that Gr requires a
different inductive predicate slist since it consists of a sorted list).

The coalescing abstraction aims at tying together the array and

inductive summaries one by one. Thus the coalesced abstract state

writes down Gr ∗ Gs ∗ Gu ∗ Gf where Gk = Ak ∧ Ik and:

• Ak summarizes a group of cells of the array, and ties numerical

predicates to summary dimensions representing the fields;

• Ik summarizes an inductive structure.

As an example, in the case of Gs, As expresses that V
used
s = 1,

sleep = αs and Ss ∈ [0, 99], and Is is list(αs,−1). In the case of Gf,
If is true, as the next fields define no structure over the elements

of this group. We formalize this abstraction in Section 3.

Static analysis and verification. We now overview the principles

of the automatic static analysis to verify functions like create
(Figure 2), starting from the pre-condition defined by C and Sf ≥
1. The post-condition computation proceeds by forward abstract

interpretation [7], which means the analysis implements functions

to compute an over-approximation of each construction of the

language, in terms of coalesced abstract states. In particular, a sound

loop invariant is obtained as the widening of a sequence of abstract

iterates. Moreover, the verification that a post-condition is satisfied

boils down to a conservative implication checking among abstract

states. In the following of this section, we discuss two analysis steps

that are representative of the whole analysis, namely the analysis of

an assignment statement, and the generalization process underlying

widening and abstract states implication checking.

We first consider the assignment a[i ].used = 1 at line 5 in Fig-

ure 2. To compute a post-condition for such a statement, the analysis

needs to (1) localize the cell designated by a[i ].used, that is, to
identify to which group(s) it belongs, and (2) update the predicates

of that group. Due to the condition at line 4, the constraints over

used in all groups entail that a[i] may only belong to Gf. However,
Gf may contain several elements, thus the update step needs to

account for the case where most elements of Gf are unchanged.
This situation is called a weak update, and it reduces the accuracy of
analysis results. To avoid this issue, the analysis should split group

Gf before it performs the update. This step is called materialization,
and isolates a[i] into a group of length 1, which supports a strong

update. The corresponding state is shown in Figure 3(c). In that

abstract state, not only the assignment at line 5 but also the subse-

quent assignments can be analyzed very precisely. More generally,

the analysis of statements such as condition tests and assignments

will also perform materialization. In Figure 2, materialization only

operates on groups of array cells and numerical predicates (Ak ),

but in general, it also needs to refine (Ik ) simultaneously, as we

will show in Section 4.3.

Conversely, the analysis of loops and the verification of abstract

post-conditions require to generalize abstract states. We consider

the abstract state observed after create locates a free slot (Fig-

ure 3(c)) and inserts it into the ready list. In Figure 3(d), we show

the abstract state obtained over the branch where the new task

is inserted at the head of the list of ready tasks. Intuitively, that

state corresponds to a particular configuration of the property C

shown in Figure 3(b), and where Gr has at least one element, up to
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the merging of Gn and Gr in Figure 3(d). To establish this abstract

state inclusion, the analysis needs to reconstruct a summary for the

group of ready tasks. This folding process is at the basis of abstract

states join, widening and implication checking (Section 4.4).

3 THE COALESCING ABSTRACTION
In this section, we formalize the coalescing abstraction: we define
the abstract states (the predicates that the analysis manipulates),

and their concretization (the concrete states that they represent).

The coalescing construction that we present is generic, and agnostic

with regard to the underlying abstractions even though we focus

on the case where they describe arrays and inductive structures.

Notations. To simplify notations, and without loss of generality,

we assume that programs use a single array a, the elements of

which are C structures. We let F denote the set of fields of these

structures. We let I stand for the set of indexes. We write V (resp.,

X) for the set of values (resp., variables). We also assume all array

accesses are of the form a[v], where v is an integer variable. A

concrete memory state is a partial function mapping basic cells

(variables and fields of array cells) into values, denoted as σ . The
set of concrete states is defined by σ ∈ S = (I × F ∪ X) → V.

To represent abstract constraints, we assume a set of symbolic

abstract variables
¯A (typically noted αi ) that denote values or sets

of values. We also assume a numerical abstract domain [7] with

summary dimensions [12]. We write
¯N for this abstract domain,

and γN̄ :
¯N → P ( ¯A → V ⊎ P (V)) for its concretization function

where ⊎ denotes disjoint union.

Summarizing memory abstractions. As observed in Section 2,

coalescing combines two memory abstractions to produce a new

memory abstraction, thus we first set up a general definition of

this concept. In this paper, we always consider abstract memory

states that write down as a separating conjunction of terms, so we

follow this layout here. As we noted, the analysis of the examples

of Figure 2 requires to describe either individual cells, or summary

areas, where individual cells can be either materialized out of a

summary predicate for materialization, or folded into a summary

predicate for generalization. The definition below formalizes this,

while keeping the precise structure of summaries abstract, as it will

be instantiated later with several different kinds of summaries:

Definition 1 (Memory abstraction). A memory abstraction

consists of a triple ( ¯M,γM̄,↔) made of:
• a set of abstract memories

¯M defined by the grammar shown
in Figure 4; an element t̄ ∈ ¯T (resp., m̄ ∈ ¯M) is called an
abstract term (resp., an abstract state);
• a concretization function γM̄ :

¯M→ P (S) defined following
the principles of separation logic, as shown in Figure 4;
• a summarization relation↔ between summaries and finite
sets of abstract memories, such that, for all summary sum(αi ),
numerical constraints n̄ and finite set M̄ ∈ P

fin
( ¯M), we have:

(sum(αi ) ∧ n̄) ↔ M̄ =⇒ γM̄ (sum(αi ) ∧ n̄) = ∪{γM̄ (m̄) | m̄ ∈ M̄ }

Intuitively, an abstract state is a separating conjunction of for-

mulas, and each of these formulas is the conjunction of a basic

memory predicate (that we refer to as a term) and a collection of

numerical predicates. A basic memory predicate describes either

m̄ (∈ ¯M) ::= ∃α0, . . . ,αm , (t̄0 ∧ n̄0) ∗ . . . ∗ (t̄p ∧ n̄p )
t̄ (∈ ¯T) ::= emp (empty region)

| v 7→ αi (variable)

| αi · f 7→ α j (array cell)

| sum(αi ) (summary predicate)

n̄i ∈ ¯N (numerical abstract predicates)

αi ∈ ¯A (symbolic abstract variables)

σ ∈ γM̄ (∃α0, . . . ,αm , (t̄0 ∧ n̄0) ∗ . . . ∗ (t̄p ∧ n̄p ))

⇐⇒ ∃ν ∈ ¯A→ P (V),

{
∀i, ν ∈ γN̄ (n̄i )
σ ,ν ⊢ t̄0 ∗ . . . ∗ t̄p

σ ,ν ⊢ emp ⇐⇒ σ = ∅

σ ,ν ⊢ t̄0 ∗ . . . ∗ t̄p ⇐⇒ ∃σ0, . . . ,σp ,

{
∀i, σi ,ν ⊢ t̄i
σ = σ0 ⊎ . . . ⊎ σp

σ ,ν ⊢ v 7→ αi ⇐⇒ σ = {v 7→ ν (αi )}
σ ,ν ⊢ αi · f 7→ α j ⇐⇒ σ = {(ν (αi ), f) 7→ ν (α j )}

Figure 4: Summarizingmemory abstractions syntax and con-
cretization (parameterized by the definition of sum)

a single memory cell (variable, or array cell, with one or several

fields), or some sort of inductive predicate. Moreover, the summa-

rization relation describes how summaries may be turned into more

concrete memory descriptions, as part of materialization.

In this section, we assume that n̄ expresses conjunctions of linear

inequalities and set constraints. As this paper is not specifically

focusing on value abstract domains, we represent these constraints

as logical formulas, although our implementation relies on a proper

abstract domain, and static analysis algorithms perform sound ap-

proximation of value constraints whenever required.

Abstraction of arrays. The description of the array properties

considered in Section 2 requires an array abstraction that can tie

numerical properties to possibly non-contiguous groups of cells. It

boils down to a memory abstraction in the sense of Definition 1,

with the appropriate notion of summary.

In this paragraph, we assume F = {f0, f1}. An array summary is

a summary ar(α sz,α ix,α0,α1), that describes a group of array cells,

where α sz describes the number of cells in the group, α ix the set

of their indexes, and α0,α1 the sets of values stored in their fields.

Such a summary predicate may either be turned into the memory

predicate emp that stands for the empty region when it is empty,

or to the disjoint union of a single cell and of a smaller group when

it is not empty. This actually defines a summarization relation↔a
:

(ar(α sz,α ix,α0,α1) ∧ α ix = ∅ ∧ n̄) ↔a {emp}
(ar(α sz,α ix,α0,α1) ∧ α sz > 0 ∧ αv ∈ α

ix ∧ n̄) ↔a{
∃α ′

0
,α ′

1
, (αv · f0 7→ α ′

0
∗ αv · f1 7→ α ′

1
∗ ar(α szu ,α ixu ,α0,α1))

∧ (α sz = α szu + 1 ∧ α ix = α ixu ⊎ {αv } ∧ n̄ ∧ n̄[α0/α
′
0
,α1/α

′
1
])

}
The second case duplicates α0,α1 and creates α ′

0
,α ′

1
to account for

the value of the fields of the materialized cell. This array predi-

cate generalizes to any number of fields, and leads to a memory

abstraction that can summarize array regions:

Definition 2 (Non-contiguous array abstraction). The
non-contiguous array abstraction (or for short, array abstraction)
is the triple ( ¯Ma,γ a

M̄
,↔a) where ¯Ma is defined as the instance of ¯M
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σ0

i = 0

next
used

[0] :

1

1

[1] :

1

6

[2] :

0

0

[3] :

1

−1

[4] :

0

0

[5] :

0

0

[6] :

1

3

[7] :

0

0

[8] :

0

0

σ1

i = 0

next
used

[0] :

1

8

[1] :

0

0

[2] :

1

−1

[3] :

0

0

[4] :

0

0

[5] :

1

2

[6] :

1

5

[7] :

0

0

[8] :

1

6

(a) Concrete states

list(α0,−1) true
αused

0
= 1 αused

1
= 0

ar(α sz
0
,α ix

0
,αused

0
,αnext

0
) ar(α sz

1
,α ix

1
,αused

1
,αnext

1
)

i 7→ α0 ∈ α
ix
0

Array summaries

Num. constraints

Ind. summaries

Variable term

(b) Coalesced abstract state

Figure 5: Coalescing abstraction example

where summary predicates are occurrences of ar, where ↔a is the
above summarization relation, and where γ a

M̄
is defined by↔a.

We note that the concretization γ a
M̄
is defined by the summariza-

tion relation↔a
, which is expected since summary predicates aim

at supporting abstract predicates folding / unfolding.

Example 1. As an example, we consider a simplified memory
cells pool, which is based on a single list of active elements, and on
two fields used and next. An element of index i is in the list if and
only if a[i ].used is equal to 1; then, a[i ].next denotes the index of
the next element; otherwise, a[i ].used is equal to 0. Two example
concrete states are shown in Figure 5(a). Elements in the active list are
shown in red. This set of states can be described by an abstract state
(t̄0 ∧ n̄0) ∗ (t̄1 ∧ n̄1) ∗ (t̄2 ∧ n̄2), where:
• t̄0 = ar(α sz

0
,α ix

0
,αused

0
,αnext

0
) and n̄0 = (αused

0
= 1) describe

the group of active elements;
• t̄1 = ar(α sz

1
,α ix

1
,αused

1
,αnext

1
) and n̄1 = (αused

1
= 0) describe

the group of non-active elements;
• t̄2 = i 7→ α0 and n̄2 = α0 ∈ α

ix
0

describe variable i.

Abstraction of inductive structures. So far, we have considered

only the description of the properties relative to the array structure,

so we now turn our attention to the inductive structures stored in

each region. In Section 2, we have observed that these structures

can be represented using inductive summaries, we defined a sum-

mary list for singly linked lists, and we noted sorted singly linked

lists can also be described using an inductive summary predicate.

More generally, an inductive summary predicate i is defined by a

summarization relation of the form i(α0, . . . ,αk ) ↔
i {m̄0, . . . ,m̄p }

where m̄0, . . . ,m̄p are made of terms the memory part of which

consists either in individual memory cells or in other instances

of the summary predicate i itself. Each of the terms m̄0, . . . ,m̄p
accounts for one of the ways to construct a structure; as an example

the predicate list introduced in Section 2 comprises two such cases.

We write
¯Mi

for the set of memory predicates where all summary

predicates are either of the above form or the true predicate that
describes any memory region.

Definition 3 (Inductive abstraction). The inductivememory

abstraction is the triple ( ¯Mi,γ i
M̄
,↔i) where ¯Mi and↔i are defined as

above, and γ i
M̄
is the concretization function defined by↔i.

Note that the summarization relation defines the concretization

function as in the case of the array abstraction (Definition 2).

Example 2. We consider the same structure as in Example 1. The
region formed by the active elements stores a singly linked list whereas
the other array cells satisfy no particular inductive property. As a
consequence, this set of states can be described by an abstract state
(t̄0 ∧ n̄0) ∗ (t̄1 ∧ n̄1) ∗ (t̄2 ∧ n̄2), where: t̄0 = list(α0,−1) and
n̄0 = true describe the group of active elements, t̄1 = true and
n̄1 = true describe the group of non-active elements, and t̄2 = i 7→ α0

and n̄2 = true describe the state of variable i. In particular, we note
that these constraints convey the fact that i points to the head of a
singly linked list.

Coalescing abstraction. We remarked in Section 2 that the anal-

ysis of programs like the create function of Figure 2 requires to

reason simultaneously about arrays and inductive structures in a

same region. To achieve this, the coalescing abstraction combines

summaries locally:

Definition 4 (Coalescing abstraction). Let ( ¯M0,γ 0

M̄
,↔0) and

( ¯M1,γ 1

M̄
,↔1) be two memory abstractions in the sense of Definition 1,

with different sets of summary predicates. We call coalescing abstrac-
tion the memory abstraction ( ¯M▷◁,γ ▷◁

M̄
,↔▷◁ ) such that:

• the summary predicates in ¯M▷◁ are of the form sum0 ∧ sum1

where sum0 ∈ ¯M0 and sum1 ∈ ¯M1 are summary predicates;
• the summarization relation↔▷◁ is defined by:

(sum0 ∧ sum1 ∧ n̄) ↔▷◁ M̄ ⇐⇒

{
(sum0 ∧ n̄) ↔0 M̄

∧ (sum1 ∧ n̄) ↔1 M̄

• the concretization function γ ▷◁
M̄

is defined by γ ▷◁
M̄
(sum0 ∧

sum1 ∧ n̄) = γ 0

M̄
(sum0 ∧ n̄) ∩ γ 1

M̄
(sum1 ∧ n̄).

In the rest of the paper, we focus on the case where ( ¯M0,γ 0

M̄
,↔0)

is the array abstraction ( ¯Ma,γ a
M̄
,↔a) and ( ¯M1,γ 1

M̄
,↔1) is the induc-

tive abstraction ( ¯Mi,γ i
M̄
,↔i) although the Definition 4 sets up a

general notion of coalescing abstraction. We remark an important

characteristic of coalescing: the structure of a coalesced summary

sum0 ∧ sum1
deeply ties the structures of summary predicates

sum0
and sum1

. Indeed, when we consider sum0 = ar(. . .) and
sum1 = list(. . .), then a memory region described by sum0 ∧

sum1
is either empty or non empty, thus the materialization of

ar(. . .) ∧ list(. . .) produces a disjunction of two elements which

correspond to the case where both summaries unfold to the empty

(resp., non empty) region.

Example 3. We consider the structure of Example 1. Two abstrac-
tions of this structure were presented in Example 1 and Example 2,
which respectively account for the array view and for the inductive
view of the structure. Each abstraction consists of the separating con-
junction of two summary predicates and one points-to predicate over
a variable. The terms of these two abstractions describe regions that
coincide, thus the whole structure can be accurately represented in
the coalescing abstraction. For instance, the first group can be rep-
resented by ar(α sz

0
,α ix

0
,αused

0
,αnext

0
) ∧ list(α0,−1) ∧ (αused

0
= 1).
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cond :
¯M × Cond −→ ¯M local condition test

upd :
¯M × Lv × Expr −→ ¯M local update

mat :
¯T × ¯A −→ P

fin
( ¯M) materialization

abs :
¯M −→ ¯T summarization

sel :
¯T × ¯T −→ N selection

⊔,▽ :
¯M × ¯M −→ ¯M join, widening

⊑:
¯M × ¯M −→ Bool inclusion check

Figure 6: Abstract operations of a memory domain ¯M

The whole abstract state is shown in Figure 5(b) and highlights the
coalescing of terms.

The structure shown in Figure 3(b) is similar, and requires four

coalesced summaries, and three atomic terms for the variables.

4 STATIC ANALYSIS BY ABSTRACT
INTERPRETATION

In this section, we elaborate automatic static analysis algorithms for

the coalescing abstraction set up in Section 3. Static analyses based

on the components of the coalescing abstraction rely on complex

algorithms, and reinventing a novel static analysis directly from

Definition 4 would duplicate a large part of this work. Instead, we

aim at integrating existing analysis algorithms.

4.1 Language and concrete semantics
For the sake of concision, we focus on the smallest set of program

constructions that require all the important analysis operations:

s ::= lv = expr assignment to cell field or variable

| if ( cond ) s condition

| while( cond ) s loop

| s0; s1 sequence

Moreover, we let the semantics of a statement s be the function

JsK : P (S) → P (S) that maps a set of states observed before

executing s into the set of states that are observed after executing

it (if s does not terminate, it returns the empty set). This semantics

is adequate to tackle the verification problem stated in Section 2,

as we are interested in proving properties of the form “any call

starting in a state that satisfies C ∧ P exits in a state that satisfies

C ∧ Q”. Therefore, the remaining of the section aims at computing

an over-approximation for JsK.

4.2 Abstract domain and analysis
In this section, we use the abstract domain

¯M▷◁
obtained by coalesc-

ing
¯Ma

and
¯Mi
. The over-approximation of JsK takes the form of a

function JsK♯ :
¯M▷◁ → ¯M▷◁

, and such that JsK◦γ ▷◁
M̄
⊆ γ ▷◁

M̄
◦ JsK♯ . As

an example, Js0; s1K = Js1K ◦ Js0K so that Js0; s1K♯ = Js1K♯ ◦
Js0K♯ satisfies this soundness property. To construct this analysis,

we define abstract operations in the coalescing domain from opera-

tions in
¯Ma

and
¯Mi
. Figure 6 lists the operations that we use in the

rest of this section. Each operation satisfies a soundness condition.

For instance, cond computes a sound post-condition for a condition

test statement: given abstract pre-condition m̄ and condition cond,
cond(m̄, cond) returns an over-approximation of the set of states

in γM̄ (m̄) that satisfy cond. To define the coalescing analysis, we as-

sume that the underlying domains
¯Ma

and
¯Mi

provide each of these

functions (e.g., we note them conda, condi), and we build a similar

function in the coalescing domain (noted cond▷◁). Similarly, upd
over-approximates assignment. The functions mat and abs respec-
tively refine and weaken abstract states, following↔. The function

sel computes a measure of similarity of two abstract states. Last,

⊔,▽ and ⊑ conserviatively approximate concrete unions, widening

and inclusion checking. In the following, we assume
¯Ma

and
¯Mi

provide these operations, and construct similar operations for
¯M▷◁

.

4.3 Post-condition and materialization
Localization. When an assignment or a condition test in the

analyzed program accesses an l-value, the analysis first needs to

identify what part of the abstract state represents this l-value, using

either array or list information. If the l-value is a variable i, the cell
is represented as a points-to term, since

¯M▷◁
summarizes only array

regions. If the l-value is of the form a[i ].f, then the localization

of the cell is done based on numerical and set constraints over the

indexes, by checking for each group whether i may belong to it.

When several solutions are found, the analysis needs to make case

splits and to consider one case per solution.

Assignment to a materialized cell. We first consider an assign-

ment operation lv = expr, and an abstract pre-condition m̄ where

each memory cell read or written in the assignment is described by

a points-to term. Then, the computation of a post-condition boils

down to the update of numerical constraints. The function upd
(Figure 6) provides such a sound post-condition. When applied to a

single term, the definition of upd▷◁ boils down to upd▷◁ (t̄a
0
∧ t̄ i

0
∧

n̄0) = (t̄a
1
∧ t̄ i

1
) ∧ (n̄a

1
∧ n̄i

1
), where upda (t̄a

0
∧ n̄0) = t̄a

1
∧ n̄a

1
and

updi (t̄ i
0
∧ n̄0) = t̄ i

1
∧ n̄i

1
. This simple definition generalizes to pre-

conditions made of several terms, provided each cell read or written

is present as a points-to term. However, it does not generalize to

the case where either of the cells manipulated by the assignment is

part of a summary.

Materialization. The algorithm to extract a cell is called materi-
alization. It is present both in shape analyses [5, 23] and in array

analyses [8, 12, 21]. The operationmat (Figure 6) achieves this:mat
inputs an abstract term t̄ , and a symbolic variable that denotes an

address in the region described by t̄ , and utilizes the summarization

relation↔ to produce an abstract state that over-approximates t̄
and where the cell of address α is represented exactly. The sound-

ness of mat follows from the definition based on↔:

mat(sum(α , . . .) ∧ n̄,α ) ::= M̄ where (sum(α , . . .) ∧ n̄) ↔ M̄

Given mata,mati, the definition of mat▷◁ is done component-wise,

and also following the definition of↔▷◁
(Definition 4):

mat▷◁ (t̄a
0
∧ t̄ i

0
∧ n̄0,α )

= {(t̄a
1
∧ t̄ i

1
) ∧ (n̄a

1
∧ n̄i

1
) | (t̄a

1
∧ n̄a

1
) ∈ mata (t̄a

0
∧ n̄0,α )

∧ (t̄ i
1
∧ n̄i

1
) ∈ mati (t̄ i

0
∧ n̄0,α )}

While this formula seems to follow straightforwardly from Defi-

nition 4, it also conveys an important property. The conjunction

of numerical constraints may lead to pruning away some terms

that have empty concretization. As an example, we observed in

Section 3 that the summarization relation of the coalescing product
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of an array abstraction and an abstraction based on list predicates

generates simultaneously states where either the region is empty

(so that we have an empty array region and an empty list), or non

empty (so that, a same element can be extracted simultaneously

from the array structure and from the list structure).

Assignment into a summary. We can now state the algorithm for

the analysis of an assignment:

(1) localize each of the cells read or written, that is, determine

to which term of the abstract pre-condition it belongs to;

(2) materialize the localized terms using mat▷◁ ;
(3) apply upd▷◁ to compute the post-condition.

The algorithm for the analysis of condition tests is similar. Due to

the materialization phase, this algorithm returns a disjunction of

abstract states in general, and we will address this with an abstract

join operator in Section 4.4. We demonstrate these two algorithms

in the following example.

Example 4. We consider the abstract state of Example 3 (in Fig-
ure 5(b)), with an additional variable j, the constraint 0 ≤ j < 9, and
code if (a[j ].used==0) { a[j ].next=i; a[j ].used=1; i=j; } :
• the condition reads the value of a[j], which leads to the materi-

alization of this cell; this materialization step produces a disjunction
of two cases where a[j] denotes a group made of a single cell; the
constraint on j implies it may belong to either pre-existing array
regions, however the condition on the field used entails it may only
belong to the group of free slots;
• as the condition step materializes a[j], the subsequent assign-

ments do not require further materialization, and simply apply upd▷◁ .
The resulting abstract state is shown in the graphical form below.
Array regions are shown in the top, and variables in the bottom.
Remark that the first two array regions contain summaries, whereas
the rightmost one contains a single cell.

ar(α sz
0
,α ix

0
,αused

0
,αnext

0
) ar(α sz

1
,α ix

1
,αused

1
,αnext

1
)

list(α0,−1) true
α2 · used 7→ αused

2

∗ α2 · next 7→ αnext
2

αused
0

= 1 αused
1

= 0 αused
2

= 1 ∧ αnext
2

= α0

i 7→ α2 ∗ j 7→ α2

This shows an important property of coalescing abstraction:

when a cell is localized in either underlying domains, it can imme-

diately be materialized in both. The symmetric case (localization

based on inductive predicates) is similar.

4.4 Analysis of loops and generalization
The materialization involved in the computation of post-conditions

splits summary terms and increases the size of abstract states. Not

only the computation of loop invariants but also the comparison of

abstract states make it necessary to perform the opposite transfor-

mation. This transformation naturally divides into the selection of

regions to abstract, and the application of folding based on↔. We

first consider the latter, as it is more simple.

Folding of regions and creation of summary terms. By definition

of the summarization relation, if m̄ is an abstract state, and t̄ is a
summary term such that t̄ ↔ M̄ and m̄ ∈ M̄ , then we can conclude

that γM̄ (m̄) ⊆ γM̄ (t̄ ), which means that the abstract state m̄ can

be conservatively weakened into the summary abstract term t̄ . As
stated in Figure 6, we require memory abstractions to provide a

partial function abs that turns an abstract state into a single sum-

mary term. This function is partial as many abstract states cannot

be accurately approximated by any summary term. The analyses

based on array abstractions or inductive structures abstractions

shown in Section 3 generally support a variant of this function.

Therefore, we show how to construct abs▷◁ from absa and absi:
if absa ((t̄a

0
∧ n̄0) ∗ . . . ∗ (t̄

a
k ∧ n̄k )) = (suma ∧ n̄a)

and absi ((t̄ i
0
∧ n̄0) ∗ . . . ∗ (t̄

i
k ∧ n̄k )) = (sumi ∧ n̄i)

then abs▷◁ ((t̄a
0
∧ t̄ i

0
∧ n̄0) ∗ . . . ∗ (t̄

i
k ∧ t̄ ik ∧ n̄k ))

= ((suma ∧ sumi) ∧ (n̄a ∧ n̄i))

While this folding principle is rather simple, its implementation

is more challenging. A first difficulty is that corresponding sets of

terms should be summarized simultaneously, otherwise abs▷◁ does
not apply. A second difficulty is that the numerical predicates may

need to be weakened during this folding step.

Example 5. We consider the abstract state obtained in the end
of Example 4, and merge the first and third array regions into one,
using abs▷◁ . In ¯Ma, this results in the creation of a summary predicate
described by ar(α sz

3
,α ix

3
,αused

3
,αnext

3
) that contains all the cells de-

scribed by ar(α sz
0
,α ix

0
,αused

0
,αnext

0
) and the cell α2 ·used 7→ αused

2
∗

α2 · next 7→ αnext
2

. In ¯Mi, a segment summary is synthesized, since,

abs▷◁ ((list(α0,−1) ∗ α2 · used 7→ αused
2
∗ α2 · next 7→ αnext

2
)

∧ (αnext
2

= α0)) = list(α2,−1)

The diagram below depicts the result, with a new summary region
in the left (in orange on the figure). To avoid confusion, we let the
summaries of the new group be labeled with subscript 3.

ar(α sz
3
,α ix

3
,αused

3
,αnext

3
) ar(α sz

1
,α ix

1
,αused

1
,αnext

1
)

list(α3,−1) true
αused

3
= 1 αused

1
= 0

i 7→ α3 ∗ j 7→ α3

Selection of groups for abstract join and widening. The analysis of
a condition statement should compute an over-approximation for

the union of flow paths. Moreover, the abstract interpretation of a

loop requires the computation of a sequence of iterates the conver-

gence of which should be ensured by a widening operator [7]. These

operators should merge groups and create summaries using abs▷◁ .
However this operator may not always be able to produce a precise

result, thus the analysis should determine which terms to merge. To

perform this selection, we require memory abstractions to supply

an operation sel that computes a measure of logical similarity of

terms, and returns a non-positive value that is greater in absolute

value when applied to terms that carry very different properties.

As an example, a measure of the similarity of array summaries

and points-to terms in an array region is provided by the opposite

of the number of different associated numerical predicates. Then,

the abstract join (resp., widening) of two abstract states m̄0,m̄1 is

computed as follows:

(1) compute the measure of similarity of each pair (t̄0, t̄1) where
t̄0 is a term of m̄0 and t̄1 a term of m̄1;

(2) based on these measures of similarity, build a relation ≈,

such that t̄0 ≈ t̄1 if and only if t̄0 and t̄1 are very similar;

(3) when t̄0 ≈ t̄1 and t̄ ′
0
≈ t̄1, replace t̄0 ∗ t̄ ′

0
with abs(t̄0, t̄ ′

0
);

repeat this step, and similar rewritings inm̄1 until≈ describes

a bijection between terms of m̄0 and m̄1;
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(4) apply ⊔ (resp., ▽) component-wise, following ≈.

Example 6. To illustrate this algorithm, we consider the program:

in t j = f ( ) ;

i f ( 0 <= j && j < 9 && a [ j ] . used == 0 ) {

a [ j ] . next = i ; a [ j ] . used = 1 ; i = j ; }

We assume that executions start from states described by the abstract
state shown in Example 3 (Figure 5(b)). The states observed after
executing the body of the if branch are described by the abstract state
shown in Example 4, and the states that do not enter the body of the
if branch are described by the abstract state shown in Figure 5(b).
Thus, the abstract post-condition for this program is the join of these
two abstract states. The similarity relation pairs together regions
associated to the constraint used = 1, and that contain list segment
predicates. Note that α2 · next 7→ α0 ∗ . . . gets weakened into
list(α2,α0). Therefore, the similarity relation results in the merge
of the leftmost and rightmost groups of the abstract state shown
in Example 4, as discussed in Example 5. This process produces the
abstract join, hence the post-condition of the code fragment.

Inclusion checking. Inclusion checking is an abstract operation

that takes two abstract states and attempts to prove inclusion. It

is conservative and returns false when inclusion cannot be estab-

lished. It is used both to check the convergence of abstract iterations

over loops, and to check that abstract post-conditions are met. It re-

lies on a similar principle as join and widening, and using ⊑ instead

of ⊔,▽, thus we do not detail this operator here.

4.5 Analysis and soundness
The analysis computes post-conditions for programs, and is defined

by induction over the syntax. When the analysis of a statement cre-

ates disjunctions due to materialization (Section 4.3), it applies ab-

stract join to these disjuncts so as to produce a single post-condition.

It also applies abstract join at branch merges and widening to com-

pute loop invariants. It returns a sound post-condition, so as to

conservatively verify the specification of each primitive:

Theorem 1 (Soundness). For all program s and abstract pre-
condition m̄▷◁ ∈ ¯M▷◁ , we have JsK ◦ γ ▷◁

M̄
(m̄▷◁ ) ⊆ γ ▷◁

M̄
◦ JsK♯ (m̄▷◁ ).

An important remark is that the analysis with the coalesced do-

main reuses fundamental algorithms of the underlying memory ab-

stractions and removes the need to re-implement them completely.

Instead, it ties them step by step to produce precise post-conditions

in the combined domain.

5 EXPERIMENTS
This section reports on the evaluation of the analysis based on

the coalescing abstraction for the verification of components of

embedded operating systems. We evaluate (1) the expressiveness of

our abstraction, namely its ability to describe structural invariants

of programs that use an array as an allocation pool as described

in Section 1, (2) the efficiency of the analysis to successfully verify

real programs and, (3) its usability (the analysis should be easy to

deploy and should effectively automate verification). To this end,

we implemented the coalesced abstraction into the MemCAD static

analyzer [26], and using the Apron implementation of the domain

System TinyOS AOS Minix Linux Nordic

Module task task memory Eicon app.

sched. sched. mgmt net

driver

timer

Lists 1 3 2 1 1

Free slots Yes Yes - Yes Yes

Tail ptr Yes - - Yes -

Length - - - Yes -

info.

Sortedness - Yes - - Yes

Primitives 2 5 4 3 2

Table 1: Analyzed programs and consistency invariants

of linear inequalities [15]. This analysis tool is parameterized by

the description of the structural consistency property C (Section 2).

Experiments setup. We identified a set of target programs that

implement their own memory allocation scheme using an array

that stores dynamic structures. We list them below:

• Task scheduler of TinyOS: TinyOS [20] is an embedded OS

designed specifically for network applications, and systems with a

low-power CPU. It is written in nesC [11], an extension of C. This

task scheduler manages tasks in a list stored in a large array.

• Task scheduler of AOS: This component was presented in

Section 1 and manages tasks in three lists stored in a single array.

• Memorymanager ofMinix: Minix [25] is a Unix-like micro-

kernel, that inspired many other kernels, including Linux. This

memory manager relies on a list stored in an array to maintain the

table of allocated memory blocks.

• The Eicon Diva network driver for Linux: Eicon [1] pro-

vides network chips for servers. This Diva network driver maintains

queues of requests received by a network adapter, and stores them

as a list in an array structure.

• The Nordic nRF51 application timer: Nordic nRF51 se-

ries [2] are chips for embedded ultra-low power wireless applica-

tions. Its timer application [3] stores information about applications

in a sorted list stored in an array.

Table 1 shows the diversity of the data-structures these programs

operate on: some store several lists in a single array whereas others

store only one list; in all cases except Minix, some elements of the

array stand for free slots; some structures maintain a tail pointer or

length information in a separate variable; last, two of the five test

cases use sorted lists. Moreover, each of these programs implements

a set of primitives that modify the structure, typically to handle a

system call or an operation in the management of the system.

Verification and expressiveness of the coalescing abstraction. The
verification process is split into two stages that consist in (1) the

specification of the structural consistency property and of the prim-

itives, and (2) the automatic static analysis of a program of the

form assume(C ∧ P ); prim( ); assert(C ); for each primitive

prim, where assume (resp., assert) causes the analysis to conser-

vatively assume (resp., attempt to verify) an abstract property. The

consistency property is specified using a basic language to describe

memory and value properties. We show this with the specification

supplied for a couple of examples from our test set.
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ar(α sz
0
,α ix

0
,αnext

0
) ar(α sz

2
,α ix

2
,αnext

2
)

α1 · next 7→ αnext
1list(α0,α1) true

αnext
0

< 255 αnext
1

= 255 αnext
2

= 255

head 7→ α0 ∈ α
ix
0
∗ tail 7→ α1

(a) TinyOS scheduler structural consistency CT

ar(α sz
0
,α ix

0
,αalloc

0
,αnext

0
) ar(α sz

1
,α ix

1
,αalloc

1
,αnext

1
)

list(α0,−1) list(α1,−1)

hole_head 7→ α0 ∈ α
ix
0
∗ hole_tail 7→ α1 ∈ α

ix
1

(b) Minix memory manager structural consistency CM

Figure 7: Structural consistency invariants

Example 7 (Verification of the TinyOS scheduler). The
TinyOS scheduler uses a singly linked list, with a variable that stores
the index of the last element. The next field characterizes both the
next element in the list of tasks, and also the free slots: for each free
slot, next is equal to 255, whereas used slots have a next field value
strictly lower than 255. Note that the last element of the list acts as
a sentinel node (its next value is 255, and it does not correspond to
a task). The consistency property CT reflects this partition into three
groups of cells (the group of tasks in the body of the list, the last
element in the list and the free slots). The specification of this nested
structure in the coalescing domain uses the list segment inductive
predicate list introduced in Section 2. It is shown in Figure 7(a). The
task scheduler implements two primitives tpush and tpop to reserve
and free elements. Based on the definition of CT, the verification of
these primitives reduces to the static analysis of the programs below:

assume(CT ); int b = tpop (); assert(CT );

assume(CT ∧ 0 ≤ id ≤ 255 ); tpush(id); assert(CT );

Example 8 (Verification of the Minix memory manager).

The Minix memory manager organizes memory blocks using two lists
stored in the same array and that respectively record allocated blocks
and free elements in the array. All the cells of the array belong to
either of these two lists. Therefore, CM partitions the array in exactly
two regions, and coalesces each region with a list segment summary
predicate introduced in Section 2, as shown in Figure 7(b). Moreover,
there is no specific field indicating which group an element belongs to;
instead, the partitioning of the array is solely guided by the two lists.

Four primitives manipulate this structure: tinit initializes the
structure, allocmem searches for a free block and allocates it, freemem
frees a memory block, and getmax traverses the list of allocated blocks
to search for memory allocation information. As in Example 7, the
verification of all these primitives boils down to the analysis of the
following four short programs:

assume( true ); tinit( ); assert(CM );

assume(CM ); int ok = allocmem( ); assert(CM );

assume(CM ); int ok = freemem(base); assert(CM );

assume(CM ); int m = getmax( ); assert(CM );

The verification of the other three examples follows the same

steps. The structural consistency property of AOS is depicted in

Figure 3(b). The invariants associated to each of these examples

can be expressed with coalesced abstract states similar to those

presented in Example 7 and Example 8. Moreover, the array and

Sample Defs. Prims. Spec. Verified Time

(LOCs) (LOCs) (lines) (prims.) (s)

TinyOS 1 54 18 2 / 2 0.22

tpush 30 yes 0.11

tpop 24 yes 0.11

AOS 6 354 19 5 / 5 6.26

tinit 36 yes 0.12

tcreate 54 yes 0.81

tstop 83 yes 1.68

tsched 71 yes 1.36

tstart 110 yes 2.29

Minix 4 133 8 4 / 4 1.46

tinit 13 yes 0.19

allocmem 46 yes 0.38

freemem 59 yes 0.58

getmax 15 yes 0.31

Eicon 157 80 22 3 / 3 0.64

insert 43 yes 0.24

delete 18 yes 0.12

traversal 19 yes 0.28

Nordic 14 103 13 2 / 2 1.62

tinsert 56 yes 1.03

tdelete 47 yes 0.59

Table 2: Analysis results (Defs: size of the structure defini-
tions in LOCs; Prims.: size of the code of the primitives in
LOCs; Spec: size of the specifications supplied to the anal-
ysis tool; Verified: number of primitives verified out of the
total; Time: total analysis time for the test case in seconds)

inductive predicates required in the five test cases can be provided

as parameters to our analyzer.

Analysis efficiency. Wenowdiscuss the analysis reports. The anal-

yses were performed on a desktop with Intel Xeon E3 at 3.2 GHz

with 16 Gb of RAM, and under Ubuntu 12.04.4. Table 2 summa-

rizes the code sizes, analysis results and averaged timings for each

primitive and for each test case (total time to verify all primitives).

While these programs are all of small size, they all involve sophis-

ticated invariants that require to reason both about array indexes

and inductive pointer structures, so that they could not be analyzed

without the coalescing domain. We distinguish the definition of the

data structures and the body of the primitives to verify (e.g., in the

Eicon driver, type definitions account for a very large part of the

implementation). The coalescing analysis successfully verifies all

the primitives of the five test cases, with respect to the structural

consistency specifications, as shown in Example 7 and in Example 8.

The invariants that are automatically computed ensure not only

memory safety, but also the preservation of the structural consis-

tency invariants. Analysis times are all of the order of at most a few

seconds. As the programs that the analysis targets are not meant

to be large, but subtle and involving sophisticated invariants (as

is the case for all the examples in our test set), these timings are

compatible with verification.

Usability of the analysis. Our verification scheme requires hand

written specification of the structural consistency property. While
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it would be possible to infer a candidate invariant by analyzing the

primitives manipulating the structure, we believe that this approach

would be very likely to compute an invariant that is not what the
developer intends it to be. In this context, the verification approach

appears as more reliable.

For each of our test cases, the time required for a non OS ex-

pert to identify and write down the specification of the structural

consistency ranged from a few minutes up to a couple of hours.

The developer of the target code would spend significantly less

time to do so thanks to their knowledge of the structural consis-

tency invariants. The specification language used by the tool is

close to the intuitions underlying the graphical representations

used throughout the paper.

6 RELATEDWORK
Deductive techniques have achieved great successes in verifying OS

components [13, 17]. Our goal is different, as we aim at automating

the verification of common programming patterns encountered in

low-level components of OSes and embedded software.

The foundation of coalescing is to carefully adjust the level of

logical connectors in memory predicates, so as to precisely capture

a family of overlaid structures while keeping the memory abstract

states simple. Reduced product [7] provides a systematic way to

introduce conjunctive reasoning in static analysis, yet its applica-

tion to memory abstraction is often difficult. Shape analyses rely

on it [19, 26] in order to describe overlaid structures. By contrast,

our analysis applies non separating conjunction locally, hence it ex-

presses stronger properties, and allows a simple synchronization of

coalesced predicates attached to a same region. Per-field separating

conjunction [10] can describe linked structures, but does not apply

to index arithmetics, so it could not describe our array predicates.

Our analysis focuses on dynamic structures stored in arrays. Few

analyses have been developed to tackle such nested structures. On

one hand, a large family of works focus on numerical arrays, and

use segment abstractions [8, 12, 14], which prevents the inference

of properties of non-contiguous sets of cells. Similar abstractions

have been used in invariant generation, model checking and theo-

rem proving [4, 16, 18]. While such analyses can verify sortedness,

they cannot cope with nested structural invariants such as the

property C defined in Section 2. Fluid updates [9] allow a precise

tracking of container properties, and analyze precisely operations

such as a vector copy, but cannot capture nested structure proper-

ties. The analysis of [21] handles non-contiguous regions, and can

compute abstractions of numerical constraints over such regions,

but cannot infer a precise invariant like C, as it does not support

inductive structure. On the other hand, significant progresses have

been achieved in the analysis of programs with dynamic struc-

tures. Such works either use three-valued logic [23] or separation

logic [22], and allow the verification of programs that manipulate

dynamically linked data-structures such as variants of lists [5, 23]

and trees [6]. However, these shape analyses cannot express that

a structure lies inside an array, or a fixed contiguous space. Our

work also extends the notion of abstraction parameterized by user

supplied structure definitions of [6] to also deal with structures

stored in arrays. A notable exception is [24], which extends a shape

analysis with structures nested into abstractions of memory blocks.

This work can only describe a single structure composed of all

the cells in a non empty and contiguous region and will thus not

capture the structures that we consider. By contrast, our analysis

relies on coalescing of array and inductive predicates, which allows

to simplify the associated inductive predicates and reason more

effectively about more complex structures.

7 CONCLUSION AND PERSPECTIVES
We identify a pattern commonly encountered in embedded systems

and OS code, that constructs and manages dynamic structures in

an array, without an external memory allocator. While this pattern

yields subtle code that is hard to verify and relies on sophisticated

invariants, we propose an automatic static analysis to verify con-

sistency invariants of such structures. It is parameterized by the

structural consistency properties, and the value abstraction. The

key idea behind it is to rely on the generic coalescing abstraction

that we proposed to combine tightly abstractions for arrays and

inductive structures. Experiments show that it successfully verifies

different instances of this generic pattern in real-world low-level

OS components and device drivers.

Coalescing views the underlying memory abstractions as black

boxes, thus it opens the possibility to verify other kinds of nested

structures. A promising direction is the verification of the implemen-

tation of programs such as a memory manager, a garbage collector,

or a file system. In all these cases, the verification should handle

several distinct levels of structures, that can be described by coalesc-

ing several specialized abstractions. To that end, one would need

to extend our framework so as to support an arbitrary, possibly

unbounded number of summaries stored inside a pool of cells.
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