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Technology status & Ongoing challenges for AVs

 Strong involvement of Car Industry & GAFA + Large media coverage + Increasing Governments supports
* An expected market of 515 B€ at horizon 2035 (~17% world automobile market, Consulting agency A "Dec 2017)
« But Legal & Regulation issues are still unclear ... idem for Technologies Validation Wb’tl Ication issues !

=> Numerous experiments in real traffic conditions since 2010 (Disengagement reports Wﬂﬁght&g{@stem maturity)
=> But still insufficient ... Realistic Simulation & Formal methods are also u df@é& { (2.0. EU Enagle-S3)

Dense 3D mapping & Numerous vehicles
10 years R&D, 8 millions km covered since
2010 & 25 000 km/day

Tesla Autopilot L2 with Radar & Mobileye/Inte ‘ RS Qg
Commercial ADAS product =>Tested by gigs e ¥

-

NuTon s =
LN\ ooy oy

| ol el = |
— ; ; : “Self-Driving Taxi Service L3” testing in US (Uber, Waymo) & Singapore (nuTonomy)
Drive Me trials (Volvo, 20 - — Autonomous Mobility Service, Numerous Sensors +*“Safety driver”” during testing (take over in case
« 100 Test Vehicles in Goteborgm80 km, 70km/h = Uber: System testing since 2017, Disengagement every 0.7 miles in 2017 (improved now)
* No pedestrians & Separations between lanes = Waymo: 1t US Self Driving Taxi Service launched in Phoenix in Dec 2018
= Disengagement reports provide insights on the technology maturity
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Fatal accidents involving AVS - Perceptron failure

0 Tesla driver killed in a crash with Autopilot “level 2” active JSS==EE
(ADAS mode) — May 2016 =

v The Autopilot failed to detect a white moving truck, with a
brightly lit sky (Camera Mobileye + Radar)

v The human driver was not vigilant & didn’t took over

Tesla Model S
|~ Autopilot

a Self-driving Uber L3 vehicle killed a woman

=> First fatal crash involving a pedestrian
Temple, Arizona, March 2018

v Despite the presence of multiple sensors (lidars, cameras ...), the
perception system failed to detect the pedestrian & didn’t disengaged

v The Safety Driver reacted too lately (1s before the crash)




AVs have to face two main challenges

Challenge 1: The need for Robust, Self-diagnosing & Explainable Embedded Perception

Video source: AutoPilot Review @ youtube.com

201 9.5.1 5 ‘_TRY 3 | Video Scenario:

.  The Tesla perception system failed to
8 detect the barriers blocking the left
side route.

 The driver has to take over and steer
the vehicle away from the blocked
route (for avoiding the collision).

0) My
319/2019 5:29:22 PM




AVs have to face two main challenges

Challenge 2: The need for Understandable Driving Decisions (share the road with human drivers)

Human drivers actions are determined by a complex set of interdependent factors difficult to model
(e.g. intentions, perception, emotions ...)
= Predicting human driver behaviors is inherently uncertain
= AV have to reason about uncertain intentions of the surrounding vehicles

Video source: The Telegraph

Video scenario:
 Scene observed by the dash cam of a
bus moving behind the Waymo AV

« Waymo AV is blocked by an obstacle
and it decides to execute a left lane
change

* The bus driver misunderstood the

Tesla’s intention and didn’t yield
The Lexus SUV, fitted with

special sensors, struck the o . « The two vehicles collided

public bus on February 14
in Mountain View, California




Perception & Decision-making requirements for AVs
Dynamic Scene Understanding ADAS & Autonomous; ”*’r]y] flef
& Navigation Decisions VT
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» I - .-+ Embedded Perception & Decision-making LES stAneTIUE
il - for Safe Intentional Navigation L EviTons oE RENTRER DEDANS. ICSES R
Situation Awareness & Decision-making Anticipation & Risk Prediction required
— Sensing + Prior knowledge + Interpretation for avoiding an upcoming collision with “something™
= Selecting a}gproprlate Navigation strategy => High reactivity & reflexive actions
(planning & control) => Focus of Attenition & Sensing

=> Collision Risk estimation + Avoidance strategy

Main features
v Dynamic & Open Environments => Real-time processing & Reactivity (several reasoning levels are required)

v" Incompleteness & Uncertainty => Appropriate Model & Algorithms (probabilistic approaches)
v" Sensors limitations (no sensor is perfect) => Multi-Sensors Fusion

v’ Hardware / Software integration => Satisfying Embedded constraints

v Human in the loop (mixed traffic) => Human Aware Decision-making process (Al based technologies)
Taking into account Interactions + Behaviors + Social rules (including traffic rules)




13* Paradrgm Embedded Bayeslan Perception

LIl sensorrs Fusion \ |

J g & Detec Characterization of the local

h_§afe Navigable Space & Collision Risk

Embedded Multi-Sensors Perception “ 4 )
= Continuous monitoring of the v mic scene interPeetation
dynamic environment => Usmg Context & Semantics

Q Main challenges
v Noisy data, Incompleteness, Dynamicity, Discrete measurements
v Strong Embedded & Real time constraints

Q Our Approach: Embedded Bayesian Perception
v Reasoning about Uncertainty & Time window (Past & Future events)
v Improving robustness using Bayesian Sensors Fusion
v' Interpreting the dynamic scene using Contextual & Semantic information
v Software & Hardware integration using GPU, Multicore, Microcontrollers...




Bayesian Perception : Basic idea

Q Multi-Sensors Observations
Lidar, Radar, Stereo camera, IMU ...

Real-time !

Q Probabilistic Environment Model including Dynamics plo|z,c]:
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Concept of “Dynamic Probabilistic Grid + Bayesian Filtering”
— Clear distinction between Static & Dynamic & Free components
= Occupancy & Velocity probabilities

[PhD Thesis Coué 2005]
[Coué & Laugier 1JRR 2005]

—> Designed for Highly Parallel Processing (to satisfy real-time constraints) [Laugier et al ITSM 2011]
= Includes Embedded Models for Motion Prediction & Collision Risk Assessment [Rummelhard et al ITSC 2015]
— Patented technology & Industrial licenses 2018 (Toyota, Easymile) [Mooc uTOP 2015]

a Main philosophy
Reasoning at the grid level as far as possible for both :
o Improving Efficiency & Reactivity to unexpected events => Highly parallel processing & High frequency !
o Avoiding most of traditional object level processing problems (e.g. detection errors, wrong data association...)




Dynamic Probabilistic Grid & Bayesian Filtering - Main Features

=> EXxplotiting the d’vnamlc Information for a better understanding of the scene

NS ACU ™ ~ Motion fields’
Sensors data fusion P\ (Static part-Q (Dynamlc pari)
+ >

Bayesian Filtering 3
+

Y
*

Extracted Motion Fields

S48
Static obstacleSw.. .

1s* Embedded & Optimized version Free space
(HSBOF, patent 2014) +

/ll \\\‘?:

Front camera view of the ego vehicle (urban scene)

Patented Improvements & Implementations (2015, 2017)
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Detection & Tracking + Movmg Objects Classification Ground Estimation & Pomt CIoud CIaSS|f|cat|on
=> CMCDOT 2015 (including a “Dense Occupancy Tracker”) (patent 2017)

Velodyne HDL 64



System Integration on a commercial vehicle

0POC 2019: Complete system implemented on Nvidia TX1, and easily connected
to the shuttle system network in a few days (using ROS)

O Shuttle sensors data has been fused and processed in real-time, with a successful
Detection & Characterization of the Moving & Static Obstacles

O Full integration on a commercial product under development with an industrial company
(confidential)

Point cloud classification, with two pedestrians moving CMCDOT filtered Occupancy Grid + Inferred Velocities +
respectively in front and behind the shuttle Collision Risk + Objects segmentatlow

Detected
moving objects

2 Velodyne VLP16

"t

“2MS mono-layer
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2" Paradigm: Collision Risk Assessment & Decision-making
=> Decision-making for avoiding Pending & Future Collisions
" "Human-Aware Situation Risk-Based Decision-making

Assessment = => Safest maneuver to execute
-y . - | ) ,‘E*)@o N o ey

Q Main challenges
Uncertainty, Partial Knowledge, World changes, Real time
Human in the loop + Unexpected events + Navigation Decision based on Perception & Prior Knowledge

Q Approach: Prediction + Risk Assessment + Bayesian Decision-making
v Reason about Uncertainty & Contextual Knowledge (using History & Prediction)
v Estimate Probabilistic Collision Risk at a given time horizon t+6 (o= a few seconds ahead)
v Make Driving Decisions by taking into account the Predicted behavior of all the observed surrounding traffic
participants (cars, cycles, pedestrians ...) & Social / Traffic rules
Q Decision-making: Two types of “collision risk™ have to be considered
v' Short-term collision risk => Imminent collisions with “something” (unclassified), time horizon <3s, conservative hypotheses
v Long-term collision risk => Future potential collisions, horizon >3s, Context + Semantics, Behavior models



http://www.stupidedia.org/images/6/68/Kreuzung.jpg

Concept 1: Short-term collision risk (Basic idea)
=> How to deal with unexpected & unclassified events (i.e.“something™ is moving ahead) ?
=> Exploit previous observations for anticipating future objects motions & related potentlal future collision

o

Autonomous 7 - - 2y " ' " | ' ' Parked Vehicle
. . i T 5 occultation
Vehicle (Cycab) ~3s ( )

Pioneer Results
(2005)

[PhD Thesis C. Coue 2004]
[Coué & Laugier & al 1JRR 05]

Thanks to the prediction capability of the BOF technology, the Autonomous Vehicle “anticipates” the pedestrian motion and brakes (even
if the pedestrian is temporarily hidden by the parked vehicle)



Short-term collision risk - Main Features & Results
=> Grid level & Conservative motion hypotheses (proximity perception)

ad Main Features

Proximity perception: d <100m and t <5s
8=0.5s => Precrash
6=1s => Collision mitigation
d>1.5s => Warning/ Emergency Braking

o Detect “Upcoming potential Collisions a few seconds ahead (3-5s) in the Dynamic Grid
o Risky situations are both localized in Space & Time (under conservative motion hypotheses)
o Resulting information is used for choosing the most appropriate Collision Avoidance Maneuvers

Q Experimental results

T -

Ego Vehicles

_WNo alarm ! (] _ =
Other.VelTitle Mobilesbummy.(Unexpected event:
ban street experiments Crash scenario on test trracks

F Reduce drastcally False Alarms | oSt all collions predicted before fe crash

C. LAUGIER - Situation Awareness & Decision-making for Autonomous Driving

54| Collision Risk Assessment (video 0:45)

=> time to collision: 3s
=> time to collision: 2s
e Red =>time to collision: 1s

IROS 2019 Cutting Edge Forum on *““Contributions of Robotics, Al and ITS to Autonomous Driving™, Macau, China, Nov 5th 2019




Concept 2: Long-term Collision Risk (Object level)

=> Increasing time horizon & complexity using Context & Semantics
=> Key concepts: Behaviors Modeling & Prediction + Traffic Pamerpams Interactions

Decision-making in complex traffic situations— | -
v Understand‘the current traffic situation &_4ts Ilkelv evolution
v’ Evaluate the RiSk of future collision by reasonlng onh traffic par~t|C|pants Behaviors
v’ Takes mto a:cboun“t C@ﬂ’l;EXL_&S.eman'[IC‘S ~ _

Context & Semantics
History + Space geometry + Traffic rules
+
Highly structured environment & . Traffic rules | Behavior Prediction & Interactions
make Prediction more easy f i For all surrounding traffic participants

5 | (using learned models)
Wi - B +
b 4 : i |

Probabilistic Risk Assessment




Behavior-based Collision risk — Main approaches & Results
=> |ncreased time horizon & complexity + Reasoning on Behaviors & Interactions
Q Trajectory prediction & Collision Risk => patent 2010 (Inrla Toyota, Probayes)

Behaviors Behavnors to Trajectorles

(Learning + Prediction)
X273 |
Cooperation still on-going
TOYOTA (R&D contracts + PhD)

Courtesy

B Speed: 96 km/h Risk: 0.0 % TTC: >10 s Probayes

CoIIis.io.n Rlsk Assessment
(MC Simulation)

Q Intention & Expectatmn (Mlxed Traffic & I’nteractlons) => Patents 2012 (Inrla Renault) & 2013 (Inria - Berkeley)

Human-like

) Cooperation still on-going
reasoning

(R&D contracts + PhD)

| (Traffic
Rules

Intention Expectation
model model




3" Paradigm: Models improvements using Machine Learning

Q Perception level: Construct “Semantic Grids™ using Bayesian Perception & DL

Il Urknown

I Building
I sky
I | Road

e X ,', : é F' 1 S
i D ‘ ImageS 5 . a v e -Vegetation

~ " (for semarkjc segmentatl_on)

Sidewalk

Pedestrian
Cyclist

Signage

I Fence
) B Free
B static

Dynamic

‘Point.clouds —r
namic-Oceupancy Grids) Semantic Grids

A Decision-making level: Learn driving skills for Autonomous Driving

< 15t Step: Modeling Driver Behavior using Inverse Reinforcement Learning (IRL)
< 2"d Step: Predict motions of surrounding vehicles & Make Driving Decisions for Ego Vehicle

; Reér viéwq 7 gt

TOYOTA



Perception Level: Semantic Grids (Bayesian Perception + DL)

Objective: Add Semantic information (cars, pedestrians, roads, buildings...) in each cell of the Dynamic
Occupancy Grid model, by exploiting additional RGB inputs

Approach: A new “Hybrid Sensor Fusion approach” combining Bayesian Perception & Deep Learning
[1] [2] + Patent 2019 (Inria, Toyota)

Semantic Grid Network [1] [3]

Intermediate
Red lines: Back-propagation (training)

. - _ 4m
1:RGB Semantic Segmentation
from RGB Differentiable
registration :
— Conv - Deconv Intermediate layers (~20 layers)
Bayesian Semantic Geometry => Learns the approximate heights of the classes/objects
- Sen;or Fusion => No 3D reconstruction required & Less sensitive to
[ :Lidar Data Fusion g calibration errors (initial camera/3D points calibration)
[2] MLt Semantic
Odometry |-~ Occupancv GrIdS Grid
implementatornis SEgret Cut /s USRI LU G ALaSEL

[1] Semantic grid estimation with a Hybrid Bayesian and Deep Neural Network approach, 0. Erkent et al., IEEE IROS 2018 (;@D
[2] Conditional Monte Carlo Dense Occupancy Tracker, Rummelhard et al., ITSC 2015 f'"m "'“m @ 18
[3] Segnet: A deep convolutional encoder-decoder architecture for image segmentation, Badrinarayanan et al., IEEE PAMI 39(12) 2017 TOYOTA
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Semantic Grids - Experimental Evaluation Approach

Hybrid Sensor Fusion approach (Semantic Grid construction)

B Unknown

I Building

I Sky
Road

B Vegetation
Sidewalk
Car
Pedestrian
Cyclist
Signage

[ Fence

P Free

B Static

Dynamic

Frontal View Ground-Truth Bird’s Eye View Ground-Truth Semantic Grid Prediction Labels
=> labelled by humans in datasets => Frontal View GT “projected” using => Dense structure obtained using
Point-Cloud (Bayesian Perception) hybrid integration

=> Densified by humans (point-clouds
and images have different resolutions)

N o o o

Comparison

\ 4

I @[\>)
Lo

TOYOTA



Semantic Grids - Experimental Resulis & Current work

Ground Truth (GT G Projection

Unknown
Bilding
Shy

Road
Wagetation

Hdewalk

Frontal View malinn

Car
et 2 cars not detected
Slgnage

I Fon LTS

EF?L;" st
Stalic =
Dynamic e

2 cars not detected in frontal view estimation (semantic segmentation)
... but recognized in semantic grid (with the help of Dynamic Occupancy Grid)

Semantic Grid Estmation

2 cars finally
recognized

A
Wagetatian
Hdewalk
FPodastrian

Cyclisl
Hgnage

1

B Fence
Fraa

Stalic

Dynamic

Ground Truth (GT

Frontal View Estimation
Truck not detected

Fence noied&ectéd

GT Prpigtion

arid (with the help of Dynamic Occupancy Grid)

0 Fence not detected in frontal view estimation ...but recognized as an obstacle

Semantic, Grid Estimation

ruck finall
»~ recognized

in semantic grid (with the help of Dynamic Occupancy Grid)
0 Truck not detected in frontal view estimation ... but recognized in semantic

Current Work

 Improve accuracy with more dense training datasets
 Implementation on embedded systems for real-time process
» Adaptation to bad weather conditions
» Panoptic segmentation & tracking

mi vm
T
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Decision-making level: Learning Driving Skills for AD
15t Step: Driver behavior modeling
[Sierra Gonzalez et al, ICRA 2018]
* Learn Model parameters from real driving demonstrations using Inverse Reinforcement Learning (IRL)

* Driver behaviors are modelled using a Cost function C(s) = ;,Kzl w; - fi(s) which is assumed linear on a set of K hand-crafted
features (e.g. Lane index preferences, Deviation from desired velocity, Time-to-collision to frontal targets, Time-gap to rear targets ...)

® A training set containing “interesting highway vehicle interactions” was constructed out of 20 minutes of highway driving data & used
to automatically learn the balance between features. \We are extending the approach using larger datasets and various traffic conditions.

=> Obtained models can be leverage to Predict human driver behaviors & Generate human-like plans for the ego vehicle (mandatory

in mixed traffic)
Synthesized bird’s eye view @
of the traffic scene

’.l.. o . .

Ego vehicle F i ' . .
- - 104.6 km/h é/

Comparison between demonstrated
behavior in test set & behavior

induced by the learned model
= White vehicle => Ego-vehicle (ground-truth)

= Yellow boxes => Detected obstacles (using CMCDOT) , TS

TOYOTA




Decision-making level: Learning Driving Skills for AD
20d Step: Motion Prediction & Driving Decisions

* A realistic Human-like Driver Model can be exploited to Predict the long-term evolution (10s and beyond) of traffic
scenes [Sierra Gonzalez et al., ITSC 2016]

® For the short/mid-term, both the Driver model and the Dynamics of the target provide useful information to determine
future driving behaviors

=> Our probabilistic model fuses Model-based Predictions & Dynamic evidence to produce robust lane change intention
estimations in highway scenes [Sierra Gonzalez et al., ICRA 2017]

Synthesized bird’s eye view of the traffic scene
& Over vehicles expected intentions

e
e
e

j ‘ i

‘ Comparison between demonstrated
behaviors in test set & behaviors induced
by the learned model & dynamics

\ = Orange bar => Probability that the target executes a lane ]
0 vehicle Back cam change according to the model (given the traffic situation) evidence

=> Final lane change intention probability
(fusing model-based prediction & dynamic evidence)

7 (- ab

TOYOTA



Experimental Vehicles & Connected Perception Units

:::ROS

N A f ' RT-Maps J || | (-1 Velodyne
" .. b Nl : # 3D lidar
- under development WEERG L3

) &[dars IBEO Lux

Connected Perception Unit (V2X communication)
Same embedded perception systems than in vehicles
=> Exchanging only relevant information (e.g. Risk parameters)

Nvidia GTX Titan X Nvidia GTX Jetson TK1 Nvidia GTX Jetson TX1
Generation Maxwell Generation Maxwell Generation Maxwell

C. LAUGIER - Situation Awareness & Decision-making for Autonomous Driving
IROS 2019 Cutting Edge Forum on *““Contributions of Robotics, Al and ITS to Autonomous Driving™, Macau, China, Nov 5th 2019




Experimental Areas

A Protected experimental area => Testing Autonomous Driving L3 & L4

Connected
Perception Unit

Un ssgace 4" saparimeraaiian i 3 plats lor s

Crash test track

i B
Brr b e —
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Summary & On going work

Q Autonomous Driving in varlous Trafflc & Context situations (cooperation with industry)

Autonomous Shuttles Autonomous Bus (lveco)

(~15 km/h, Urban traffic) (up to 70 km/h, Urban traffic)

* Various Dynamics & Motion constraints & Contexts

 Adapted “Collision Risk” & “Collision avoidance
maneuvers” (Risk & Maneuver characterization)
Autonomous Renault Zoe

(up to 70 km/h, Urban traffic) » Cooperation IRT Nanoelec, Renault, Iveco ...

Q Embedded & Extended “Semantlc Gnds”

Deep
Segmentation Semantic

Geometric
Registration

Fusion
Network
Occupa r{cy

Grid

Grid

* Embedded “Semantic Grids” & “Panoptic Segmentation”
 Improved scene understanding (various weather conditions)
» Cooperation Toyota

fumin 7 mansis

semanti] I « 1 Patent & 3 publications (IROS’18, ICARCV’18, "’::‘
emantic  INEEIEE Unmanned System journal 2019)

_ =2 g Synthesized Model of
E’" the observed scene
B
Frontview:===-

130

 Driver Behavior modeling using Driving dataset & Inverse Reinforcement Learning
=> Human-like Driver Model (for mixed traffic)

* Motion Prediction & Driving Decision-making for AD performed by combining
“learned Driver models” & ““Dynamic evidences™

« Cooperation Toyota i
2 Patents & 3 publications (ITSC 2016, ICRA 2017, ICRA 2018) & PhD Thesis 2019 No,

TOYOTA
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C. Laugier: Guest Editor Part
2nd edition (Sept 2016) “Fully Autonomous Driving”
Significant contribution from Inria
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