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Graphical abstract  

 

Abstract  

Hypothesis 

The effective contribution of interfacial properties to the rheology of foams is a source of many open 

questions. Film dynamics during topological T1 changes in foams, essentially studied for low 

molecular weight surfactants, and scarcely for proteins, could connect interfacial properties to protein 

foam rheology.  

Experiments  

We modified whey protein isolate (WPI), and its purified major protein β-lactoglobulin (β-lg) by 

powder pre-conditioning and dry-heating in order to obtain a broad variety of interfacial properties. 

We measured interfacial properties, film relaxation duration after a T1 event and bulk foam rheology.  
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Findings 

We found that, for β-lg, considered as a model protein, the higher the interfacial elastic modulus, the 

longer the duration of topological T1 changes and the greater the foam storage and loss moduli and the 

yield stress. However, in the case of the more complex WPI, these correlations were less clear. We 

propose that the presence in WPI of other proteins, lactose and minerals modify the impact of pre-

conditioning and dry-heating on proteins and thereby, their behaviour at the interface and inside the 

liquid film.  

Keywords 

Foam rheology; Interfacial rheology; Topological rearrangement; Disproportionation; Whey protein; 

Powder dry-heating 

1. Introduction  

Liquid foams are concentrated dispersions of gas bubbles into a liquid. The mechanical behaviour of 

foams combined with their low density and large interfacial area lead to a wide variety of industrial 

applications: flotation, oil production, firefighting, food and cosmetic products [1,2]. However, the use 

of liquid foams in industry is restricted due to destabilisation processes such as drainage, 

disproportionation and coalescence [1–4]. Foam drainage is the flow of liquid under the influence of 

gravity through the network of films and Plateau borders. Coalescence is the fusion of two bubbles 

after the rupture of a liquid film or lamella separating them. Disproportionation is the result of the 

diffusion of gas between bubbles, driven by gradients of Laplace pressure. Drainage leads to a drier 

foam (a decrease of the foam liquid fraction ɸ) whereas coalescence and disproportionation both lead 

to larger average bubble size R (although with a different size distribution) [2,3]. 

 

Fig. 1 Topological T1 rearrangement. An increasing shear strain is applied to a 2D foam structure, where 

four bubbles are separated by five films (thick segments). From (a) to (b), bubbles are deformed, 

interfaces store elastic energy and the central film (in red) is shrunk. Configuration (c) is an unstable 

intermediate configuration in which the four lateral films meet at a point. From (c) to (d), spontaneously, 

a new central film (in red) is created and then stretched until a static equilibrium configuration is reached, 

in which any three films meet at 120° due to the area minimisation according to Plateau’s law. The 

topological T1 rearrangement consists in the transition between configurations (a) and (d), leading to a 

bubble neighbour switching. Adapted from Höhler and Cohen-Addad [5]. 

From a rheological point of view, a foam behaves as a solid or a liquid depending on the applied strain 

(Fig. 1). When a small strain is applied to a foam sample, the bubbles are deformed and thus their 
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interfacial area and interfacial energy increase, giving rise to an elastic stress. If the applied strain is 

increased beyond the yield strain (respectively, if the stress is increased above a yield stress), bubbles 

start to rearrange and the foam flows. The yield strain corresponds to the onset of plastic events, i.e. 

irreversible bubble rearrangements, called T1s, represented by the transition from configuration (a) to 

configuration (d) in Fig. 1. The macroscopic yielding and flow of a foam are analysed in terms of 

succession of T1 events, at the scale of the bubbles [5–7]. Note that even without an applied stress, T1 

are also triggered by disproportionation [5,6]. T1 events are also related to foam coalescence, since 

film rupture may occur during the bubble rearrangement [8–10]. Despite the fact that T1s are 

increasingly considered as crucial in foam rheology and stability, the links between the dynamics of 

the T1 (duration of the rearrangement) and the foam dynamical properties are not yet clarified. 

The foaming of a solution is helped by adding surfactants, which first decrease the gas-liquid 

interfacial tension. In addition, surfactants promote the foam stability, by providing rheological 

properties to the gas-liquid interfaces, and by inducing repulsive forces between bubbles. 

Still, the effective contribution of interfacial properties to the stability and rheology of foams is a 

source of many open questions. Indeed, foam dynamics resulting from the occurrence of simultaneous 

and interdependent instability mechanisms make correlations between length scales far from trivial 

[11–13]. 

Proteins are amphiphilic macromolecules, which adsorb to hydrophobic interfaces and are able to 

stabilise foams and emulsions. But, in contrast with LMW surfactants, proteins may undergo 

conformational changes and self-assemble at the interface, leading to the formation of a dense, visco-

elastic layer. This feature discriminates proteins from LMW surfactants, though making the 

relationship between interfacial concentration and interfacial tension more complex [14]. Secondly, 

protein adsorption at the interface can be considered almost irreversible, due to the large number of 

adsorbed protein segments at the interface. Interfacial protein self-assembly and quasi-irreversibility of 

the adsorption may result in low-frequency shear and dilatational viscoelasticity, while these features 

are not found for LMW surfactants. Consequently, the specific interfacial behaviour of proteins can be 

useful to implement our understanding of the link between interfacial rheology and foam properties.  

Even if proteins are not easy to characterise because they often have non-equilibrium interfacial 

properties, some investigations of the link between interfacial and foam properties have been 

performed. Interfacial dilatational parameters have been used to explain foamability and stability at 

short times [14,15]. Stability against disproportionation has also been correlated with the higher 

interfacial dilatational elasticity E’ of proteins [15]. Concerning foam rheology, it has been shown for 

β-lactoglobulin (β-lg) that a higher dilatational and shear interfacial elasticity can increase the yield 

stress and storage modulus of a foam [16]. 
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Lastly, another specific feature of proteins is that they have a three-dimensional structure responsive to 

environmental physicochemical conditions (pH, ionic strength, heating...) [17]. Globular proteins, for 

instance whey proteins, have different gas-liquid interfacial properties depending on the protein 

structure [18–21]. For this reason, many processing technologies, especially heat treatments, have 

been applied to whey proteins in order to change their structure, and consequently their interfacial 

properties [22].  

In this work, we have investigated different protein systems and used different processes to modify 

their properties. We used whey protein isolate (WPI) and its purified major protein β-lactoglobulin (β-

lg), and compared them to another milk protein fraction, sodium caseinate, which is known to exhibit 

relatively low interfacial visco-elasticity. Dry-heating WPI and β-lg powders in various conditions was 

used to obtain an even broader range of interfacial properties [23,24]. Indeed, our previous work has 

shown that powder dry-heating, under controlled physicochemical conditions, does affect foam 

stability, which suggests that it changes the interfacial properties [25]. 

In parallel, we have adopted a multi-scale approach. The first level was the study of gas-liquid 

interfaces, combining static and dynamic measurements, namely surface tension and dilatational 

viscoelasticity. The second level was the characterisation of the dynamics of films between bubbles, 

through the duration of T1 rearrangement events, using a five-film setup. Finally, we studied the 

rheology of foams through oscillatory measurements to determine the yielding of the foams, and their 

aging. 

Our goal is to correlate observations at those different scales, in order to shed light on how protein 

formulation and processing affect interfacial and film properties, and to understand how the latter 

impact the properties of foams. We also would like to bring to the attention of physicists that a wide 

range of interfacial rheological behaviours or foam properties may be explored by using proteins. 

Conversely, we also would like to raise awareness among food scientists of how some tools of foam 

physics can help to understand the behaviour of protein foams.  

2. Materials and Methods 

2.1. Materials 

We studied a mixture of proteins called whey protein isolate (WPI), mainly composed of β-

lactoglobulin (β-lg) and α-lactalbumin (α-la). We also studied purified β-lg, as a model protein. 

Sodium caseinate (NaCas) from Armor Protéines (Saint-Brice-en-Coglès, France) and sodium 

dodecyl-sulfate (SDS) from Sigma-Aldrich (Saint-Quentin, France) were also used for comparisons, 

as they are expected to have low or no interfacial viscoelasticity. 

β-lg was purified from bovine milk by using pilot-scale membrane separation technology, in which the 

temperature did not exceed 56°C in order to preserve its native structure [26–28]. Fresh unheated milk 
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was skimmed and microfiltrated (1.4 µm), and then caseins were separated from the whey by 

microfiltration (0.1 µm). The whey protein solution was concentrated by ultrafiltration (5 kDa), 

diafiltrated with deionised water, and then was subsequently frozen until further purification. Then, the 

thawed whey protein solution was acidified to pH 3.8 using citric acid and heated (56°C) to precipitate 

α-lactalbumin. After microfiltration (0.1 µm), the microfiltrate containing β-lg was concentrated by 

ultrafiltration (10 kDa), diafiltrated with deionised water and freeze-dried. The β-lg concentration was 

determined by UV absorption using a specific extinction coefficient of 0.96 mL·g
-1

·cm
-1

 at 280 nm 

[29]. Freeze-dried β-lg contain 77.3 % ± 1.7 % of β-lg. 

WPI powder was obtained by spray-drying a whey protein concentrate isolated from milk microfiltrate 

by ultrafiltration and diafiltration as described by Chevallier et al. [30]. The nitrogen content (TN), 

non-protein nitrogen (NPN) content and non-casein nitrogen (NCN) content of the powder were 

determined by the Kjeldahl method [31]. The protein content P was calculated using: 

P = (TN-NPN) × 6.38 (eq. 1). 

The amount CN of casein or insoluble proteins at pH 4.6 was measured using: 

CN = (TN-NPN-NCN) × 6.38 (eq. 2). 

Free lactose in the WPI powder was measured by ion-exchange high performance liquid 

chromatography (HPLC, Dionex, Germering, Germany) using an Aminex A-6 column (Biorad, St 

Louis Mo., USA) and a differential refractometer (model RI 2031 plus, Jasco). The oven was kept at 

60°C and the elution flow was 0.4 mL·min
-1

 using 5 mM H2SO4. 

We determined that WPI powder contained 95.0 ± 0.2 % (w/w) of protein (using eq. 1), of which 

9.40 ± 0.04 % (w/w) consisted of caseins or insoluble proteins at pH 4.6 (calculated using eq. 2). WPI 

contained also 2.04 ± 0.02 % (w/w) free lactose. 
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2.2. Sample preparation 

 

Fig. 2 Protein sample preparation  

Spray-dried WPI and freeze-dried β-lg were each dissolved in deionised water. In order to reduce the 

amount of caseins and insoluble proteins (particularly for the WPI samples), they were adjusted to pH 

4.6 by adding 12 N HCl and centrifuged for 30 min at 9000×g (Fig. 2). In that way, the amount of 

casein and insoluble proteins in the supernatant collected from WPI was reduced from 9.4 % to 

5.89 %. The solutions were then adjusted to pH 3.5 or pH 6.5 using 12 N HCl or 12 N NaOH and 

lyophilised. Then, the water activity aw of lyophilised powders was adjusted to 0.23, corresponding to 

a common value for commercial dairy powders, by storing them for 2 weeks at room temperature in an 

airtight vessel also containing a saturated MgCl2 solution. The water activity of powders before and 

after dry-heating was checked using an aw-meter (Novasina, Axair Ltd, Switzerland). Powders with 

adjusted pH and aw were dry-heated at 70°C for 0 or 125 hours in hermetically sealed bags. The 

powders were then solubilised in deionised water at a protein concentration of 50 g/L and adjusted to 

pH 7.0. It should be noted that all the experiments were performed at the same protein concentration 

50 g/L, enabling a direct comparison between different samples, and at room temperature. 

In the following, we have differentiated untreated samples from processed samples (Fig. 2). The 

processed samples underwent the pre-conditioning step, either with or without subsequent dry-heating.  
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2.3. Dynamic drop tensiometry and interfacial dilatational rheometry 

A pendant drop tensiometer (Tracker, from Teclis-Scientific, France) was used to determine the 

dynamic interfacial tension at the solution-air interface using a 50 g/L protein solution. After 

formation of a fresh liquid drop hanging from the tip of the needle, the time evolution of the interfacial 

tension was followed for 1600 s by drop shape analysis, with the drop maintained at a constant 7 µl 

volume. 

The same setup was used for interfacial dilatational rheometry. In order to measure the complex 

interfacial dilatational modulus (E), sinusoidal drop oscillations (with amplitude ±0.75 µl, pulsation ω 

= 1.26 rad/s) were applied and the interfacial tension response was recorded. Since the surface area of 

the drop oscillates periodically, the dilatational modulus E exhibits two contributions: the storage 

modulus, E’, and the loss modulus, E’’ which accounts for the energy lost through relaxation 

processes. We report the dilatational moduli E’ and E’’ at two different times (250 s and 1600 s) in 

Table A (supplementary data), obtained by two methods. Firstly, the time evolution of the dilatational 

moduli were obtained by applying to a freshly formed drop continuous oscillations as a function of 

time until an aging time of 1600 s. Differences between samples were higher at 250 s than at 1600 s. 

Thus, we only report the values E’250 s and E’’250 s of dilatational moduli at 250 s. Secondly, to avoid 

continuous oscillations for long times and possible perturbation of the protein layer, we imposed only 

few periods of oscillation after a 1600 s aging to obtain E’1600 s and E’’1600 s. 

2.4. T1 dynamics 

 

Fig. 3 Five-film setup for T1. The four-bubble foam illustrated in Fig. 1 is simplified to the five films 

indicated by thicker segments in Fig. 1, confined between two perspex plates and viewed from above. The 

five films are stretched between two fixed pins and two mobile pins. The T1 event is triggered by moving 

the two mobile pins from left to right. The length L(t) of the new central film created after the T1 event is 

measured as a function of time. These pictures are extracted from a movie showing the whole process, 

provided as supplementary data. 
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The T1 process corresponds to the transition between two equilibrium film structures illustrated as 

configurations (a) and (d) in Fig. 1. We studied the relaxation of the films following the change of 

topology by measuring the length of the new central film as a function of time until static equilibrium 

is reached (Fig. 1, configurations (c) to (d)).  

Our “five-film” setup to explore the dynamics following a T1 is composed of two perspex plates 

separated by four fixed pins. Two further, moveable, pins are attached to a rod that can move back and 

forth across the device. By immersing the device into the protein solution, five films were created, 

attached to two of the fixed pins and the two mobile pins, as shown in Fig. 3. An initial configuration 

as in Fig. 3, left, was obtained; this sometimes required gentle blowing on the films to cause them to 

rearrange. The rod was then moved towards the fixed pins, causing the central film to shrink until an 

unstable configuration was reached and a T1 occurred. The relaxation of the films after the T1 

rearrangement (Fig. 3, right) was recorded at 25 frames per second by a video camera fixed vertically 

above the device (see the movies provided as Supplementary data). To increase the image contrast, the 

device was placed on a black background and lit from above. Image processing with ImageJ allowed 

us to determine the length L of the newly-created film as a function of time. We present results for this 

length normalised by its final length L∞ [32]. We characterised the relaxation duration using the time 

t90 necessary for the film to reach 90 % of its final length L∞ [33].  

 The liquid contents of the menisci (known as Plateau borders) and the film were not controlled, but 

the central film thickness was monitored by image analysis. 

2.5. Foam formation and rheometry 

The two-syringe technique was used to obtain liquid foams [34,35]. The liquid fraction ɸ, defined as 

the ratio Vliquid/Vfoam of the liquid volume to the total foam volume, was fixed at 0.16. ɸ is controlled 

by the ratio of the initial amount of the liquid and the total volume of the two syringes. Foams were all 

produced after twenty plunges of the syringes. 

Foam rheology measurements were performed on the freshly produced foams using a rheometer 

(MCR301, Anton Paar) with a 75 mm cone-plate geometry. The viscoelastic shear moduli G’ and G’’ 

and the yield strain γc were measured during an oscillatory amplitude sweep from 1 to 50 % strain with 

a frequency of 1 Hz. We define G’0 and G”0 as the moduli at a strain γ = 1 %. The yield strain γc was 

defined as the strain at which the viscous properties start to dominate over the elastic ones, i.e. the 

crossover of G’ and G’’. The yield stress τc was then calculated from: 

τc = γc · G’0 (eq. 3) 

where γc the yield strain and G’0 the foam storage modulus in the linear viscoelastic regime of the 

foam [36]. 
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The shear modulus G’ was also recorded as function of the foam aging time at constant frequency 

1 Hz and strain γ =1 %.  

2.6. Bubble size characterisation 

Bubble size was measured by the bubble raft method. Freshly-produced foams were deposited inside a 

Petri dish containing the same protein solution used to make the foam (Fig. A in supplementary data). 

A mean bubble radius was manually calculated over four images of the same foam. 

2.7. Statistical analysis 

Adjustments for multiple comparisons using Tukey’s tests were performed to test the significance of 

mean differences between protein samples (p‐ values <0.05). Correlations between different 

parameters were determined using Spearman’s rank correlation test (coefficient rs). Data were 

analysed using the R software package [37]. 

3. Results 

The results section introduces essentially raw experimental data, detailed scale by scale: i) single 

interface, ii) films dynamics, and iii) tridimensional foams. The possible correlations between them are 

presented in the Discussion section.  

3.1. Characterisation of interfacial properties 

The real and imaginary parts of the viscoelastic interfacial dilatational modulus (E’, E’’) were 

measured as a function of time for different samples (Fig. 4). NaCas had a low viscoelastic modulus in 

comparison with untreated β-lg and WPI. At early times (t<100 s), NaCas and WPI behaved quite 

similarly but then diverged significantly as time increases. The modulus for untreated β-lg and WPI 

steadily rised with time, probably because of evolving inter-protein interactions. In addition, untreated 

β-lg showed higher moduli than untreated WPI.  
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Fig. 4 Time evolution of the interfacial dilatational complex modulus for different samples: (a) real part 

E’; (b) imaginary part E’’. For each sample, the average of triplicate measurements is plotted. The error 

bars at 250 s show the standard deviations. 

Further, Fig. 5 shows the time evolution of interfacial moduli for β-lg (a, b) and WPI (c, d) samples 

before and after processing. Interestingly, the dilatational moduli at early times differentiates the 

samples significantly more clearly than at longer times. For this reason, interfacial properties have 

been characterised at both early and longer times (250 s and 1600 s). We note that in most cases the 

value of E’’ did not exhibit a well-pronounced plateau, but instead continuously declined, as observed 

by Ulaganathan et al. [38]. In other words, E’’250 s > E’’1600 s for most of the samples. In addition, the 

time evolution of the moduli for β-lg was faster than for WPI samples, whatever the treatment (see 

also Table A, Supplementary data). Interestingly, untreated WPI and β-lg samples (represented with 

black lines in Fig. 5) differed from the processed samples, either dry-heated or not. Hence, the powder 

pre-conditioning step prior to dry-heating significantly changed the interfacial properties of the 

reconstituted solutions described in Fig. 2. Fig. 5 also illustrates that pre-conditioning and dry-heating 

effects depended on the sample composition (β-lg or WPI). As an example, the maximum values for 

E’250 s were obtained after pre-conditioning at pH 6.5 for β-lg (≈ 65 mN/m) and pH 3.5 for WPI (≈ 

60 mN/m) (Fig. 5a and Fig. 5c). In addition, powder dry-heating increased the imaginary part E’’ for 

β-lg and decreased it for WPI (Fig. 5b and Fig. 5d). However, dry-heating of both WPI and β-lg 

powders significantly decreased E’ whatever the pH (Fig. 5a and Fig. 5c). 
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Fig. 5 Time evolution of the interfacial dilatational complex moduli (real part E’, imaginary part E’’) for 

β-lg samples (a, b) and WPI samples (c, d). Black: untreated samples; blue: pre-conditioned samples; red: 

dry-heated samples. Dark blue and red curves correspond to pH 3.5, whereas light blue and red curves 

correspond to pH 6.5. For each sample, the average of triplicate measurements is plotted. The error bars 

at 250 s show the standard deviations. 

Protein processing thus clearly impacted the interfacial rheology. In contrast, the impact of protein 

processing on interfacial tension was less marked (see Fig. B, Supplementary data). Table A in the 

supplementary data summarises all the interfacial properties by their values and standard deviations at 

250 s and 1600 s.  

It should be noted that the dilatational moduli were null for SDS in this frequency range (data not 

shown), which points at the interest of proteins as compared to LMW surfactants. For comparison, 

SDS gave interfacial tensions close to 36 mN/m. 
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3.2. Dynamics of T1 events 

 

Fig. 6 Time evolution of normalised film length during the relaxation after a T1 event for different 

proteins and sodium dodecyl-sulfate (SDS). The film length L(t) is normalised by its final length L∞.  

Fig. 6 shows typical normalised film length as a function of time during the relaxation after a T1 event 

for some of the samples, in order to compare i) proteins and SDS, and  ii) whey proteins and caseinate. 

The relaxation corresponds to the creation and stretching of a new film until a static equilibrium is 

reached. As a first output, note that the relaxation was drastically faster for SDS (≈ 0.2 s) than for the 

protein samples (1.23 s – 4.56 s). As well, the relaxation was slower with NaCas than with untreated 

β-lg and WPI samples. 
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Fig. 7 Relaxation time t90 after a T1 for the different protein samples. t90 is defined as the time for the film 

to reach 90 % of its final length. Measurements were triplicates. Error bars are standard deviations. 

Fig. 7 shows that the effect of pre-conditioning and dry-heating depended on the sample composition. 

First, processed β-lg samples had a significantly longer relaxation than processed WPI samples. 

Second, whereas dry-heating at pH 3.5 significantly increased the relaxation time for β-lg, it decreased 

it for WPI. Finally, it is worth noting that the pre-conditioning at pH 3.5 for WPI and pH 6.5 for β-lg 

gave rise to longer relaxation times than for untreated samples.  

3.3. Foam rheology and aging 

Fig. 8 shows the foam storage and loss moduli (G’ and G’’, respectively) as a function of strain for 

different samples. Each foam behaved as a viscoelastic material at the lowest measured strain 

(γ = 1 %), G’0 being slightly higher than G’’0. However, the low limit of the strain range was not low 

enough to clearly evidence the linear regime, where G' is independent of γ. From these plots, a yield 

strain γc can be extracted, defined as the strain at which G’’ first exceeds G’. The values of both G’0 

and the yield strain follow the ranking: untreated WPI > untreated β-lg > NaCas.  



  

14 

 

 

Fig. 8 Typical viscoelastic moduli for protein foams under strain-sweep oscillations at a 1 Hz frequency. 

Storage modulus G’: closed symbols. Loss modulus G’’: open symbols. Measurements were at least 

duplicated (see Table 1 for yield stress calculations and standard deviation). 

 

Fig. 9 Squared reciprocal of the elastic modulus G’(t) normalised by G’0 as a function of time for different 

protein foams. G’0 is the modulus value at the first measurement. Dashed black lines between 500 and 

2000 s represent fitted linear functions of the square root of time. The corresponding coefficients can be 

considered as measurements of the disproportionation rate. Measurements were at least duplicates and 

typical plots are shown. Standard deviations for disproportionation rates are given in Table 1. 
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Upon aging, a liquid foam undergoes drainage and disproportionation. For our foams having a mean 

bubble diameter smaller than 60 µm and considering the small thickness of the foam samples inside 

the rheometer, the drainage can be considered negligible [2], and one can essentially expect 

disproportionation, which results in an increase of the mean bubble radius with time. It has been 

reported that the foam storage modulus G’ depends on the liquid fraction and the bubble size, 

following:  

   
 

 
     (eq. 4) 

where σ is the interfacial tension, R is the bubble radius, and      is a decreasing function of the 

liquid fraction [36,39,40]. Thus, without drainage, G’ scales with 1/R. 

Moreover, in the limit of dry foams, the bubble radius R scales with time as : R ~ t
1/2

 [3,5,41–43]. 

Consistently, as shown in Fig. 9, (G’0/G’(t))
2
 increased linearly with time (after a transient initial 

phase), showing that disproportionation was the main cause of foam aging in those experiments. 

We therefore attribute the differences in the time-dependence of G' to differences in disproportionation 

rate between samples. As an illustration, pre-conditioning (samples labelled ‘0 h’ in Fig. 9) appeared 

to increase the disproportionation rate as compared to untreated samples for β-lg, whereas it appeared 

to reduce it for WPI.  

To gain insight into the impact of processes on the foam bulk rheology and to compare samples 

quantitatively, we chose to extract the yield stress (using eq. 3) and the disproportionation rate from 

the data plotted in Fig. 8 and Fig. 9 (Table 1). The disproportionation coefficient α was obtained by 

fitting a linear function of the square root of time to the G’0/G’(t) data. The yield stress calculation 

involved intermediates quantities, which are given in Table B, in Supplementary data. 

Table 1 Foam bulk yield stress and disproportionation coefficient. The yield stress was calculated using 

the measured visco-elastic moduli, as described in Materials and methods (see eq. 3). The 

disproportionation coefficient has been evaluated by fitting a linear function of the square root of time to 

the evolution of the bulk foam elastic modulus G’. Measurements were at least duplicates. 

Samples Yield stress (Pa) Disproportionation α (10
-3

·s
-1/2

) 

untreated β-lg 6.99 ± 0.61 
a
 18.20 ± 0.77 

bc
 

β-lg pH 3.5 0 h 18.66 ± 1.17 
bc

 24.27 ± 1.99 
cd

 

β-lg pH 3.5 125 h 16.41 ± 0.62 
b
 29.16 ± 1.72 

d
 

β-lg pH 6.5 0 h 18.96 ± 1.97 
bc

 29.88 ± 3.54 
d
 

β-lg pH 6.5 125 h 22.40 ± 0.29 
cd

 38.06 ± 4.23 
e
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untreated WPI 19.36 ± 2.05 
bc

 16.18 ± 0.56 
bc

 

WPI pH 3.5 0 h 26.78 ± 1.10 
d
 5.80 ± 1.09 

a
 

WPI pH 3.5 125 h 39.95 ± 0.53 
e
 14.75 ± 1.54 

b
 

WPI pH 6.5 0 h 37.82 ± 2.47 
e
 11.63 ± 1.56 

ab
 

WPI pH 6.5 125 h 38.60 ± 1.03 
e
 15.34 ± 2.07 

b
 

WPI samples exhibited significantly higher values of yield stress than β-lg samples, whatever the 

processing conditions. The yield stress was significantly higher for pre-conditioned samples that for 

untreated samples, whatever the sample composition (Table 1). The dry-heating and pre-conditioning 

effects on the yield stress depended on the protein composition (WPI or β-lg). Note also that the WPI 

samples had lower disproportionation coefficients than β-lg samples, whatever the processing 

conditions. However, whatever the sample, i.e. for β-lg as well as WPI, dry-heating increased the 

disproportionation coefficient. 

4. Discussion 

We have shown that the sample processing modified their behaviours at each scale differently 

depending on the sample composition (β-lg or WPI). The discussion section is composed of two parts: 

i) a detailed analysis of the effects of processing and composition, including comparisons with 

literature data, and ii) a study of correlations between the different scales.  

The following questions will be addressed: are there some clear links between interfacial visco-

elasticity, T1 duration and macroscopic foam rheology? Do they match with the literature or protein 

specificities? Do model experiments on T1 duration provide the same or complementary information 

as the interfacial characterization?  

4.1. Sample composition and protein processing impact interfacial properties, film 

dynamics and bulk foam rheology 

4.1.1. Pre-conditioning of samples accounts for the main source of differences 

Whatever the sample composition, i.e. a mixture (WPI) or purified protein (β-lg), untreated samples 

behaved distinctly from the processed samples, either through dry-heating or pre-conditioning. 

Untreated samples had lower surface visco-elasticity, faster relaxation after a T1, and lower yield 

stress. Surprisingly, dry-heated and preconditioned samples showed similar behaviours, suggesting 

that pre-conditioning of the samples, though it is not expected to induce major changes in protein 

structure or physicochemical properties, was the main cause of the changes in sample properties. This 

is consistent with previous results. For instance, it has been shown that adjusting the pH prior to 
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dehydration, followed by aw pre-conditioning for two weeks at room temperature, significantly 

affected foaming properties [25]. 

We also think that untreated samples contain partially-altered or aggregated proteins, due to former 

powder storage, which impact interfacial and foam properties. Indeed, it has been shown that the 

storage of WPI powders significantly affects the process of protein aggregation [44]. Thus, in the 

present work, we used a precipitation step at pH 4.6, aiming to remove residual caseins, denatured 

proteins and aggregates formed upon prior processing. We think that this step contributed prominently 

to the impact of pre-conditioning (see Fig. 2). In addition, the processed samples have also been 

freeze-dried, which is known to affect the structural properties of proteins [45] and may contribute to 

changes in interfacial and foam properties. 

4.1.2. Different behaviours as a function of sample composition independently 

from the process 

Our results show that whatever the processing conditions, β-lg and WPI samples exhibited different 

properties at all scales: if one separately compares the untreated samples, the preconditioned samples, 

and the dry-heated ones, there were always strong differences between β-lg and WPI.  

First, we have shown that β-lg samples had higher dilatational moduli than WPI samples, as also 

observed by Davis et al. [46]. In addition, we also observed that β-lg exhibited slower film relaxation, 

lower foam yield stress and faster disproportionation than WPI samples. Thus, interfacial and foam 

properties of WPI cannot be explained by the properties of its major protein β-lg.  

Differences in interfacial properties between β-lg and WPI may be due to the rapid adsorption at the 

interface of the residual caseins present in WPI, which are known to yield low interfacial dilatational 

moduli [15]. It has been proposed that globular proteins, such as BSA in their work and β-lg in ours, 

may be viewed as hard spheres, resisting compression and giving a high interfacial elastic  modulus, 

whereas caseins are comparable to soft spheres, yielding a low modulus [19]. The presence of α-la, 

another whey protein in WPI, may also weaken the protein layer at the interface as compared to 

purified β-lg. Indeed, it has been showed that α-la gives rise to lower values of E’ than β-lg [46]. 

Moreover, the β-lg network at the interface can promote interfacial elasticity because of β-lg 

polymerisation through sulfhydryl-disulphide exchange [47]. Thus, the β-lg content in protein samples 

seems to be an important parameter of the interfacial dilatational rheology. 

There is little literature on the rheology of foams made from dairy proteins. In agreement with Schmitt 

et al. [48], we found that WPI foams had a higher storage modulus G’ than NaCas foams. Those 

authors suggested that a network can be formed across the lamellae, in which protein concentration is 

likely to be high, and that this causes high G’. We also found higher values of G’ for WPI than for β-

lg. A stronger protein network across the lamellae for WPI foams could also explain those higher G’ 
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values. α-la, present in WPI, is believed to increase the yield stress and the value of G’ by contributing 

to a more cohesive network inside the protein layers and between them. On the other hand, it has been 

proposed that α-la could reduce the yield stress of foams made from WPI [46], but we did not 

observed this. 

Some investigations on WPI disproportionation followed by bubble size as function of time report 

exponent values between of 1/3 and 1/2 [49], partly in agreement with our results. We are not aware of 

any previous disproportionation measurements comparing β-lg and WPI samples treated under the 

same experimental conditions. There were no significant differences between β-lg, WPI and NaCas as 

regards the disproportionation rates of single spherical air bubbles [50]. However, foams have closely 

packed bubbles, and disproportionation also depends on the bubble size, shape and number of faces 

[51]. Liquid film thickness could explain the faster disproportionation for β-lg samples as compared to 

WPI [52]. In addition, β-lg foams apparently had smaller bubbles and a lower bubble size dispersion 

as compared to WPI foams. 

The presence of lactose and α-la in WPI may also increase the thickness of the liquid lamella due to 

higher steric repulsion between aggregates and glycated proteins [53,54]. 

Finally, WPI samples show lower disproportionation rate and higher yield stress than β-lg samples, 

probably due to the contribution of other components such as lactose and α-la. The properties of the 

liquid film, which cannot be predicted by studying a single interface, are probably involved. 

4.1.3. Pre-conditioning effects depend on sample composition  

We have found that the pre-conditioning effects significantly depended on the protein composition. 

Pre-conditioned WPI samples had a significantly lower disproportionation rate than untreated samples, 

whereas the opposite was observed for β-lg (Fig. 9). In addition, two processing conditions resulted in 

particular behaviours as regards the interfacial properties, film dynamics and foam properties. As a 

matter of fact, WPI pre-conditioned at pH 3.5 yielded the highest interfacial storage modulus, the 

highest interfacial tension, the slowest film relaxation, the lowest yield stress and the lowest 

disproportionation rates of all the WPI samples. 

Slight protein structural changes in solution and in the dry-state prior to dry heating may explain the 

pH pre-conditioning effects. For instance, conformational modifications occur in acidic conditions: a 

molten globule conformation for α-la and a dimerisation by intermolecular β-sheet for β-lg [22,55]. In 

addition, it has been shown an increase of lysozyme glycation when the pH prior to freeze-drying 

decrease (pH 6.2, 7.2, or 8.2) [56]. Some authors have suggested that lactosylation of β-lg may be 

limited by reducing the pH prior to drying [57]. 
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Thus, protein physico-chemical changes due to pH adjustment could partly account for the variations 

in sample properties. 

4.1.4. Impact of dry-heating on samples properties  

We think that dry-heating generates aggregates and slight structural changes, which act simultaneously 

on the foam properties, through the bulk properties as well as the interface properties. Aggregates, 

upon competition with non-aggregated proteins, do not adsorb at interfaces [49].  

We have shown that, whatever the sample composition, dry-heating decreased the interfacial elastic 

modulus. As discussed above, the interfacial dilatational elastic modulus E’ mainly depends on the 

intra-protein structural rigidity and the strength of inter-protein links formed during conformational 

rearrangements, which oppose interface compression and/or expansion. The higher the intra-protein 

structural rigidity, the higher the interfacial dilatational elasticity E’. Thus, all the treatments that 

promote protein unfolding lead to a decrease in E’ [19]. Some authors have also demonstrated that 

dry-heating of egg-white powder induces a decrease in interfacial dilatational visco-elasticity [23].  

We showed higher yield stress for WPI after dry-heating. That was not observed for β-lg. WPI dry-

heated samples are likely to have larger aggregates than β-lg, even after the same heat treatment, due 

to the Maillard reaction [22]. Thus, larger aggregates for WPI may increase the strength of the protein 

network across the liquid film. 

As regards the disproportionation rates, it has been shown that aggregates located at the interface, 

under specific pH condition and size, may decrease the rate of disproportionation but it was not 

observed in our study [49,58]. 

Overall, dry-heating had not a marked effect on interfacial properties and foam rheology, as compared 

with the effects of pre-conditioning. In addition, dry-heating could also modify the bulk properties 

through the possible formation of protein aggregates. 

4.2. Multiscale correlations: interfacial properties, film dynamics and bulk foam 

rheology 

4.2.1. Film relaxation time and the interfacial dilatational elasticity and viscosity are 

correlated 

It is worth noting that we report here the first measurements of the relaxation following a T1 event 

with proteins in the absence of added co-surfactant. Some authors have studied proteins solutions, but 

in the presence of polymers in order to prevent film rupture [33]. They observed longer relaxation 

times of t90 ≈ 3.7 s, probably because of interaction between polysaccharides and proteins at the 



  

20 

 

interface [59,60]. Our film relaxation measurements for different proteins in the absence of co-

surfactant were made possible by using a high bulk protein concentration, more than ten times higher 

than in previous studies [33].  

As shown in Fig. C in Supplementary data, relaxation times are independent of the bulk viscosity, as 

reported by Durand and Stone [33], meaning that the interfacial viscoelasticity is the main factor 

determining the relaxation kinetics. In particular, it has been demonstrated, for LMW surfactants, that 

the relaxation time is proportional to the ratio between the interfacial viscosity E’’ and the interfacial 

tension [61]. 

As well, it should be noted that some authors have shown that an increase in liquid fraction inside the 

film may slow down the kinetics [10]. As an indirect method to monitor the film liquid fraction, we 

used image analysis to ensure that film thicknesses were not significantly different (see supplementary 

data, Table  C). This led us to exclude NaCas, which was the only protein sample giving significantly 

thicker films. 

Table 2 Spearman’s correlation coefficient rs between t90 (the time for the film to reach 90 % of its final 

length) and interfacial properties for β-lg and WPI samples. 

  (E'/σ)250 s (E'/σ)1600 s  (E’’/σ)250 s (E’’/σ)1600 s 

t90 (s) 0.90 *** 0.60 ***  0.74 *** NS 

| rs | close to 1 means a stronger correlation. Significance depends on the p-value: *p<0.05, **p<0.01, 

***p<0.001. For a p-value>0.05 correlation is considered as not significant (NS).   

A correlation test between the interfacial properties and relaxation time after a T1 are shown in Table 

2 for β-lg and WPI samples.  

Dilatational moduli E’ and E’’ and interfacial tension σ are both involved in foam properties. For this 

reason, we used the dimensionless interfacial elasticity E’/σ and interfacial viscosity E”/σ to 

characterise the interfacial properties.  

It finally turns out that the highest and most significant correlations were obtained between the 

relaxation time after a T1 and both the dimensionless interfacial elasticity and interfacial viscosity at 

short aging times (Table 2). In other words, the higher the dimensionless interfacial elasticity and/or 

interfacial viscosity at short times, the slower the relaxation after a T1 event. In addition, it should be 

noted that these correlations were valid for the WPI as well as the purified β-lg.  

Thus, the interfacial properties can be inferred indirectly through film relaxation by the five-film 

device.  
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4.2.2. Links between foam rheology, interfacial properties and film dynamics 

are sensitive to sample composition 

Table 3 Spearman correlation coefficient rs between interfacial properties, foam rheology, 

disproportionation coefficient and T1 kinetics for all the β-lg samples. 

 

(E'/σ) 

250 s 

(E'/σ) 

1600 s 

(E’’/σ) 

250 s 

(E’’/σ) 

1600 s 

t90 

Disproportionation α 0.63 
*
 NS NS NS 0.70 

*
 

Foam storage modulus G’0 0.91 
***

 0.85 
***

 NS NS 0.87 
***

 

Foam loss modulus G”0 0.85 
***

 0.76 
**

 NS NS 0.82 
***

 

Yield strain NS NS NS NS NS 

Yield stress 0.76 
**

 0.73 
**

 NS NS 0.61 
*
 

| rs | close to 1 means a stronger correlation. Significance depends on the p-value: *p<0.05, **p<0.01, 

***p<0.001. For a p-value>0.05 correlation is considered as not significant (NS).   

In this part, we study the correlations between foam properties on the one hand and interfacial 

properties and film dynamics on the other hand. 

As shown previously (section 4.1), we observed an effect of the sample composition (β-lg or WPI) on 

interfacial properties, film dynamics and foam properties. It was thus necessary to separate β-lg 

samples from WPI samples in order to study the correlations between measurements at different 

scales.  

In the case of β-lg samples (Table 3), several significant correlations exist between interfacial 

properties (direct measurements or indirect information through film relaxation) and the foam 

rheological properties. The dimensionless interfacial elasticity at short times as well as t90 are 

correlated with the foam storage and loss modulus, the disproportionation rate and the yield stress 

(Table 3). In other words, the higher the dimensionless interfacial elasticity, the longer the film 

relaxation after a T1 event, and the higher the disproportionation rate, the foam storage and loss 

moduli and the yield stress. Some of the correlations that we found for the β-lg samples are in 

agreement with results reported in the literature. Some studies on dairy proteins have reported that 

higher values of the interfacial dilatational elasticity (E’) lead to an increased yield stress and foam 

modulus [46,48,62]. It has also been demonstrated with dry-heated egg-white that the higher the 

interfacial visco-elasticity (E’ and E’’), the higher the foam storage and loss moduli [23].  
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As regards the disproportionation rate, the correlations found for the β-lg samples are not fully 

consistent with the literature data. The rate of disproportionation decreases with an increase in the 

interface elasticity [46,58]. Martin et al. [15] have also reported that stability against 

disproportionation is correlated with higher dilatational elastic modulus E’. A higher ratio E’/σ should 

prevent bubble disproportionation [63]. However, for β-lg, our results show that increasing the 

dilatational elastic modulus E’ increased the disproportionation rates.  

As regards WPI, fewer significant correlations were obtained (see Supplementary data, Table D). As 

mentioned above (section 4.1), due to its complex composition, complex dry-heating effects may be 

expected. As a consequence, other contributions than interfacial rheology, such as lamellar thickness, 

or intralamellar structure, may impact the foam properties. 

As presented in section 3.1 the interfacial properties of protein solutions are strongly time-dependent, 

whereas LMW surfactants quickly reach an equilibrium state at the interface [14]. Most of the 

significant correlations in Table 2 and Table 3 were found when considering the interfacial visco-

elasticity well before a steady-state, plateau value. However, many studies on proteins report 

interfacial properties after 20-30 min [15,62,64]. Thus, the out-of-equilibrium and short time scale 

value of interfacial visco-elasticity and interfacial tension could be more relevant than “equilibrium” 

values to predict foam properties. 

As mentioned in section 3.3, in the general case, whatever the surfactant nature, the foam elastic 

modulus at low strain is supposed to be only a function of the liquid fraction [36,39,40], which would 

imply a constant value of the G’/( σ/R) for a given liquid fraction. We checked and discussed this 

relationship (supplementary data, Table B). 

5. Conclusions 

In the study of the general determinants of foam rheology and stability, proteins allow to explore a 

wider experimental domain than low-molecular-weight surfactants, especially as regards interfacial 

rheology. In the present work, the sensitivity of proteins to powder processing gave rise to a wide 

range of interfacial behaviours, allowing us to study correlations between interfacial properties, film 

dynamics and bulk foam rheology. 

Interestingly, we found that the pre-conditioning of the samples prior to dry-heating accounts for the 

main source of differences, though it is not expected to induce major changes in the structural and 

physico-chemical properties of proteins. Thus, we think that slight structural protein modifications 

during pre-conditioning greatly impact the foam and interfacial properties of whey proteins in 

comparison with protein aggregates possibly produced during dry-heating. The pre-conditioning step 

may also result in subtle changes in the WPI composition, which can also be involved in changes in 

the interfacial and foam properties.  
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The novelty of our work is to transpose an approach from foam physics to food protein foams, in order 

to obtain a more detailed insight into the behaviour of protein foams. We showed that protein 

interfacial properties can be measured indirectly through film relaxation by the five-film device. In 

particular, it confirms that film relaxation has a central role in foam rheology and foam stability 

[7,10,51,61]. Thus, protein film relaxation after a T1 event can be considered as an intermediate scale 

between single interfaces and tridimensional foams, helpfully connecting interfacial properties to 

macroscopic foam properties. In addition, the use of foam rheology to infer the disproportionation rate 

may be an alternative to the bubble size characterisation during the foam aging [49]. 

We showed that β-lg foam mechanical properties, namely the foam storage and loss moduli and the 

yield stress, increase with the interfacial storage modulus, consistently with literature [46,48,62]. 

However, studies on purified β-lg, as a model protein, cannot fully explain the interfacial and foam 

properties of the WPI mixture. The presence of other proteins, lactose and minerals in WPI is likely to 

affect the protein behaviour at the interface and inside the liquid film, making the relationships 

between different length scales more complex.  
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